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Perfect fluid and magnetic field
conservation laws in the theory
of black hole accretion rings

BRANDON CARTER

DAF, OBSERVATOIRE DE PARIS, 92 MEUDON, FRANCE

1. Introduction

The purpose of this article is to give a systematic introduction to the
many conservation laws of relativistic perfect fluid and magnetic field
theory that have been utilized on various occasions by numerous
authors (including Abramowicz, Bardeen, Novikov & Thorne,
Blandford & Znajek to mention but a few) in discussions of accretion
onto black holes. The class of laws to be derived here includes relativistic
generalizations of Bernoulli’s theorem, the vorticity conservation
theorem, and von Zeipel's theorem, as well as many other less
well-known classical results such as Moffat's helicity conservation
theorem whose relativistic generalization has not been published
before.

It will be shown that these laws can all be derived with surprisingly
little mathematical effort (in some cases less than is required for their
classical analogues!) without any need to use the machinery of Rieman-
nian geometry. In order to understand the discussion that follows, the
reader will need o'nly a vague familiarity with the concept of curvilinear
coordinates and the description of curved space-time geometry in terms
of a Lorentzian metric tensor with variable components g,,, but it will not
be necessary to have any prior knowledge of more technical Riemannian
concepts such as covariant differentiation using an affine connection, or
the construction of the Ricci curvature tensor that appears in Einstein’s
equations, Our discussion will in fact make no mention of Einstein
equations, since the results are of such general validity as to be applicable
in quite general background space-times regardless of any field equations
(whether those of Einstein or of any alternative theory) that may or may
not be satisfied.
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The only necessary mathematical concept that may be unfamiliar to
some readers is that of the Lie derivative of a tensor or other quantity with
respect to the flow generated by some tangent vector field £ say. Lie
differentiation may be defined very simply in terms of appropriate
comoving coordinates defined with respect to the flow, i.e. in terms of a
system in which x', x?, x* say are chosen in such a way as to besconstant
along the flow lines, while the zero coordinate, = say, is a parameter
(which may or may not measure the proper time) varying along the flow
lines in such a way as to ensure that the generator £ has components £°
given by the quadruplet of values (1,0, 0, 0). In terms of such a coor-
dinate system Lie differentiation with respect to £ can be interpreted as
simply meaning partial differentiation (with respect to 7) along the flow.

We shall be applying the concept of Lie differentiation to two different
kinds of flow field. First we shall of course be concerned with the flow of
the physical fluid under consideration, in which case £ will be propor-
tional to the fundamental unit flow vector #, which is defined as satisfying
the normalization condition,

u'u,=—1 (1.1)

(we restrict ourselves to units in which the speed of light ¢ is unity).
However we shall also be concerned with cases in which £ is the generator
of a space-time symmetry. In particular, when we are concerned with a
stationary situation it will be possible to choose coordinates in such a way
that all physical tensor components are independent of an ignorable time
coordinate ¢ say. In terms of such a system the generator k of the
symmetry may be defined as having components k° given by the
quadruplet (1, 0, 0, 0) or equivalently by

k“(a/ax“)=a/ar. (1.2)

Thus if we choose to identify £ with kK then we may take the Lie
differentiation parameter 7 to be the same as . Similarly when we are
concerned with an axisymmetric situation in which there is an ignorable
angle coordinate ¢ say, then we shall have a corresponding symmetry
generator h say, defined by

h®(a/ox")=0/00, (1.3)

and Lie differentiation with respect to & could be interpreted as meaning
partial differentiation with respect to ¢. In either of these examples the
condition of (stationary or axial) symmetry is equivalent to the condition
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that the corresponding Lie derivatives (as defined with respect to k or A)
of the physical tensor fields under consideration be zero.

The mathematical formula for the Lie derivative of an arbitrary tensor
field may be rather complicated and depends not only on the order but
on the covariant or contravariant character of the tensor. However,
differential and integral conservation laws are usually expressible in
terms of differential forms, i.e. covariant tensors that are antisymmetric
under interchange of any pair of indices (this definition includes all
covariant vectors as well as scalar fields). For these the Lie derivative with
respect io a vector field £ (which we shall denote by the prefix ££) can be
expressed by a very simple formula due to Cartan which will be the basis
of all that follows. For a differential form w of arbitrary order (0, 1, 2, ...)
the Cartan formula may be written as

' Ew=E - (Vaw)+Va(f- ), (1.4)
where a raised point denotes scalar contraction of adjacent indices (e.g.
for a 2-form with components F,,, £ - F has components ¢°Fy,) and
where a wedge denotes the exterior product defined as a sum over
combinations of the indices, with the sign chosen according as an even or
odd permutation of ordering is involved. (This definition is fairly standard
and is used in particular by Misner, Wheeler & Thorne (1973). Neverthe-
less the reader should be warned that a minority of authors, including
Hawking & Ellis (1973), use a less convenient normalization condition in
which the exterior product is defined in terms of an average, rather than a
sum, over combinations, with the regrettable consequence that many
simple formulae such as (1.4) require dimension and order-dependent
adjustment factors.) Thus in particular for a scalar ¢, a 1-form # or a
2-form F, the exterior derivative appearing in (1.4) would have
components givc? by

{vé)d Evﬂ‘t’)
(V ) ﬂ')ab = Va‘i‘!‘o _vb'ﬂ'av (1-5)
(v A F)nbc __'vanc +vaca +V0Fab-

Within these formulae the nabla symbol, V, may be interpreted as
denoting simple partial differentiation (so that in terms of coordinates x*
we may interpret V, as being equivalent to 8/dx,), since antisymmetrized
partial derivatives of components of a covariant tensor will themselves
transform as components of a well-behaved tensor field, (which is in fact
the same as would be obtained if V, were interpreted as denoting a more
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sophisticated covariant differentiation operation — inderms of some affine
connection - of the kind whose use we have eschewed). This special
property of exterior derivatives of differential forms (i.e. the property
that V A @ is independent of whether V is interpreted in terms of
covariant or partial differentiation) was first systematically exploited by
Cartan, whose disciples customarily replace the combination V A by the
shorthand symbol d. 1 shall refrain from doing this here, since I wish to
reserve the symbol d for its more traditional use to denote small dis-
placements, as for example in the expression

d¢p =di - Vo =dx"(8¢p/ax"),

where d¢p does nor mean the exterior derivative of ¢ (which would be
V A ¢, or more briefly V¢, since we are dealing with a zero form) but the
differential change in ¢ associated with the infinitessimal displacement dx
with components dx*.

In order to exploit the Cartan formula (1.4) we shall make frequent use
of another important property of exterior differentiation - traditionally
associated with the name of Poincaré — which is that for a p-form F to be
(at least locally) the exterior derivative of some (p— 1)-form A say, it is
both sufficient and necessary that the exterior derivative of F be zero, i.e.

VaF=03A: F=VAA (1.6)

(The best-known application of this is to the case where F is a Maxwellian
2-form and A is the electromagnetic 4-potential.)

Much of the importance of differential forms stems from the fact that
they play a fundamental role in the construction of surface integrals. A
general p-surface S say may be thought of as being decomposed into a
mesh of approximate parallelopipeds whose sides may be represented by
infinitesimal displacement vectors dx;, (i =1,...,p). An integral over
such a surface is definable in terms of a p-form £2 in the form

j nds = {% LtY 2., . dS* (1.7)

where for each element of the mesh, d§ is the p-vector defined by

dS=digAdEg A ... A dEg), (1.8)

and where At ) denotes the sum over all the elements in the limit when
the mesh is made infinitesimally small. In the particular case when
S =4Z%, i.e. when § is the boundary of some higher (p + 1) dimensional
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surface or volume Z, then the surface integral will obey the well-known
Stokes law:

§ nas‘:f (Vnd2)dS (1.9)
$=3% P

(For mathematical derivations of basic formulae such as (1.4), (1.6) or
(1.9) the reader is referred to Choquet-Bruhat (1968) or Flanders
(1963).)

2. The concept of flux conservation

We are now ready to consider the general properties of integral conser-
vation laws of the kinds that are important throughout physics. It can be
seen directly from (1.9) that we shall obtain a conservation law of the
strongest form whenever the p-form {2 is closed in the sense that its
exterior derivative vanishes, i.e.

Va2=0, (2.1)

since in this case the integral of £2 will have the same magnitude for any
pair of surfaces X, and X, which together enclose a higher-dimensional
surface or volume. A more interesting kind of conservation law is defined
with respect to a flow generated by a vector field £ say. Let us consider a
family of surfaces that is comoving with flow in the sense that each
member is characterized by a variable value of the flow parameter r, and
otherwise specified by fixed values of the other coordinates, in a comov-
ing coordinate system of the kind described at the outset of the previous
section, i.e. a system such that

! C o £%3/ax° =a/or. (2.2)

It is evident from our definition of Lie differentiation that the rate of
change with respect to r of the integral of a field £2 over a member of such
a family will be given by

d

E;j£[r) Nndzx =L (££42) d3, (2.3)

which is equivalent by the theorems of Stokes (1.9) and Cartan (1.4) to

. (& _ _ _
ij ﬂd£=J.f’f(V!\ﬂ]d£+§_ £-0dS. (2.4)
Z(r) 3 s

dr =a%
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The field $2 is therefore said to be_conserved under transport by £ if

E£0 =0, (2.5)

since in this case [£2d X will be independent of 7 for any comoving family
of surfaces. A particularly important special case is that in which the flux
of £2 is conserved in the sense that [ £2 dX is the same for any surface X
cutting across a given flux tube, i.e. intersecting a given family of flow
lines. The condition for flux conservation in this sense is that the Lie
derivative should be zero with respect to any vector field parallel to the
flow, regardless of its normalization, i.e.

. (ad)£02 =0 (2.6)

for all possible choices of the arbitrary scale factor «. Using the easily
verified general formula

Valaw)=aVrw+ (Va)rw (2.7)

for any differential form e, one can easily deduce from the Cartan
formula (1.9) that

(a)E0 = a(E£2)+ (Va)r (£ 02) (2.8)

and hence that (2.6) can be satisfied for general « if and only if both the
conditions

E£-(Vaf2)=0, (2.9)
E-N=0, (2.10)

are satisfied. In the particular case when £2 is closed (as in the Maxwellian
example) then (2.10) alone will be a sufficient condition for flux conser-
vation. For a given field 42 the set of vectors £ (if any exist) simultaneously
satisfying (2.10) and (2.9) may be conveniently termed_flux vectors since
the flux of {2 is conserved along any tube generated by lines parallel to
such vectors. The flux vectors necessarily have the remarkable property
that if at each point they span a tangent subspace of more than one
dimension, then these flux tangent subspaces mesh together in such a way
as to form a well-behaved family of flux surfaces (which would be called
magnetic field surfaces in the Maxwellian case) which form a foliation in
the sense that there is one surface through each point. With a little
geometric intuition one can see that to prove that the flux tangent
subspaces are indeed integrable to form such a foliation it suffices to show
that the direction of the subspaces, as measured in terms of any coor-
dinate system comoving with one of the flux vector fields, is invariant
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under changes of the corresponding flow parameter 7. In coordinate-
independent terms this is clearly equivalent to the requirement that the
Lie derivative of any one of the flux vector fields 7 say with respect to any
other one, £ say, should always lie in the flux tangent subspace and thus
itself be a flux vector field. The Lie derivative of one vector field with
respect to another is known as their commutator since Lie differentiation
with respect to the commutator gives the net result of commuting the
order of successive lie differentiations, i.e.

(E£7)E=(E£)(7£) — (T E£)(£E), (2.11)

when acting on any arbitrary fields (see e.g. Yano 1965). Since 7 is
contravariant the commutator ££7; cannot be obtained from the Cartan
formula (1.4) but is given instead by the even more widely known formula

Eq=( - Vi-(7 V= -q£é (2.12)

This expression shares with exterior differentiation the property that it
makes no difference whether V is interpreted in terms of covariant
derivatives or of the simple partial derivatives to whose use we are
restricting ourselves here. It follows from (2.12) that for any scalar field &,

(ad)£7 = a(££4)— (77 - Va)i. (2.13)

Now if £ and 7 both satisfy (2.5), it is evident from the commutator
formula (2.10) that the same will be true of ££7. Furthermore, if £
satisfies (2.6) for abitrary « then one can similarly deduce that (af}f;ﬁ will
satisfy (2.5) and hence, with the aid of (2.13), that E.Eﬁ will satisfy (2.6) for
arbitrary . This completes the demonstration that the commutator of the
two flux tangent vector fields is itself a flux tangent vector field and hence
that the flux tangent spaces are integrable to form a well-behaved
foliation by flux syrfaces.

The foregoing results apply to a differential form {2 of arbitrary order
in a space of arbitrary dimension. (The most commonly occurring appli-
cations in which the dimension is higher than four are those involving
phase spaces). However the most familiar application is where {2 is the
Maxwellian 2-form F in ordinary four-dimensional space-time. Since a
Maxwell field F' always satisfies the closure condition (2.1), the single
condition £ - F = 0 will be both necessary and sufficient for £ to be a flux
tangent vector. In other words the flux tangent vectors are the zero-
eigenvalue characteristic vectors of the component matrix of F. Now the
component matrix will have a zero eigenvalue if and only if it is degenerate
in the sense that its determinant is zero, which is equivalent to the
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condition
(*F*)F,, =0, (2.14)

where *F is the bivector (i.e. the antisymmetric contravariant tensor that
is adjoint to F in the sense that

«F** =}8"*F,, (2.15)

where £ is the fundamental four-dimensional alternating tensor, whose
normalization is defined in terms of the metric by the condition
&g spea=—4!. Since F is antisymmetric its matrix rank must in any case
be even, and hence if F is non-zero but has zero determinant its matrix
rank will be two. In terms of the rest frame defined by some unit timelike
vector i we can decompose F into electric and magnetic parts in the form

F=uAE+x*(inB), (2.16)

where E and B are respectively a covariant and a contravariant vector
defined by

- % E=4-F, B =(+F) - u, 2.17)
and satisfying - o
i-E=0=8B-u. (2.18)
In terms of these the scalar invariants of the field are expressed by
iF*F,,=B-B-E -E, (2.19)
and _
Y*F*)Fup=B-E (2.20)

(whose transformations from contravariant to covariant form are per-
formed by using the metric). When the degeneracy condition is satisfied,
i.e. when the second invariant (2.20) vanishes, the field will be said to be
purely magnetic or purely electric according to whether the first invariant
(2.19) is positive or negative. (If the first invariant is also zero, as in the
case of plane waves, the field is said to be null.) It is only in these cases that
non-zero flux vectors can exist, and when they do exist our foregoing work
shows that they will form well-behaved two-dimensional flux surfaces,
which will clearly be timelike in the purely magnetic case. Purely
magnetic fields play an important role in idealized models for astrophysi-
cal purposes. The most familiar example is the perfect magneto-
\ hydrodynamic fluid, for which the flow vector i itself can be substituted in
| place of £ in (2.8) i.e.

!l
|
;Ji i F=0,
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s0 that
F =+(ii A B). (=0 d @ uf b

Another example whose relevance to black hole models of pulsars has

been emphasized by Blandford & Znajek (1977) is that of a force-free

electromagnetic field, in which the vector £in(2.8) may be identified with
the electromagnetic current vector J.

3. Canonical formulation of perfect fluid mechanics

We now come to the main point of this paper which is to show how the
concepts described in the previous section provide a very powerful and
efficient approach to the derivation of conservation laws in perfect fluid
mechanics. The results to be derived here will in fact apply to any motion
in which the flow lines obey a Lagrangian variation principle in the sense
that (for any particular flow configuration) it is possible to construct a
Lagrangian function L(x, ), space-time coordinates x“, and 4-velocity
components v* where the velocity

v* =dx*/dr (3.1)

(which is not necessarily a unit vector) is defined in terms of a (not
necessarily proper) time parameter 7, in such a way that the equations of
the flow lines can be expressed in the standard variational form

dra/dr=aL(x, )/0x", (3.2)

where the covector r, which (subject to suitable normalization condi-
tions) plays the role of an effective momentum per idealized particle of the
fluid, is given by

{ ma=0L(x, D)/dv". (3.3)

Now although (3.2) is the standard form of Lagrange’s equation for point
particle mechanics it is not the most convenient starting point for a fluid
treatment. It has the disadvantage that neither side transforms as a
well-behaved covariant vector under space-time coordinate trans-
formations since on the one hand the operation d/dr denotes ordinary
(not covariant) differentiation, so that the left hand side has the non-
covariant form '

di, Jdi= u”gf;, (3.4)
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while on the other hand dL(x, )/dx® does not represent a space-time
gradient since the components v* are supposed to be held constant during
the partial differentiation, despite the fact that they are variables over
space-time. It can be seen from (3.3) that the true gradient components
V.L of the Lagrangian are related to the right hand side of (3.2) by

V.L=0L(x, 0)/8x" +mov”/ox". (3.5)

This shows that the Lagrangian equation (3.2) may be converted to a
more satisfactory form, in which each side is a respectable covector, by
adding m,av"/ax" to both sides, and with the aid of Cartan’s formula
(1.4) one can easily see that the result takes the remarkably elegant form

v =VL. (3.6)

One of the main purposes of this paper is to emphasize that in the context
of fluid theory it is most convenient to take (3.6), rather than the
traditional single particle form (3.2), as the basic Lagrangian variation
equation.

One of the most immediately obvious consequences of (3.6) is a
generalized Kelvin-Helmholtz theorem to the effect that the circulation,

"6{6}=(§ﬂ' - dx, (3.7)

around any closed circuit ¢, is conserved as the surface is dragged along by
the flow lines at a uniform rate as measured in terms of the Lagrangian
time parameter . For any (not necessarily closed) curve s the equation
(2.3) leads to

d _ -

= [ ar=[vL-a=arL (3.8)

dr Jg "
where AL is to be interpreted as the difference (if any) between the values
of L at the end points (if any) of the curve s; this leads immediately to the
required result

d€/dr=0 (3.9)

in the closed circuit case.

We can convert the fundamental variational equation (3.6) into a form
that is even more useful for the derivation of conservation laws by
introducing the generalized vorticity 2-form w defined by

w=V am, (3.10)
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and the Hamiltonian scalar field H defined by
H=¢-w—L. (3.11)

In terms of these (3.6) may be written in what we shall refer to as the
fundamental canonical form, namely

v-w=-VH, (3.12)

whose equivalence with (3.6) is immediately evident from the Cartan
formula (1.4).

Provided the defining equation (3.3) for the momentum can be solved
to give the Lagrangian velocity components v* as functions of x“ and m,,
the expression (3.11) can be used to define not just a scalar field but a
genuine Hamiltonian function H (x, 7), in terms of which the velocity will
be given by the Hamilton equation

v =oH/om", (3.13)

and under these circumstances (3.6) will be equivalent to the second
Hainilton equation,

drm,/dr=—03H/ax", (3.14)

whose familiar single-particle form shares with (3.2) the disadvantage (as
compared with (3.12)) that the sides are not separately covariant.
However it is worth emphasizing that even in the degenerate special case
(which will be shown to be relevant to the discussion of purely magnetic
fields) when (3.3) is not soluble, so that a proper Hamiltonian function (of
x“ and 7,) does not exist, there is still no impediment to the definition of a
Hamiltonian scalar field H as given by (3.11), so that the canonical
equation of motion (3.12) will always be valid.

The circulation theorem that we have already derived is intimately
related to conse%rvation of vorticity. If we define the vorticity flux W across
a 2-surface § (which we may suppose to be bounded by the circuit ¢
introduced above) as

W(S)= L w dS, (3.15)

then we can immediately deduce that it will be unchanged as the surface is
dragged along the flow lines at a uniform rate in terms of the Lagrangian
parameter (as defined by 3.1) simply by applying Stokes theorem (1.9)
which gives

W(S)=€(sS), (3.16)
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and hence by (3.9)
dW/dr=0. (3.17)
This general flux-conservation theorem could also have been deduced
directly, by using (2.3), from the local vorticity-conservation theorem
L‘f“’ i( (3.18)

which is obtainable from the Cartan formula (1.4) by substituting the
canonical equation of motion (3.12) and using the closure condition

Vaw=0, (3.19)

which results from the construction of w as an exterior derivative.

An immediate consequence of (3.18) is the possibility of potential flow,
as characterized by the requirement that the momentum 1-form be the
gradient of some (at least locally defined) scalar action function 5, ue.

m=VS§, (3.20)

which is equivalent to the zero-veorticity requirement,

w=0, (3.21)

since itis evident from (3.18) that if (3.21) is satisfied as a constraint on an
initial hypersurface then it will remain satisfied throughout the subsequent
flow.

It is directly evident from the canonical equation of motion (3.12)
(simply by contracting with & and using the antisymmetry of w) that the
Hamiltonian scalar itself is a/ways constant along the flow lines, i.e.

v-VH=0. (3.22)

An important special case, which we shall refer to as that of a uniformly
———————

canonical system, occurs when the stronger condition,

VH =0, (3.23)

is satisfied. By (3.2) it is clear that for H to satisfy this uniformity
condition throughout the fluid it is sufficient to impose a uniform value on
E H as a constraint on an initial hypersurface. (We shall see later that this
uniformity condition holds automatically for a perfect fluid that is
isentropic (in the sense that the entropy per particle is uniform) and hence

t in particular for a perfect fluid at zero temperature.)
We are now ready to consider the question of when the fluid flow lines
will be flux-conservation lines for the vorticity flux in the strong sense

S
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discussed in § 2, i.e. the question of when (3.18) can be strengthened to

the form,
(ad)Ew =0, (3.24)

for an arbitrary variable velocity renormalization factor . In view of the
closure property (3.19} it follows from the results of § 2 that (3.24) will
hold if and only if w satisfies the uniformly canonical equation of motion

T w=0, (3.25)

to which (3.12) reduces if and only if the uniformity condition (3.23) is
satisfied. If the uniformity requirement is satisfied then the vorticity form
w will have the same properties as those described in § 2, for the Maxwelil
form F in the purely magnetic case. The vorticity form will have rank
two (unless it vanishes altogether), which incidentally is the necessary
and sufficient condition for its exterior product with itself to vanish, i.e.

waw=0, (3.26)

and so the space-time will be foliated by a well-defined congruence of
vorticity 2-surfaces whose tangent vectors are all zero-eigenvalue
characteristic vectors of w. Under these circumstances the flux %#7(S) will
be invariant not merely when § is translated uniformly with respect to r
along the flow lines, but for any change whatsoever, provided the new
position of the surface § is such that it still intersects the same set of
vorticity 2-surfaces as before.

Having discussed circulation round one-dimensional circuits and
vorticity flux across 2-surfaces we now come to consider the helicity
integral over 3-surfaces, that is the natural relativistic generalization of
the Newtonian helicity volume integral whose conservation under
appropriate circumstances was demonstrated by Moffat (1969). For any
hypersurface E}wc define the helicity integral # to be

:x’(z):j mAwdE. (3.27)

X

Now the closure of w implies that the exterior derivative of the helicity

3-form, = A w, will be given by '
Va(maw)=warw (3.28)

(which shows by (3.26) that the helicity form is itself closed in the
uniformly canonical case). Using this in conjunction with the purely
algebraic identity,

D-(waw)=2(0-w)aw, (3.29)
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one can show that wherher or not the uniformity condition (3.23) is
satisfied, the Cartan equation (1.4) taken in conjunction with the
canonical equation of motion {3.12) leads to

DE(maw)=Va(lw). (3.30)

This implies quite generally by (2.4) that if X is translated along the flow

lines uniformly with respect to the Lagrangian time coordinate r, then the
helicity integral varies according to

ds -

J(’: Lw dS. (3.31)

dr Jossr
Since we have
Lw=mAVL+Va(Lw), (3.32)

the theorem of Stokes allows us to rewrite (3.30) in the equivalent
alternative form

@mj@ w AVL dS. (3.33)
dr S=aX

It can be seen from (3.31) that in particular the helicity will be
conserved for any uniformly comoving volume surrounded by a domain
of zero vorticity (i.e. potential) flow. The condition that the volume
should be comoving uniformly (i.e. at a constant rate as measured with
respect to the Lagrangian time coordinate ) may of course be relaxed
when the system itself is uniformly canonical, owing to the previously
remarked fact that (by (3.26) and (3.28)) the helicity 3-form will then
satisfy the closure condition

Valaaw)=0. (3.34)

We conclude our remarks on helicity by pointing out that any 3-form
may be thought of as the adjoint of a current vector, and in particular we
may consider the helicity form 7 A w as the adjoint of a helicity current
vector 7 say, i.e.

AW =%, (3.35)
where
(*1)abe = Eabean”. (3.36)
Conversely we may express the helicity current vector explicitly by

7 =(*w) - .
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(The helicity (%) is thus interpretable as the flux of 7 across the
hypersurface X.) The closure condition (3.34) that is satisfied in the
uniformly canonical case is precisely equivalent to the condition that 7
have zero divergence (i.e. V - 77 =0, in the language of covariant differen-
tiation).

This completes our discussion of conservation laws that are valid
independently of any special (e.g. stationary) symmetry of spacetime.
Before going on, in § 5, to discuss the more specialized conservation laws
that hold when such space-time symmetries are present, we shall digress
in the next section to describe concrete examples of idealized systems to
which our analysis applies, in order to provide the reader with an insight
into the physical interpretation of the results.

4. Examples of canonical systems

Before listing particular examples of canonical systems we shall recapitu-
late the definition of the kinematic rotation vector @ of a fluid, since it will
be of interest to examine its relationship to the canonically defined
dynamic vorticity form w. For a fluid with unit flow 4-vector i, the
rotation vector @ is defined by

1
w’ =3¢

el Vo “4.1)
(where, as in all our numbered equations, the symbol V. can be inter-
preted as indicating either covariant or simple partial differentiation,
without affecting the result). This vector is, by construction, orthogonal to
the flow (i.e. @“u, = 0) and it can be interpreted as measuring the local
angular velocity of the fluid relative to an inertial frame at the point under
consideration. The kinematic rotation vector also has the property that
(by the theorem of Frobenius; see Choquet-Bruhat, Bleick-Dillard &
DeWitt (1977) or Flanders (1963)) its vanishing is a necessary and
sufficient condition for the local existence of a well-behaved family of
hypersurfaces everywhere orthogonal to the flow lines.

We now provide a list of examples, labelled (a) to (d) in progressively
increasing order of complexity. Except for the first example (which is
degenerate in the sense that a proper Hamiltonian function does not even
exist) the four-dimensional systems here differ formally from their cor-
responding three-dimensional Newtonian analogues in that the physi-
cally meaningful solutions of the system are characterized by a restraint
fixing the initial (and hence the subsequent) values of the Hamiltonian
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scalar, thereby removing what would otherwise be a redundant degree of
freedom.

(a) An example of a canonical system that is degenerate (in the sense that
there is a Lagrangian but no proper Hamiltonian function) as well as
satisfying the uniformity condition (that the Hamiltonian scalar field be
zero) is provided by the case of a purely magnetic field (as defined in § 2),
which may be characterized by a Lagrangian function of the form

Lix,0)=0" A, (4.2)

where A is the electromagnetic 4-potential (treated as a function of
space—time position only) and where ¢ may be variously interpreted as
the electric charge current vector in the force-free case or as the ordinary
fluid flow velocity in the perfect magnetohydrodynamic case.

For this particular Lagrangian the effective momentum convector is

given simply by
m=A, (4.3)

so that the canenical vorticity 2-form w will simply be the electromag-
netic field itself, i.e.

w=F, (4.4)
while the corresponding Hamiltonian scalar field will simply vanish, i.e.
H=0. (4.5)

This implies that the equation of motion has the uniformly canonical form
(3.25), which will be equivalent to the purely magnetic field condition
(2.21) provided & is timelike and so parallel to a unit vector i that can be
used for making the decomposition (2.17). We saw that in the uniformly
canonical case the helicity, which in this case is given by

i=(F)- A, (4.6)

will necessarily be strictly conserved (meaning that 7 is divergence free).
This particular application of our general helicity-conservation law was
originally found by Woltjer in 1958.

In this degenerate case the vorticity has no direct relation to the
rotation vector, but is related to the magnetic field vector by

*w=dnB. (4.7)

(b) Our next-simplest example is that of geodesic motion which is satisfied
by free particles and hence also by a pressure-free perfect fluid (‘dust’). It
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is well known that geodesics are derivable from a Lagrangian of the form
L(x, 5)=3gasv"", (4.8)

where g, are the covariant metric components, so that the corresponding
Hamiltonian function is given in terms of the contravariant (inverse)
metric components g°° by

Hx, m)=3g"mw.m. (4.9)
If we impose the constraint
H=-im? (4.10)

where m is a constant representing the mass in the free particle case, or
the mass per particle in the pressure-free fluid case, then we see that the
canonical velocity # and the canonical momentum # will be given in
terms of the unit 4-velocity i by

v =mu®, e = MU, (4.11)

(In the zero-rest-mass limit, & cannot be defined but § and = remain
finite.) In this particular case not only the Hamiltonian but also the
Lagrangian scalar field L is constant, since (4.9) clearly implies

2

L=-3m (4.12)

as well. Under such circumstances it is evident from (3.32) that no special
boundary conditions are needed to ensure that helicity is conserved over
a hypersurface that is transported uniformly with respect to canonical
time 7 (which in this example is proportional to ordinary proper time)
along the geodesic flow lines.

In this case the vorticity form will be given in terms of the rotation
vector by |

{

ww =2mii A @, (4.13)

and hence the conserved helicity will simply be represented by the
divergence-free spacelike vector

7 =4m’a. (4.14)

(c) We now come to the first non-trivial example of a uniformly canonical
fiuid system, namely a single-constituent perfect fluid, with finite internal
pressure and with allowance for the possibility that there is a net electric
charge per particle, ¢ say. This example includes both the preceding
examples (a) and (b) as limiting special cases.
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A perfect fluid is defined by the condition that its energy momentum
tensor T has components given by

Tubz{p+P)I«ta!ib +Pgub, t415)

where p is the energy density in the rest frame defined by the unit flow
vector # and where P is the pressure. A single-constituent perfect fluid is
characterized by the further requirement that both P and p are functions
of the rest-frame number density n of a single type of conserved particle.
By the first law of thermodynamics the pressure and energy-density
functions cannet be independent but are related by

P=nu—p, (4.16)
where the enthalpy per particle, u, is given by
wn =dp/dn. (4.17)

Itis well known (see e.g. Lichnerowicz 1967) that the flow lines of such
a fluid have a variational form, since they have the same form as would
free-particle trajectories in the conformally modified space-time con-
structed by setting u > g,» in place of g,,. This means that in the electrically
neutral subcase the system could be expressed in canonical form simply
by replacing the Lagrangian 3g.,0°v® of example (b) by 3u’gav“v®, an
approach which would retain the technical advantage of having a uniform
Lagrangian as well as Hamiltonian scalar field. What I shall actually
present however is a slightly modified Lagrangian that has been chosen to

-satisfy instead the requirement that the canonical time parameter is the

same as the ordinary proper time. This is achieved by taking
L(x, 3) = 3pgasv 0" +eAw® —1u, (4.18)

where e is the net charge per particle if any, subject to the very simple

restraint,
H=0, (4.19)

imposed on the corresponding Hamiltonian function which is

1
Hix, ﬂ}:ﬂgnb(m —eAu)(ms — eAp) + . (4.20)

It can be seen that the canonical velocity vector 0 and the momentum
covector 77 appearing in this system will be given in terms of the unit flow
vector @ of the fluid by

pt =gyt Ta = plip +eA,, (4.21)
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which shows that w plays the role of a variable effective mass per particle.
The restraint (4.19) immediately ensures that the system is uniformly
canonical, but we now have a variable Lagrangian scalar given by

L=eA - d—pu. (4.22)

(We leave it as an easy exercise for readers familiar with covariant
differentiation to show for this system that the uniformly canonical
equation of motion (3.25) is equivalent, when taken in conjunction with
the particle conservation law V- (ni)=0, to the standard covariant
energy momentum conservation law V - T = enE with E as in (2.17).)

With the aid of the uniformly canonical equations of motion one can
show that the conserved vorticity form is related to the magnetic field and
rotation vectors (as defined by (2.17) and (4.1)) by

*w=iArQ2ud +eB), (4.23)

which means that the vorticity flux 2-surfaces through each point have
independent tangent vectors given by & and by the linear combination
2ua +eB. The conserved helicity vector is now rather complicated, being
given by

fF=(u—eA @)2uo+eB)+(2euAd - d+e’A B)i. (4.24)

It can be seen that these quantities reduce to the corresponding values as
given in example (a) in the limit u = 0, ¢ = 1 and to those in example (b) in
the limit e =0, . = m.

(d) We now come to an example which unlike the preceding ones is
non-uniformly canonical. This is the case of a non-conducting two-
constituent perfect fluid. Such a' fluid is characterized by an energy
momentum tensor of the same form (4.15) as in the preceding example,
but the energ"y p is now supposed to be a function of two independently
conserved number densities, n and s say, which to be definite we shall
interpret as representing conserved physical particles (e.g. baryons or
under less extreme conditions ordinary molecules) and entropy respec-
tively. (The non-conducting condition may then be interpreted as mean-
ing that the flow is adiabatic.)

In such a case the energy density function p(n, s) will determine a pair
of potentials u™ and @ (which may respectively be interpreted as the
relativistic chemical potential of the particles and the thermodynamic
temperature) by the variation rule,

dp=pu" dn+ 0 ds, (4.25)
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and by the first law of thermodynamics the enthalpy per particle will be
given in terms of these by

+P @s
u=p it ey
i) H

(4.26)

Our previous example (c) can be thought of as representing the isentropic
special case in which the ratio s/n is uniform throughout (this ratio being
in any case constant along the separate flow lines). The physical relevance
of the isentropic case is most plausible in the zero-temperature limit.

The possibility of expressing the equations of motion for the non-
isentropic case in variational form is less well known than in the simpler
isentropic case (indeed I know of no published reference) but it can be
achieved by taking as Lagrangian the function

N
Lix, §)=0ugav 0" +§(£-—%), 4.27)

subject to the restraint
H=—5s/n, (4.28)

imposed on the corresponding Hamiltonian, namely

1 ab . 3

H(x,fr)=%(§——£*ﬂ+ #)—i‘ (4.29)
For simplicity [ have allowed here only for the electrically neutral case but
the charged possibility can easily be allowed for in the usual way by
adding a term eA v to the Lagrangian, which corresponds to replacing
ma by 7. —eA, in the Hamiltonian, while the restraint is unchanged. In
terms of the unit flow vector 4, the canonical velocity and momentum
derived from (4.27) and (4.29) will then be given by

v =1/  ma= i, (4.30)

so that as before the enthalpy per particle plays the role of an effective
mass. (The appearance of a velocity vector with normalization inversely
proportional to the temperature is already familiar in statistical
mechanics where 1/@ turns up as the Lagrange multiplier associated with
the energy.) The resulting Lagrangian scalar is given by
— #N

I G ; (4.31)
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The total momentum per particle can be decomposed naturally in the
form

m=a"+(s/n)n’, (4.32)

where the momenta directly associated with the physical particle and
energy contributions are defined by

7 a=p U Ta=Ou, (4.33)

In terms of these the canonical vorticity tensor (which will still be
conserved, but no longer of rank two as in the uniformly canonical
preceding examples, so that there will not be any family of vorticity flux
2-surfaces) will be given by

w=a AV(s/n)+2u * (@ rw). (4.34)

(This is rather analogous to the general form of the electromagnetic field,
with e playing the role of the magnetic field and ®V(s/n) playing the
role of the electric field.) The helicity vector still retains the comparatively
simple form,

7=2u’a, (4.35)

as in the isentropic case, but it is no longer divergence free.

5. Application to stationary and/or axisymmetric systems

Having seen that the canonical equations derived in § 3 are applicableto a
useful class of non-dissipative systems we now examine some of the more
specialized consequences that can be drawn when there are continuous
space-time symmetries present.

To start with, one knows from the more familiar theory of single-
particle mechanics that the scalar contraction of the momentum with a
symmetry generator will always be a constant of the motion and hence in
the fluid context, a constant along the flow lines. Thus, e.g. for a stationary
symmetry generator k or an axial symmetry generator f respectively, we
shall have

1 VE=0 or §:-Vg=0, (5.1)

where the effective energy per particle, &, and the effective angular
momentum per particle, & are given by

F=—k-w or $=h-m (5.2)
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(The constancy of & is the relativistic generalization of the classical
Bernoulli theorem.) Such a conservation law can be deduced for an
arbitrary symmetry generator / directly from the contraction,

[w-86=1-VH, (5.3)
of the canonical equation of motion (3.12) by using the Cartan formula
(1.4) to express the relevant symmetry requirements in the form

[bm=T w+V([ m)=0, (5.4)
[-£H=T-VH, (5.5)

which leads immediately to the required result
oV w)=0. (5.6)

(It is to be noted that there is no direct need to assume that the metric
itself is invariant, i.e. that [ is a ‘Killing’ vector, although it might be
difficult for (5.4) and (5.5) to be satisfied otherwise.)

In the uniformly canonical case the conclusions can be considerably
strengthened since there will then be a two-parameter family of vectors £
tangent to the vorticity flux 2-surfaces, i.e. satisfying

E-w=0. (5.7)
Contracting any one of these with (5.4) leads to
£V m)=0, (5.8)

which shows that the relevant scalar [ - & must be constant not only along
each flow line but over each vorticity flux 2-surface, In the special case
where the vorticity is zero (potential flow) one can make the even stronger
deduction that the generalized Bernoulli scalar [ - & must be constant
over the whole of space~time, since setting w to zero in (5.4) obviously
gives

V(- 7)=0. (5.9)

We can also reach the same conclusion for motion that is rigid in the
sense that the flow itself is parallel to a symmetry generator, i.e. when

i=8I, (5.10)

for some scalar function @, since in this case the uniformly canonical
equation of motion (3.25) can be used to eliminate the term [ - w from
(5.4). A classic example of such a rigid motion - to which this argument

could be applied - is the case of a corotating binary star system, wherein
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the constant -z could be interpreted as meaning the energy in the
corotating frame, which is known as the 'Jacobi integral’ in the context of
non-relativistic single-particle mechanics.

Let us now consider the more detailed conclusions that may be drawn
when we have (just) two linearly independent symmetry generators k and
i which must commute (since otherwise by (2.10) there would be a third
independent one) and hence generate a family of invariant 2-surfaces. In
terms of a system in which the symmetries are made manifest by cor-
responding ignorable coordinates t=x" and ¢ = x* (so that k° =84,
h*®=§3) the energy and angular momentum scalars will have the forms

g="1‘T4, f=173- {511}

Let us first consider what may be deduced when the flow is circular in the
sense that the velocity 4-vector is confined to the invariant 2-surfaces
defined by the symmetries, i.e.

di =k + 0k, (5.12)

where {1 is the local angular velocity scalar, and ¢ is an ‘average redshift’
factor. By substituting K and £ in place of [ in (5.4) we can see that the
symmetry requirements lead directly to

(Pi)Em = gV (5.13)
However, the canonical equation of motion (3.12) gives
(pit)em=—(VH -V, (5.14)
where { is defined by
Pl = {7, (5.15)

(its reciprocal ¢ ' is the rate of change of coordinate time ¢ with respect to
canonical timg 1) and @ is the zero angular momentum injection energy per
particle (cf. Bardeen 1973; Novikov & Thorne 1973) which is defined by

P=={0 -mwr=—¢hii - w=F—F. : (5.16)
Combining (5.13) and (5.14) gives the useful relation
Vo+VH+ V=0, (5.17)

which gives strong conclusions in many particular cases, such as:

(i) If 2 is uniform — i.e, if the rotation is rigid — then the hypersurfaces
of constant A and constant ¢ must coincide with each other and hence
also (except in the uniformly canonical case where VH and V& will both
be zero) with the hypersurfaces of constant { (= —d®/dH).
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(ii) If ¢ is uniform — which we have seen to be necessary in the
zero-vorticity case — then the hypersurfaces of constant H and € must
coincide with each other and hence also (except in the uniformly canoni-
cal case where VH and V& will both be zero) with the hypersurfaces of
constant /(= —-d&/dH).

(iif) If £ is uniform — which in example (d) (wherein { = ¢) corresponds
to effective thermal equilibrium - then the hypersurfaces of constant 2
and of constant /L (which is equal to —¢u " in example (d)) must coincide
with each other, and hence also (except in the rigid case where V42 and
V({L) will both be zero) with the hypersurfaces of constant
F(=d(ZL)/dn).

(iv) In the uniformly canonical (isentropic) case where H is uniform,
the hypersurfaces of constant @ and 2 must coincide with each other and
hence also (except in the rigid case where V@ and V(2 are both zero) must
coincide with those of # (=d®/ds2) and thus also (by 5.16) with those of
g

This fourth application is the generalized von Zeipel theorem of
Bardeen (1973) and Abramowicz (1974). (The hypersurfaces on which
0, #, &, & are all constant are exactly cylindrical in the Newtonian limit.)

Let us now consider what may be deduced if the flow is nos circular (as
for example when there is a finite velocity of accretion onto a central
black hole). Since this means that the flow lines - on which H, € and ¢ are
constant — do nor lie in the invariant 2-surfaces, we see at once that the

hypersurfaces of constant H, & and # must all coincide with each other -

(since each such hypersurface will have k, & and & as linearly independent
tangent vector fields).

When vorticity flux 2-surfaces exist, (i.e. in the uniformly canonical
case where H is constant everywhere) they must lie in the hypersurfaces
of constant € and # by (5.8), and hence they must have a common
tangent vector, £ say, with the invariant 2-surfaces at each point (pro-
vided & and ¢ are not actually uniform throughout). We may take this
vector £ to be normalized in such a way as to satisfy

E=k+0h, (5.18)

where the quantity (2 represents an effective angular velocity of rotation
of the flux surfaces. Since it is postulated to satisfy (5.7) as well as (5.18)
we can apply the same arguments as in the derivation of (5.13) and (5.14)
SO as to obtain

=9V = -V, (5.19)
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where
O=—E g=€—-(4. (5.20)

We can thus draw the same conclusions as in example (iv) of the circular
flow case: either the system of flux 2-surfaces rotates rigidly with uniform
£, in which case @ is uniform throughout, or else the common hypersur-
faces of € and #, which are known to contain the flux 2-surfaces, must
coincide with the hypersurfaces of constant 2 (and thus also of constant
@). Either way we can conclude that each individual flux 2 -surface rotates
rigidly in the sense that {2 is constant on it. In the particular case of a
purely magnetic field (our example (a)) this result is already known as
Ferraro’s theorem (whose relativistic form has been utilized in the context
of black hole accretion problems by Blandford & Znajek) but our present
derivation shows that (like the more specialized von Zeipel theorem to
which it reduces in the circular flow limit) this result is applicable to all
uniformly canonical systems, including our examples (b) and (c}, although
not example (d). It is worth drawing attention to this view of the point
(recently emphasized by Mestel (1977) in the specific context of pulsar
magnetospheres, although it would be equally relevant to Blandford-
Znajek type black hole accretion models of quasars) that electromagnetic
fields can easily accelerate particles sufficiently for inertial effects to
prevent them from corotating with the magnetic field lines of a force-free
magnetosphere even in the domain where radiative dissipation is still
negligible. What I hope to have made clear here is that in such a regime
the particles can s#ill be thought of as confined to rigid flux 2-surfaces but
that one must make appropriate allowance for inertia in defining the flux
2-surfaces, which are to be considered not as being generated just by &
and B as in the force-free case, but by i and eB +2pe (in which ¢ can be
approximated by the particle mass m when pressure is unimportant).

Letus ﬁnisi'l by mentioning some of the detailed conclusions that can
be drawn in the more specialized case of circular flow (which may often be
considered as a good first approximation in the study of black hole
accretion discs or rings when radial inflow velocity is sufficiently small),
restricting ourselves to the uniformly canonical case described by our
example (iv). This has been discussed in detail by Abramowicz et al.
(1978) who have shown that it is convenient to work with the specific
angular momentum, which we shall denote by «, as defined by

a=4F/€ (5.21)

(this is the local analogue of the ratio ¢ =J/M as defined for a star or
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black hole taken as a whole). Abramowicz et al. describe how it is possible
to construct an explicit solution for any assumed distribution of « as a
function of f2, by first finding « and {2 in terms of any known (e.g.
Schwarzschild or Kerr) background metric as explicit functions of the
non-ignorable coordinates, x' =7 and x* =6 say, using the fact that in
terms of a manifestly symmetric system of the kind already described
(with x* = ¢, x* = 1) one will have

a=—us/ us, D=ulu*. (5.22)

This equation enables one to find the explicit form of the generalized von
Zeipel cylinders, and hence to calculate %, ¥ and & as functions of r and
to within an overall scale factor of integration. Since explicit knowledge
of (2 also enables one to evaluate the redshift factor, which is given by

& =u’, (5.23)
one can obtain the enthalpy per particle from the expression
w =Bl rei - A, (5.24)

which is derivable directly from (5.16). In the electrically neutral case
considered by Abramowicz er al. the possibility of rescaling @ by a
constant-of-integration factor merely gives rise to a corresponding
rescaling of x4 which means that the constant u surfaces can be plotted
independently of the adjustable factor (as well as independently of the
equation of state, which has played no part in our discussion). A partic-
ularly simple case worked out analytically by Abramowicz et al. is the one
where the function relation between « and 2 is determined simply by
taking a to be constant which can be seen to arise automatically for
potential (i.e. zero-vorticity) flow. Surfaces of constant . (and hence also
of constant P and p) are sketched for flow that is irrotational except near
the axis in fig. 1. The boundary of the matter ring must lie on one such
surface representing the locus P = 0. The maximum value of u occurs at
the position of a stable circular orbit. The ring can be filled up to any
contour one chooses by adding more matter, until it starts to overflow at a
cusp which occurs at the position of an unstable circular orbit.

For a realistic model the simple constant « approximation may be
good enough for study of the immediate neighbourhood of the cusp but
farther out one would expect a transition to a Keplevian angular momen-
tum function of the form « ~(GM)*?027'", so that the shape of the
accretion rings would be closer to that indicated in fig. 2. The particular
form of the angular momentum function does not affect the fact that the
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stable orbit

position of
marginally

position of
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Fig. 1. The qualitative character of constant u contours is sketched on polar secFion through

a stationary black hole for distributions of a tending to successively ia_rger E.uuforn} values

outside the neighbourhood of the axis, where & must tend to zero to avoid a singularity of (2.

The blacked in region represents holes, and the shaded region represents the maximum
region occupied by matter rings when filled to overflow point.

SNz . 2,

Fig. 2. The qualitative character of region occupied by matter is sketched on polar section

through a stationary black hole for approximately Keplerian angular momentum c_lzs-

tribution. The blacked in region represents hole and the shaded region represents region
occupied by matter for (a) unfilled and () overflowing ring.
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cusp will occur at the location at an unstable circular orbit. As excess
matter trickles out through the cusp (in a manner precisely analogous to
Roche lobe overflow in the more familiar binary star problem) it will take
with it the energy of the unstable circular orbit. The energy release will
therefore be most efficient in the limiting case of an extremely thin disc for
which the cusp occurs very close to the marginally stable circular orbit.
For high accretion rates, particularly when the Eddington limit is
approached, one would expect radiation pressure to provide significant
thickening of the inner part of the disc. This would cause the cusp to move
inwards to a less tightly bound unstable circular orbit and as a result
would reduce the efficiency of the energy release. Such an effect might by
itself be sufficient to prevent the Eddington limit from being exceeded.
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