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Some concepts which have been proven to be useful in general relativity are characterized, definitions
being given of a local isometry horizon, of which a special case is a Killing horizon (a null hypersurface
whose null tangent vector can be normalized to coincide with a Killing vector field) and of the related
concepts of invertibility and orthogonal transitivity of an isometry group in an #-dimensional pseudo-
Riemannian manifold (a group is said to be orthogonally transitive if its surfaces of transitivity, being of
dimension p, say, are orthogonal to a family of surfaces of conjugate dimension n — p). The relation-
ships between these concepts are described and it is shown (in Theorem 1) that, if an isometry group is
orthogonally transitive then a local isometry horizon occurs wherever its surfaces of transitivity are null,
and that it is a Killing horizon if.the group is Abelian. In the case of (n — 2)-parameter Abelian groups
it is shown (in Theorem 2) that, under suitable conditions (e.g., when a symmetry axis is present), the
invertibility of the Ricci tensor is sufficient to imply orthogonal transitivity; definitions are given of
convection and of the flux vector of an isometry group, and it is shown that the group is orthogonally
transitive in a neighborhood if and only if the circulation of convective flux about the neighborhood
vanishes. The purpose of this work is to obtain results which have physical significance in ordinary
space~time (n = 4), the main application being to stationary axisymmetric systems; illustrative examples
are given at each stage; in particular it is shown that, when the source-free Maxwell-Einstein
equations are satisfied, the Ricci tensor must be invertible, so that Theorem 2 always applies (giving a

generalization of the theorem of Papapetrou which applies to the pure-vaccuum case),

1. INTRODUCTION

The purpose of this paper is to develop in a coherent
way some concepts which are currently being found
useful in work on general relativity in connection with
isometries, and to point out some of the relationships
between them and show how they may be applied.
Although the motive for this study is to obtain physical
applications to 4-dimensional space-time, the results
are all derived in n dimensions, because, on one hand,
very little extra work is required, while, on the other
hand, considerably greater mathematical insight is
obtained.

The main subject of discussion will be certain
types of horizons which we shall now define.

A null hypersurface in a pseudo-Riemannian
manifold is said to be a local isometry horizon (which
we henceforth abbreviate to LIH) with respect to a
group of isometries if (I) it is invariant under the
group, and (II) each null-geodesic generator is a
trajectory of the group.

The special case of a null surface which is an LTH
with respect to a one parameter group (or subgroup)
is said to be a Killing horizon. In other words, a
Killing horizon is a null surface whose generating null
vector can be normalized so as to coincide with a
Killing vector field.

The purpose of these definitions is to isolate the
characteristic features of the class of functions of
which the Schwarzschild horizon? is the most familiar

1 M. D. Kruskal, Phys. Rev. 119, 1743 (1960).
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example in so far as these features can be described
in terms of purely local concepts. The physical signifi-
cance of an LIH is that on it a particle may at once be
travelling at the speed of light (along one of the null
generators) and standing still (in the sense that no
change in its surroundings can be detected as its affine
parameter varies because it is moving along a trajectory
of a motion which leaves invariant both the intrinsic
structure of space-time and the position of the null
surface itself). As a general consequence, infinite red
or blue shifts will be observable in relation to the
frames of reference naturally determined by the
isometry group.

LIH’s are worth studying because, in addition to
their local significance, they may have considerable
importance in the global structure of space-time, for
example as event horizons? or Cauchy horizons,? etc.
Killing horizons in particular are interesting in four
dimensions because any spacelike 2-surface within
such a horizon will be marginally locally trapped
according to the definition of Penrose.* This is because
the null vectors generating the Killing horizon must
have zero expansion, rotation, and shear (ie., p =
o = 0 in Newman-Penrose language).® The vanishing
of the first of these means that one family of null
normals to the 2-surface is not expanding in either
direction, and so there must be a sense of time

2 W. Rindler, Monthly Notices Roy. Astron. Soc. 116, 662 (1956).

3 S. W. Hawking, Proc. Roy. Soc., London A294, 511 (1966).

4 R. Penrose, Phys. Rev. Letters 14, 57 (1965).
5 E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
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direction in which both families of null normals are
nonexpanding. If the required sense happened to be
the same over the whole 2-surface, then it would
follow, in the case of a compact 2-surface, that it
would be a closed marginally trapped surface. (A
marginally trapped surface is one which satisfies the
condition that neither family of null normals diverges,
but not the strict condition that both converge.) How-
ever, although such global properties as these pro-
vide much of the motivation for studying LIH’s,
we restrict attention to purely local concepts in this
paper.

It is worth emphasizing that the conditions (I)
and (II) in the definition of an LIH are independent
of each other, and that they are both essential if the
condition is to be sufficiently restrictive to be useful.
In physical terms, they are both necessary if a particle
moving along a null generator is to be able to be
thought of as also standing still, since if (II) were not
satisfied it would have motion with respect to the
intrinsic structure of space-time, while if (I) were not
satisfied the null surface itself would define a structure
with respect to which motion could be defined. These
points may be made clearer by consideration of a few
simple examples.

A trivial example is provided by the null cone of a
point in Minkowski space, which is an LIH with
respect to the Lorentz group at that point, but not
with respect to the full Poincare group [since (I) would
not be satisfied] nor with respect to the rotation group
at the point [since (I) would not be satisfied]. It is not a
Killing horizon.

The classic example is the Schwarzschild horizon,?
which is an LIH with respect to the one-parameter
group of static displacements, and is therefore a
Killing horizon. It is also an LIH with respect to larger
groups such as the Abelian group (static displace-
ments) @ (rotations about an axis). Within the
Schwarzschild horizon there are many null hyper-
surfaces which satisfy (I), but the definition excludes
them from being counted as LIH’s because they do
not satisfy (1I).

A slightly more complicated example is provided
by the Kerr solution® when a > m (in the standard
notation as used in Ref. 4), in which there are LIH’s
with respect to the Abelian group (stationary displace-
ments) @ (rotation about the axis), but not with
respect to any larger groups. These LIH’s also are
Killing horizons, ‘but this is less obvious than in the
case of the Schwarzschild solution because the
Killing fields involved are not the same as the unique

8 R. H. Boyer and T. G. Price, Proc. Cambridge Phil. Soc. 61, 531
(1965).

Killing field which is timelike at infinity. This will be
further discussed in Sec. 4.

It is now natural to wonder under what conditions
LIH’s and Killing horizons are likely to occur. A
casual glance at the Schwarzschild solution might
suggest that they occur where a Killing vector field
becomes null. However, a little consideration shows
that this is neither sufficient nor (except for a Killing
horizon) necessary. For example, in Minkowski space
one may form a whole class of Killing vector fields by
taking different linear combinations of a static dis-
placement and a rotation about an axis, but the
hypersurfaces on which these fields become null are
not themselves even null, but are timelike.

Further investigation of this question constitutes
the principal content of this paper. With this end in
view we introduce, in Sec. 2, the idea of an isometry
group being orthogonally transitive, meaning that the
surfaces of transitivity are orthogonal to a family of
surfaces of conjugate dimension. It is a convenient
consequence of orthogonal transitivity that it is
possible (where the surfaces of transitivity are not
null) to choose coordinates in two sets, constant on
the surfaces of transitivity and the orthogonal sur-
faces, respectively, in such a way that the resulting
form of the metric tensor makes manifest, as far as
possible, the isometries, and at the same time contains
no cross terms between the two sets.

One of the main results of this investigation is
given in Sec. 3, where it is shown that, wherever the
surfaces of transitivity of an orthogonally transitive
group do become null, an LIH occurs. In Sec. 4 it is
shown in addition that if the group is Abelian, such an
LIH is a Killing horizon.

In Secs. 5 and 6 it is shown that orthogonal transi-
tivity is not merely a condition imposed for mathe-
matical convenience (although it has often been
assumed in past investigations without any other
justification) but that it may be expected to occur
naturally under fairly general conditions, provided the
group is Abelian and provided also that its surfaces of
transitivity have (# — 2) dimensions where # is the
dimension of the manifold [orthogonal transitivity
being trivial in the (n — 1)-dimensional case]. These
conditions are given a physical interpretation in
general relativity in terms of the vanishing of the
convective circulation of matter around a region.

As the paper progresses the class of groups under
consideration has to be progressively restricted: from
general groups in Sec. 3 to Abelian groups in Sec. 4
to Abelian (7 — 2)-parameter groups in Secs. 5 and
6. However, all the results apply to 2-parameter
(and trivially to 3-parameter) Abelian groups in

Downloaded 05 Jun 2006 to 145.238.18.12. Redistribution subject to AIP license or copyright, see http:/jmp.aip.org/jmp/copyright.jsp



72 BRANDON CARTER

four-dimensional space-time, and therefore to station-
ary axisymmetric systems in particular.

2. INVERTIBILITY AND ORTHOGONAL
TRANSITIVITY

We now introduce the related concepts of orthog-
onal transitivity and invertibility of a group of
isometries.

Consider an open region ‘WL on an n-dimensional
manifold such that there is a continuous group of
isometries whose surfaces of transitivity have dimen-
sionality p (1 <p <n —1)inU.

Then the group is said to be orthogonally transitive
in W if there exists a family of (# — p)-dimensional
surfaces which are orthogonal to the surfaces of
transitivity at each point in “W.

The group is said to be invertible at a point P in ‘W
if there is an isometry leaving P fixed which simul-
taneously inverts the sense of the p independent
directions in the surface of transitivity at P, but
leaves unaltered the sense of the directions orthogonal
to the surface of transitivity at P. If such an isometry
exists, it is clear that it is an involution and that it is
uniquely determined.

It is important to note that a group cannot be
invertible at a point P if the surface of transitivity
through P is null, since in this case there is a direction
in the surface of transitivity which is also orthogonal
to it. This situation is not merely due to an inadequacy
in the definition of invertibility, but is a result of the
fact that, even when the group is invertible on the
other surfaces of transitivity in the immediate neigh-
borhood of P, there is generally a real distinction
between the two opposed arrangements of the direction
senses in the null surface of transitivity. This somewhat
paradoxical state of affairs may be made intelligible
by means of an illustration. Consider the 1-dimen-
sional group generated by stationary displacements
in Kruskal’s -completed Schwarzschild solution.!
This group is invertible everywhere except on the
horizon, where the Killing vector becomes null. It is
immediately clear that there is a distinction between
the two senses of direction along a line of transitivity
there, since in one sense the line approaches a fixed
point of the group, while in the other it continues to
infinity without interruption.

It can easily be seen that orthogonal transitivity is a
necessary condition for a group to be invertible in a
neighborhood. For suppose we have an n-dimensional
manifold with a group of isometries whose surfaces of
transitivity are p-dimensional, and which is invertible
in the neighborhood of a point P. Construct the set of
all differentiable paths in the neighborhood which

pass through P and which are everywhere orthogonal
to the surfaces of transitivity. This set of paths
intersects each surface of transitivity in a unique
point: for consider a pair of paths PQ and PQ’,
where Q and Q' lie on the same surface of transitivity;
since the directed compound path QPQ’ could be
defined without reference to any sense of direction in
the surfaces of transitivity, it follows that Q and Q'
must coincide, because otherwise the ordered pair
Q, Q' would give rise to an intrinsically defined sense
of direction in:the surface of transitivity at Q. It
follows that this set of paths generates an (n — p)-
surface through P which is orthogonal to the surfaces
of transitivity. By a similar construction at each point
in the neighborhood of P, a complete family of
orthogonal (n — p)-surfaces can be built up.

Thus, in order that a group should be invertible, it
is necessary that it be orthogonally transitive, and
also that the surfaces of transitivity be nonnull. These
conditions are not in general sufficient. For consider
as a counterexample the 4-dimensional space with
metric given by

ds? = a(z, t)e ™ dx? + 2b(z, t)e™¥ dx dy
+ ez, )dyt + dz2 —dr?, (1)

with a(z, t)e(z, t) > b*(z, t). Then the Killing vectors
0/0x and x(d/ox) + (0/dy) generate a non-Abelian
group which is orthogonally (and simply) transitive
over the 2-surfaces, z = const, ¢ = const, these
surfaces being orthogonal to the family of 2-surfaces,
x = const, y = const. The surfaces of transitivity
are nonnull. Nevertheless, it can easily be checked that,
except for some specially simple choices of the
functions a(z, t), b(z,t), c(z,t), the group is not
invertible.

Suppose, however, that we have an Abelian group.
In this case the requirement that the group be orthog-
onally transitive with nonnull surfaces of transitivity
is not only necessary but also sufficient for the group
to be invertible.

In order to see this, consider an #-dimensional
manifold with an orthogonally transitive Abelian
isometry group which has nonnull p-dimensional
surfaces of transitivity in some neighborhood. We
construct a manifestly invertible coordinate patch as
follows. Let y',--:,y"? be any well-behaved
coordinate system on one of the orthogonal (» — p)-
surfaces. There will be a nondegenerate induced metric
ds* =g, dy'dy?, i,j=1,-+-,n— p. By dragging
the system along under the operations of the group,
we equip all the orthogonal (n — p)-surfaces with
coordinates in which the induced metric has an
identical form, since, being nonnull, the surfaces of
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transitivity through the original orthogonal (n — p)-
surface span the whole neighborhood. It is for the
next stage that we need the group to be Abelian. We
choose p linearly independent Killing vector fields
generating the group, which we shall suggestively label
o/oyt, -+ -, 0/0y®. We proceed to attach a set of
coordinate values y*, +* -, ? to each of the orthog-
onal (n — p)-surfaces in the obvious way, i.e., we
first choose one of the (n — p)-surfaces as the origin,
! = - -+ = p? = 0; we then drag this one along under
the Killing vectors 0/0y?, - - -, d/0y”, thereby generat-
ing a hypersurface (since the Killing vectors commute)
which we label ¢! = 0; from here we form the family
of hypersurfaces y' = const by dragging this one
along under 9/0y' by corresponding values of the
parameter v'; finally, we repeat the process for
w¥, -+, p?. As a result of the commutation, each
hypersurface y* = const is invariant under the Killing
vectors other than d/oy*. It follows that in each p-
surface of transitivity the induced metric is given by
ds® = h, dy* dy', (k,1 =1, -, p), where the coeffi-
cients h; are independent of o', - -+, 9®. Due to the
orthogonality, the metric on the whole space has
the form ds? = g;; dy* dy’ + hy, dy® dy'. Now consider
the inversion mapping (3, <« -, %) — (3, : * + , PP)
where ¢ = y¢(i=1,-++,n — p)and

¢k=_wk(k=1,...’P)_

Since g,; and hy, are independent of ¢', - -+, u?, this
is clearly an isometry; thus the group is invertible.

We note in passing that the concept of being static
is the special case of orthogonal transitivity which
refers to a Il-parameter group (applying in the
stricter sense only when the Killing vector is time like).
Since a l-parameter group is automatically Abelian,
orthogonal transitivity and invertibility are equivalent
here when the Killing vector is nonnull.

By a rough analogy we can transfer these ideas from
groups to tensors. Let ,,{* (i =1, p) be a set of
independent vectors spanning a p-dimensional surface
element at a point P, and let ¥y, (j=p + 1, -+, n)
be a set of independent vectors spanning the orthog-
onal (n — p)element at P. Then a tensor T is said to be
orthogonal to the p-surface element at P with respect
to a particular subset of s of its indices if, when
we form the mixed components T*1"""#r, .,  which
are covariant in the indices of the subset and contra-
variant in the others, the contraction

AU PR a L A
"hu’ k4 rnl‘rT ! '}d"’}vx (ﬂl)c 1’ * (ﬂs)g *

vanishes for all possible choices of o, -, «, and
B, ", B,. The tensor is said to be invertible in the
p element at P [or invertible about the orthogonal

(ay),

(n — p) element at P] if each of the scalars obtained by
contracting any combinations of its indices with any
choice of the ,{* and the Yy, is invariant when
@8 = — 0t and Yy, — Yy for all i, j. Obviously,
these definitions are independent of the choice of basis
vectors in the elements. Clearly also, the statement
that a tensor is invertible in an element is equivalent
to the statement that it is orthogonal to the element
with respect to every subset consisting of an odd
number of its indices. The definition of invertibility is
quite straightforward when the element is nonnull,
so that (;,{* and the “»* are linearly independent.
It is slightly more subtle when the element is nulf,
since there then exist directions common to these
sets. The definition requires that such a direction be
inverted when represented by a contravariant vector
and left unaltered when represented by a covariant
vector. In this way a tensor can be invertible even in a
null element, although a group cannot be invertible
on a null surface of transitivity.

A tensor is said to be orthogonal (with respect to a
subset of indices) to a group or invertible in a group
if it is orthogonal (with respect to the subset of
indices) to the surfaces of transitivity or invertible in
them respectively. Clearly, if a group is invertible,
then any intrinsically defined tensor (such as the Ricci
tensor or the Weyl tensor) must be invertible in it.

3. AN EXISTENCE THEOREM FOR LOCAL
ISOMETRY HORIZONS WHERE AN ORTHOG-
ONALLY TRANSITIVE GROUP HAS NULL
SURFACES OF TRANSITIVITY

We can use the concepts of the previous section to
proceed further with the question raised in Sec. 1.
Before doing so we explain our notation and state
Frobenius’s theorem, which is fundamental to
questions of orthogonality. We use square brackets to
denote antisymmetrization and round brackets for
symmetrization; when two such operations are to be
performed in a context where the order is important,
we shall indicate the operation to be performed first
by using boldface brackets as,e.g.,, [---[---1---].
We define the p vector generated by a set of vectors
W s (8 as
wrL T Kp (1)2.:[“ e (mzku] (2)

and define the orthogonal conjugate in n dimensions
as

%y W (3)

Hp+1*°* Ha K1' ' Kpllp+1'* ' fin

1
= — €
p!

where €, ..., is the alternating tensor. Frobenius’s
Theorem (see, e.g., Schouten?) states that a necessary

7J. A. Schouten, Ricci Calculus (Springer-Verlag, Berlin, 1954),
p. 8L.
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and sufficient condition for a field of such p vectors
to be orthogonal (locaily) to a family of (n — p)-
surfaces in # dimensions is

WKL Koy VIde -t Ay (g

4)
It is convenient for future reference to have the
expansion

whxa - eaiyvide - Yap

12 i1 [Kk1-*-K ;]
=;Zl(‘“1) Y

i Ai+1 . .. A
X @l i L (5)

The following theorem (which covers the cases of
the Schwarzschild and Kerr solutions) shows that
LIH’s may be expected to occur in a fairly wide
class of circumstances.

Theorem 1: Let W be an open subregion of an
n-dimensional C? manifold with a C! pseudo-Rie-
mannian metric, such that there is a continuous group
of isometries whose surfaces of transitivity have
constant dimension p (1 < p <n —1)inU.

Let N’ be the subset (which must obviously be
closed in W) where the surfaces of transitivity become
null, and suppose that they are never more than
singly null (i.e., the rank of the induced metric on the
surfaces of transitivity drops from ptop — 1 on N,
Hut is never lower).

Then, if the group is orthogonally transitive in W,
it follows that N is the union of a family of non-
intersecting hypersurfaces which are LIH’s with
respect to the group, and consequently (since N is
closed) that the boundaries of N’ are members of the
family.

Proof: In the neighborhood of any point in U we
choose a linearly independent set ,{*(i=1, -+, p)
of the Killing vectors generating the group, and form
the Killing p vector tangent to the surfaces of transi-
tivity

WL = g gl 2, (6)
We now substitute this in the identity (5), make a
further expansion of the right-hand side, and finally
antisymmetrize the whole over the indices u, »,
Aoy v+, A,. Most of the terms then drop out, leaving
the reduced identity
wlxkL - Kg;[uWVJZz Tt dpl

2
TP+ D +2)

s Kpylvde <o - Apind

{ZW"I s kwilpyvie o Ap)

— w1

?
— 2.21(1)5['(1 N (i_l)fki~1(i+1)§'€i+1 N (p)EKp
i=

Q!

x (i)g(m]:[u)wvlz ot Ay]}'

Since the surfaces of transitivity are (n — p)-
surface orthogonal, Eq. (4) holds, and so the left-hand
side of Eq. (7) vanishes. Since the (,, & satisfy Killing’s
equation %Y =0, it follows that the last term
vanishes also. This leaves the relation

2WK1 P Kp;[llwll <o dp] —_ WKI - Kliw[zl - ;'P;“]. (8)
Contracting with w, ..., and setting
1
W= ;}—' Wk ¢))
we obtain the result
Wiltiyhe oo Aod = prypldr - Apind, (10)

We shall use the orthogonal conjugate form of this
equation, i.e.,

*yoPKpt2 't Kn ¥, ,PKp+2 " Kn
W, *w = W *w

we (D)
Now the vanishing of W at a point is a necessary
and sufficient condition for the p surface of transitivity
to be null there, or, in other words, W = 0 is the
equation of the set N,
Hence in the open region ‘Wb — N we may divide by
W to obtain

(In W), #woso oo = #ygorosa s

(12)
Since the right-hand side is continuous in U, this
equation may be interpreted as implying that the
left-hand side is locally bounded in UL — N,

Now let us restrict attention to a particular one of
the orthogonal (n — p)-surfaces. Suppose that this
surface lies partly in N and partly outside. Then in the
neighborhood of any point on the boundary In W
must be unbounded, and consequently the restriction
of its gradient to the (# — p)-surface must be un-
bounded. But *w*»+1"""%» is the tangent element to
the orthogonal (n — p)-surface and is locally non-
vanishing. Thus (12) implies that the restriction of the
gradient of In W to the (n — p)-surface is bounded,
contrary to the deduction we have just made. It
follows that if any part of one of the orthogonal
(n — p)-surfaces lies in N, then the whole of it must
lie in N,

Consider one such (7 — p)-surface through a point
P in N'. At each point on this surface w*1"*"*» and
*wre+1 " "kn together generate an (w — 1) element,
since, being singly null, they have a unique (null)
direction in common. Therefore, by dragging along
the (# — p)-surface under the operations of the
group, we obtain a uniquely defined null hypersurface
through P which is contained in N, Its null geodesic
generators lie everywhere in w*t"*" *» and consequently
are trajectories of the group. They cannot intersect
since otherwise the member of the family passing
through a point of intersection would not be unique.
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We remark on a few points arising from this
theorem.

(1) In Lorentz spaces (i.e., those with signature
n —2), and in general relativity in particular, the
restriction that the p-surfaces should be at most
singly null is unnecessary, since higher nullity is not
possible in these spaces anyway.

(2) When p = n — 1, the orthogonality condition
is automatically satisfied, and the conclusion of the
theorem is also a trivial result.

(3) When p=n—1, and also when p=1, a
converse theorem holds as a trivial result. The con-
verse theorem may be stated as follows: If J¢ is an
LIH with respect to a group which is transitive over
p-surfaces in n dimensions, then these p-surfaces are
(n — p)-surface orthogonal on ¥X. However, this
converse does not hold for the intermediate values
p=2,n-2

In the case n = 4, p = 2, a simple counterexample
is given by the space (which has Lorentz signature
when x < 1) with metric

ds? = dx* + dy* + dz? — 2dx dt

+ 2ydzdt — (x — yBde2. (13)

Here x = 0 is an LIH with respect to the group
generated by 0/0r and 0/0z. Nevertheless, the Killing
bivector 9/dt A 0/0z is not 2-surface orthogonal at
x=0.

(4) Most commonly, N will consist of discrete
hypersurfaces separating regions of positive and
negative W, i.e., regions where the Killing p-vector
is nonnull and contains, respectively, an even and an
odd number of independent orthogonal timelike
directions (or more simply, in a Lorentz space, where
the Killing p-vector is, respectively, spacelike and
timelike).

A special case, which also arises commonly, is the
situation where two such hypersurfaces have coalesced
to give one, so that W has the same sign on both sides
and has vanishing gradient on the hypersurface.

These possibilities are very well displayed in the
hybrid Kerr~Reissner—Nordstrom solution.® The met-
ric form in which it was discovered is

ds® = p? d6® + 2asin® 0 dr dp — 2 dr du
+ {r’ + a® + 2mr — €®)p?a®sin® 6} sin® 6 dg®
— 2a(2mr — €)p~? sin® 6 do du
— {1 — 2mr — &)p?} du?, (14)
where p? = r? 4 4% cos? 0, and the parameters m, e,

ma, and ea are to be interpreted as the mass, charge,
angular momentum, and magnetic dipole moment,

8 E. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash,
and R. Torrence, J. Math. Phys. 6, 918 (1965).

respectively. Here, and in applications to general
relativity throughout this paper, the units are under-
stood to be such that the speed of light ¢ and Newton’s
gravitational constant y are both unity.

The Killing bivector 0/0p A 0/0u is 2-surface
orthogonal. It becomes null on the hypersurface where
A =r?—2mr 4 e + a® = 0. Consequently, Theo-
rem 1 implies that the hypersurfaces A = O are LIH’s.

The orthogonality is not immediately apparent in
the above coordinate system, but, according to the
result demonstrated in Sec. 1, a manifestly invertible
coordinate system must exist. It may be obtained
explicitly by using the generalized Boyer-Lindquist®
transformation:

dt = —du — (r* + a®)A1dr, d¢ = de + aA1dr,

giving the invertible form

ds? = pzA_l dr? + p2 d6*
+ {r* + a® + 2mr — €®)p~%a*sin® 6} sin® O d¢?
+ 2a(2mr — €)p~sin® 0 d¢ dt

— {1 — Qmr — &)p?} di’. (15)

This form necessarily fails when the Killing bivector
becomes null, but the orthogonality is patent else-
where and it can be deduced by continuity that it
holds where A = 0 also.

The general and special cases mentioned above
correspond to distinct and continuous roots of A,
When there are no real roots, there are no LIH’s.
These different cases give rise to significant differences
in the global topology (see the diagrams in Carterl?),
which can-be applied qualitatively to the charged case
provided it is noted that the discriminant of A is
changed from m?* — a® to m* — a? — €2, and provided
a® £ 0; when a* =0, the appropriate topological
diagrams are also given by Carterl!). In this paper we
are not concerned with global matters, but it is the
intimate connection between large-scale topology and
LIH’s which provides one of the motives for studying
the latter.

4. EXISTENCE OF A KILLING HORIZON
WHERE AN ORTHOGONALLY TRANSITIVE
ABELIAN GROUP HAS NULL SURFACES
OF TRANSITIVITY

If we are dealing with an Abelian group, the
conclusion of Theorem 1 may be considerably
strengthened.

Corollary to Theorem 1: Let the postulates of
Theorem 1 be satisfied. Then if in addition the group
? R. H. Boyer and R. W. Lindquist, J. Math. Phys. 8, 265 (1967).

10 B. Carter, Phys. Rev. 141, 1242 (1966).
11 B. Carter, Phys. Letters 21, 243 (1966).
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is Abelian, it follows that each of the resulting LIH’s
is a Killing horizon.

Proof: Consider one of the resulting LIH’s and let
its null generator be /*. Since /* lies in the surface of
transitivity of the group, we have

(@)
l” =" o (i)é:ﬂ’

(16)

where the set of scalars Va is determined up to a
constant of proportionality. In order to show that this
LIH has a Killing vector field coinciding with its null
generator, we need to show that the factor of propor-
tionality may be chosen so that the o are constant in
the LTH.

Since the surface of transitivity is only singly null,
the direction of /* is fully determined by the condition
that it be orthogonal to the surface of transitivity,
ie., [ wt:""" = 0; thus substituting from (14) we
find that the ‘Yo are determined by

awp e =05 awy = W mi- (17)
The solution of these equations is given by
Wo = kAP, for fixed j, (18)

where k is an arbitrary constant of proportionality
and AV is the cofactor of a . Since a4, is
singly null, its adjoint has rank 1 (by a well-known
theorem of Jacobi) and therefore this set of solutions
is nonvanishing for some values of j and is the same
for all such values. For convenience we take j = p,
reordering the labels if necessary in order to obtain a
nonvanishing result.

We need to show that each of the ratios Vo to ®u
is constant in the LIH. Since the Killing vectors
commute, this is true automatically in the surfaces of
transitivity and so we need only show that the ratios
do not vary in orthogonal directions, i.e., that

[(&), ()]
o a'[pwvl ..

(19)

Hence, by (18), we have established the required
result if we can prove

“vyp] = 0

A[(K)[(mIA”)](”),[pw” ey = 0. (20)

The cofactors are given explicitly by

AP = (1 (p — D €, e,
X (216 e (Expoy WEXT &L (21)

Therefore, using Killings equations ,,&,.,, = 0 and
the commutation conditions

v o v
(,-)5“;‘, (7’)5 - U)éu:v (z’)f »

we obtain
(7 i
ADD = 2(—1)2(p — 1!

X (1)fx1 e (i—nfxi_l (i+1)‘fx,- e (p)fx,,_l

p—1
X Zl (i)é:[n Ce (j)ij;p PN (%1)5%«1]' (22)
j=

Again substituting (6) into the orthogonality con-
ditions (4) and using the expansion (5), we see that
the orthogonality conditions are equivalent to

n&Pw vl = 0 (each j).

On expansion this gives

(23)

D
2 (j)fd;[pwvl ceewy] eSS Zl(—' l)l (l)fa
=

X (j)E[p;vl (i)§v2 te
Consequently we deduce that

b (29

’ (l—1)§v, (z+1)§vm '

]
[er. .. i -1l
22:1 (I)E f (J')EK};[p (11—1)5'% ! Wvl syl
j=

— (1)§[K1 Ca. (p—l)é‘K’)—l]

p—1
X Zl(—l)j(i)s[p;vl (1)&2 Tt (;—1)5v,- (J'+1)’§v;+1 o '(p)fv,,]
j=

p—1
- Zl(—'l)’ @& BT G EY 8]
o
X &t v iy (25)
Substituting into (22) and using (21), we obtain
(p)
A Ratd ,[val ceevyl
sy j
= AYDS (=1 (i,
o
X (1)5v2 U (j—l)fv,» (f+1)5v,+1 co fvp]
r
- (—1)1”2A(Z)(’)5[p;vl§v2 T EVD~1]' (26)

i=1
When this is substituted into the left-hand side of
(20), it can be seen that each of the terms has as a
factor a 2 x 2 minor of the adjoint matrix A®®),
The terms must therefore vanish since, as has been
already remarked, this matrix has rank 1. Thus (20)
is true and the result is established.

We can apply this result to the charged Kerr solution.
In terms of the metric form (14) with coordinates
numbered from 1 to 4 in the order r, 6, ¢, u, we find
that the normal to the hypersurface A =0 has
covariant components /, = 4,. We can use the
inverse metric given in Ref. 8 to obtain the contra-
variant components of the null generator:

I = p~¥A8 — adf — (r* + a®ds}.
On the surface A = 0, r takes constant values 7.
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Therefore we see that the null generator can be
normalized so as to coincide with the Killing vector
«(0/09) + (r%. + a®)0/0u.

It should not be concluded from the result of this
section that any null hypersurface which is an LIH
with respect to an Abelian group is also a Killing
horizon. A counterexample is provided by the metric
described in note (3) after Theorem 1. It contains an
LIH at r = 0 with respect to the Abelian group
generated by 0/0z and 0/0r. However, since the
orthogonal trapsitivity condition does not hold,
there is no reason why it should be also a Killing
horizon, and indeed it is not. The null generator is
0/0t — y0/0z. Therefore it cannot be normalized so
as to coincide with any Killing vector field.

5. ORTHOGONAL TRANSITIVITY AND
INVERTIBILITY OF AN (7 — 2)-PARAMETER
ABELIAN ISOMETRY GROUP WITH INVERT-

IBLE RICCI TENSOR

It is worthwhile to enquire when orthogonal
transitivity and invertibility are likely to occur, not
only because of their connection with LIH’s, but
also because they give rise to useful simplifications
generally. Since in fact a large proportion of the known
solutions of the general relativity equations have been
obtained with the aid of various preassumed invert-
ibility conditions (usually introduced with no other
justification than algebraic convenience), it would
probably be helpful in the future to know when such
assumptions are reasonable and when they involve
undesired restrictions.

One might also ask the specific question whether
the orthogonal transitivity of the Kerr-Reissner—
Nordstrom solution is merely a convenient algebraic
coincidence, or whether there is a deeper reason for it.

Papapetrou has pointed out!? that in the uncharged
case there is a deeper reason, since he has shown that
any stationary axisymmetric space-time satisfying the
empty-space equations (i.e., vanishing Ricci tensor)
in a region including the axis of symmetry must be
orthogonally transitive in that region.

The objective of this section is to show that this
rather striking result is a special case of a theorem
with considerably wider significance. Thus Papapet-
rou’s result can be extended in several directions: to a
wider class of groups, to cases where the condition
that the Ricci tensor vanishes is replaced by the very
much weaker condition that it be invertible with re-
spect to the group (which covers the charged case
above), and to cases where the region under consid-
eration does not include a symmetry axis but satisfies

12 A. Papapetrou, Ann. Inst. H. Poincaré A-IV, 83 (1966).

certain alternative conditions (an aspect which is
further developed in Sec. 6).

When the general question of orthogonal transitivity
of a p-transitive group in n dimensions is examined, it
turns out that, for p = — 1, the problem is trivial
as has already been remarked, while for p <n — 3
the problem becomes very complicated, as it does even
for p = n — 2 in the non-Abelian case. Therefore in
the remainder of this paper we only attempt to deal
with Abelian groups, and we are soon obliged to
make the restriction p = n — 2.

Our results depend on the following lemma which
gives a connection between the orthogonality con-
dition and the Ricci tensor.

Lemma: Let wh' % =  Elh-.. EL] where
m&h . (& are a set of generators of a p-param-
eter Abelian isometry group on an n-dimensional C3
manifold with C? metric. Then

{w[’ll cet ;"’fﬂ;p]};p = whir “RMP (i)é‘ﬂ,

p+2

i=1,---,p, 27)

where R¥ is the Ricci tensor.

Proof: For any set of C? vector fields,

p+2 AL, Ape 2 Apes
(1)5”,"',(p>5"< 3 W& (g E R () E  ERerrie]

2
1 p + 1 p—1 >
(- 1)( 3 )gl(_l)p 1
X E e GBI ) ERe gy ERe g ERete ],
(28)

When we take the contracted derivative and make
suitable rearrangements, we obtain the identity

A Ap— A A H
(0 + D{wE™ -+ o () E (T
2 Ap— A A ;
=3 (1)‘5[ Lo € 1{(11)5[ > ¢ vl p]};p

p—1
+3 z (1)5[11 e (i)Eli;p" .. (p_l)gla—lg:[lzzé:lpﬂ];p]
i=1

p+1 PP Ape 2 Apard:
= ( W& (£ () E (y ERr )

p—1
AL, . Ap— As Apid
=3 EH e Ee e B8 R}
i=1

-1
A, .. Ce Ap— As Apih
=2 EH e GBI e ERr B B hen]
i=1
p—1 i—1 i1
+23 (=177
i=2 j=1
1 Iy P Aie
X (1)5[ 1... (j_1)£: i 1(5+1)E i+l (i—l)f e ]
A1, .. Ape Ape
X o € o ER, ()

X (1.7)511”—l (1))5%;;'?*‘]' (29)
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We now use the condition that the (,,&* commute
with each other,

£ w8 =210, & = 0.
[()H§7)

(30)

This implies that the last term in (29) vanishes.
Applying Killing’s equation %" = 0, we deduce
that ,,&#; p = 0 and hence that the second last term
in (29) vanishes. Combining Killing’s equation with
(30) we obtain

£ 0 {8}
[é]

= {&* &}, 08 — 30, @ HET =0,

(31

from which it follows that the third and fourth last
terms in (29) cancel each other out.

Since we could have singled out any one of the
W& (i=1,--+,p—1) instead of (&, it follows
that for each i we have

{w[i., cerdp (i)éu;p]};p

3 i g N A
—_ (1)5[ 1. .. (1—1)5 i 1(i+1)§ i+l .., (p)§ »

p+2
X {8 &P, (32)

At this stage we introduce the Riemann and Ricci
tensors defined by

Cu:[wJ] = %RdﬂVPCU; R, =R,»,.

If we substitute any Killing vector ,,&* in (33) and
use the full Riemann-tensor symmetries together with
Killing’s equation, we obtain

(33)

" = R¥, ()& (34)
Contracting Eq. (21) gives
@&, = R, (. (35)

From (22), with further use of Killing’s equation, we

can deduce
{(i)f[u(i)fv:p]};p = %(i)f[ﬂRv]p (i)‘fﬂ‘ (36)

Finally, insertion of (36) into Eq. (32) gives Eq. (27),
which is the desired result.

It is convenient to work with the orthogonal con-~
jugate form of Eq. (27), i.e.,

(n —pP— 1) (O Xkprs: - Kknsol = 2 (i)ngpM *wux,,+3 ce ot Kpo
(37)

where we have introduced a set of twist tensors

(i)i{xwa...,‘n (l= 1,--- ’P) by
(33)

— e %
(VX Kkprg  kn @& Wipkpra - kn

The significance of the twist tensors can be seen by
taking the orthogonal conjugate of Eq. (23). Thus
Frobenius’s Theorem may be expressed in the follow-
ing alternative form: The elements spanned by
W&, (pn&" are orthogonal to a family of (n — p)-
surfaces if and only if all the corresponding twist
tensors vanish.

The utility of Egs. (37) lies in the fact that the
right-hand sides vanish for all i if and only if the
Ricci tensor is invertible in the p element. However,
as the equations control only the rotation of the
twist tensors, this restriction is not very strong except
when p > n — 2, so that the twist tensors reduce to
scalars or vanish trivially. This is why, in order to
make further progress, we consider only p =n — 2.
Thus we now reach the main result -of this section.

Theorem 2: Let D be a connected open subdomain
of an n-dimensional C* manifold with a C? pseudo-
Riemannian metric and an Abelian (n — 2)-parameter
isometry group, whose surfaces of transitivity, which
in general are (n — 2)-dimensional, become de-
generate on a subset § where the group has fixed
points.

Then the group will be orthogonally transitive
everywhere in D, and consequently invertible in D,
except where the surfaces of transitivity are null,
provided that:

(I) The Ricci tensor is invertible in the group
everywhere in D; and

(II) one of the following holds:

(a) & is nonempty;

(b) there is a discrete isometry in some neighbor-
hood in D consisting of an inversion in a direction
orthogonal to the surfaces of transitivity (in other
words, an inversion about a hypersurface to which the
surfaces of transitivity are tangent);

(c) it is known, for any other reason, that the
group is orthogonally transitive on at least one point
inD,

Proof: Let &%, i=1,++,n~2 be a set of
independent generators of the group. Then the

corresponding twist tensors (,x are scalars and, by
the preceding work, they satisfy

(39)

As has already been remarked, the invertibility of the
Ricci tensor implies the vanishing of the right-hand
side, and so we see that the (,x are constant in D.

— (4 *k
¥e =2 0 RS *w,,.
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Thus the group will be orthogonally transitive every-
where in D, provided that these constants are all zero.
This establishes the result when (c) holds.

To check condition (b) we observe that if there is an
inversion isometry in some direction, then it follows,
when the direction is orthogonal to the surfaces of
transitivity, that the tensors ,)&*" are also invertible
in this direction. In the case under consideration,
Eq. (38) reduces to

WX = (i)Eu;p *Wup » (40)
and invertibility of the ,,&*" in a direction orthogonal
to the surfaces of transitivity implies that the right-
hand side vanishes, leading to the required result.

To check condition (a) we need only to notice that
on F the Killing p vector vanishes, and consequently
the .,y vanish there also by (40), giving the required
result.

This theorem is useful for general relativity because
of the physical significance of the conditions. Since the
metric tensor is invertible in all circumstances, we
could, if we wished, substitute the Einstein tensor for
the Ricci tensor in the statement of Theorem 2 and
substitute —G,* for R ? in Egs. (37) and (39), where
the Einstein tensor is defined by

—G,” =R} — }Rg,? (41)

so that in general relativity, with units as for Egs. (14)
and (15), the energy-momentum tensor satisfies

1

TS = - G/r.
Since n =4 in ordinary space-time, the physical
applications of the theorem are to 2-parameter
groups. Several 2-parameter Abelian isometry groups
have been used for idealized problems in general
relativity, of which cylindrical symmetry is perhaps
the most popular. However, the most important case
is that of stationary axial symmetry, since this applies
to large classes of finite astrophysical objects as a
realistic approximation,

As an example of the application of Theorem 2 to
this situation, we shall show that the original result of
Papapetrou, which applied to solutions of the vacuum
Einstein equations, is in fact equally valid for solutions
of the source-free Einstein-Maxwell equations.

Let F,, be the electromagnetic-field tensor and let
@€, i=1,2, be the two commuting Killing vectors
in the space. The Lie derivative of the electromagnetic-
field tensor with respect to each of these must vanish,
ie.,

42)

£ F,,=F,, W& + 2F[Elﬂl (i)EPVJ =0,

(43)
4§

from which, using the condition (17) that the Killing
vectors commute, we obtain

{Fuv (I)Eu (Z)Sv};a = 3F[uv;o] (I)Su (2)Ev- (44)

Similarly, we can obtain two equations identical to
(30) and (31), except that F, is replaced by its
orthogonal conjugate *F, . Maxwell’s equations take
the form

Fluyo =0, (45)
*Fruvay = (471/3) %o » (46)
where j# is the current vector, and so we obtain
{F,uv W& (2)5v};a =0, (47)
(FFu 08 @8 he = 47 o € @8 (48)

Equation (34) implies that F,, )& (& is always
constant, while (48) implies that *F,  )&* 5¢&" is
also constant when the right-hand side vanishes,
which occurs if and only if the current vector lies in
the 2-surface of transitivity. Therefore, if these two
quantities vanish at any point in a connected region
satisfying this condition, and in particular if there is a
symmetry axis within the region where one of the
Killing vectors vanishes, then they vanish everywhere
in the region, i.e.,

Fo & @8 = *Fl‘v wé @& =0.

This is the condition that the tensor F,, be skew
invertible, i.e., that it be affected only by an overall
change of sign when the senses of the Killing vectors
are simultaneously inverted. Since the energy mo-
mentum tensor of the electromagnetic field is homo-
geneous quadratic in the electromagnetic field tensor
F,,, it follows that condition (49) implies that the
energy—momentum tensor is invertible, and con-
sequently, when no matter other than the electro-
magnetic field is present, that the Einstein tensor is
invertible so that the conditions of Theorem 2 are
satisfied.

Thus from Theorem 2 we deduce the following
result:

If the vacuum Einstein-Maxwell equations are
satisfied in a connected region of a 4-dimensional
space-time with a 2-parameter Abelian group, if a
symmetry axis is present in the region, and if the
source current is parallel to the 2-surfaces of transi-
tivity (and, in particular, if there is no source current,
as is usually assumed to be the case when no ponder-
able matter is present), then the group is orthogonally
transitive.

49)
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When no electromagnetic field is present, this
reduces to Papapetrou’s result. The more general
result shows that the orthogonal transitivity of the
Kerr-Reissner-Nordstrom solution could have been
predicted at once, even though it was not immediately
apparent in the original form (12) of the solution.

6. CONVECTIVE CIRCULATION

We have not yet fully exploited the information in
Eq. (39). In order to do so, we make some further
definitions with ultimate astrophysical applications in
mind.

A vector is said to be nonconvective with respect to
an isometry group if it is invertible in the element
orthogonal to the surface of transitivity at a point;
otherwise it is said to be convective; i.e., it is non-
convective if and only if it is tangent to the surface of
transitivity.

We define the flux vector of a group as the two-
index quantity

wF" = L w§Gy, (50)
8

where the ;,&” are a set of generators of the group.
This quantity transforms as an ordinary vector with
respect to u in the manifold, and as a covariant vector
with respect to (i) under a change of basis of the Lie
algebra of the group. We say that the group is non-
convective if ,,F* is nonconvective with respect to the
group for each (7). We note that the statement that the
group is nonconvective is invariant in the Lie algebra,
and that it is equivalent to the statement that the
Ricci tensor is invertible in the group.

Suppose that in an #-dimensional manifold with an
Abelian isometry group transitive over p-surfaces,
we have a finite segment JC of an invariant hypersurface
generated as follows. We take a finite segment 8 of an
(n — p — D-surface which cuts across the surfaces of
transitivity, and drag it along under a set

wés s

of independent generators of the group by finite
values, AV --- Ap!® of the group parameters
where the group parameters pV, - - -, 9'» may be
taken to be a set of functions defined on the space in
such a manner that

@& = Ox*[oy"? (51)
(x!, - - -, x™ being the coordinate patch in the mani-
fold to which the tensor indices refer). Then we define
the convective circulation through ¥ as the surface
integral of the normal component of the flux vector

over . The circulation transforms as a covariant
vector in the Lie algebra.

If J is generated by unit parameter changes
Ap) = .- = Ay'P= 1, we say that it is the unit
hypersurface J(8) through § and that the circulation
over it is the unit convective circulation over 8, which
we denote by ,C(8). We see that ,,C(S) transforms
as the product of a covariant vector and a density in
the Lie algebra.

When p = n — 2, 8 will be a line. We can now state
the following result.

Corollary to Theorem 2: Let the postulates of
Theorem 2 be satisfied except for the conditions (I)
and (II). Then the unit convective circulation between
two points in D is independent of the path over which
it is taken; and if the group is orthogonally transitive
at a point P in D, then it is orthogonally transitive at a
point @ in D if and only if the unit convective circula-
tion over a path PQ between then vanishes.

Proof: By Eqs. (39) and the definitions (41) and (50)
we have
(52)
Expanding this and expressing it in terms of differ-
ential forms, we obtain

DX = 167 (i)Fﬂ *wau .

d oy
— [k1. .. -
- (,“Fuékl c e Kp—gaop (1)& ok (n~2)§K'l 2] dxa.

(53)
Now by (51) we have
dx" A - Kdx 2
= (n — 2)! (1)§[K1 . (n—2)£K"_2] d’l[)(l) A A dy)(n—Z).
(54)
Therefore,
A ndy" P A d gy,

(5%)

— N
WF*dE, = (n=2! dyp™
16m(n — 1)

where we have defined the (n — 1)-form
1

.= (———1)‘ €1 Kn_sop dx A - Adx"2 A dx°.
n— :
(56)

To obtain the unit convective circulation between
P and Q we integrate (35) over the unit hypersurface
J(PQ) which gives

n — 2)! Q
f wF* dzn = L_____)___
k1 To)) 167(n — 1) Jp
(n —

2)!
1677(,,__)1) {02(@ — wx(P)}.

Il

»C(PQ) dwx

(57
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We can see at once that the result is independent of the
path PQ (even if D is not simply connected), and that
if ,,x vanishes at P, it will vanish at Q if and only if
»C(P, Q) vanishes. This establishes the required
result.

The mathematical significance of Theorem 2 and its
corollary seems to be that, in the circumstances to
which the results apply, the existence of orthogonal
transitivity is controlled almost entirely by the Ricci
tensor. One might have expected a priori that the
Weyl tensor would be able to transmit the effects of
noninvertibility of the Ricci tensor in a nearby region
and thereby prevent orthogonal transitivity from
obtaining in a region where locally the Ricci tensor is
invertible. Our results show that this can in fact
happen, but only in a very restricted way, governed
by the total circulation.

As we have remarked, the most suitable application
for these results in general relativity is to stationary
axisymmetric rotating bodies. Let us consider, in such
a case, a region where the Killing bivector is timelike.
(For a simple situation, such a region would have to
include the whole space, or else by Theorem 1 there
would exist an LIH, with, in general, dramatic
consequences.) Then locally it is possible to choose a
pair of Killing fields generating the group such that one
of them (;,&* is timelike, and the other (,)&* is space-
like. We can define momentum and stress flux vectors
P* and I'* by

Pt = () F* = )T, T'* = oF" = 6°T)".

The convective components of P* and I'* correspond
to momentum across the surfaces of transitivity and
shearing stress between the surfaces of transitivity,
respectively. The corollary to Theorem 2 gives
conservation equations for the convective components
of P* and T'*. They can be regarded as equations of
conservation of momentum and balance of torque
forces in the body. (Conservation of nonconvective
components is trivial in consequence of the group.)
The effects of gravitational potential energy and the
adjustment of the correct radial factor in the torque

SPACE-TIME 81

(3) (b)

FiG. 1. Cross sections of two examples of stationary axisymmetric
bodies are represented. The convective regions are shaded, with
convective flow lines marked. The nonconvective regions are dotted,
the only flow lines being directly into or out of the paper.

are automatically taken care of by the varying magni-
tude of the Killing vector with which the energy
momentum tensor is contracted.

Figure 1 shows two simple examples of rotating
bodies to which Theorem 2 and its corollary may be
applied. We know at once in such cases that the group
is orthogonally transitive in empty space outside the
body, since the exterior must always contain part of
the symmetry axis. (This is Papapetrou’s result.)
Now let us consider the interior. The first example is an
object which has a nonconvective core, but which has
a convective envelope containing two large convection
cells, one on each side of a plane of equatorial sym-
metry. We can deduce that the group will be orthog-
onally transitive in the core either by applying
condition (IIa), since the symmetry axis passes
through the core, or by applying condition (1Ib),
since the equatorial plane also passes through the
core. Hence, by the Corollary, the unit convective
circulation over any line passing from the core to the
outside must be zero. The second example is a smoke-
ringlike object containing an annular nonconvective
core about which the matter outside circulates; we
conclude, by the corollary, that the group is certainly
not orthogonally transitive in the annulus.
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