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The concept of a Killing-Maxwell system may be defined by the relation 4 Lusolip

= (47/3)j .8, - In such a system the one-form 4,, is interpretable as the four-potential of an
electromagnetic field F,,,, whose source current j # is an ordinary Killing vector. Such a system
determines a canonically associated duality class of source-free electromagnetic fields, its own
dual being a Killing—Yano tensor, such as was found by Penrose [Ann. N.Y. Acad. Sci. 224,
125 (1973)] (with Floyd) to underlie the generalized angular momentum conservation law in
the Kerr black hole metrics, the existence of the Killing—Yano tensor being also a sufficient
condition for that of the Killing—Maxwell system. In the Kerr pure vacuum metric and more
generally in the Kerr—Newman metrics for which a member of the associated family of source-
free fields is coupled in gravitationally, it is shown that the gauge of the Killing—Maxwell one-
form may be chosen so that it is expressible (in the standard Boyer-Lindquist coordinates) by

1(a* cos 2 6 — r*)dt + la(r* — a*)sin’ 6 d¢, the corresponding source current being just (47/
3)(3/3¢). It is found that this one-form (like that of the standard four-potential for the
associated source-free field) satisfies the special requirement for separability of the
corresponding coupled charged (scalar or Dirac spinor) wave equations.

I. INTRODUCTION

Although it is well known that the charged black hole
uniqueness and no hair theorems'~” allow only two electro-
magnetic degrees of freedom (or just one if a magnetic mon-
opole moment is deemed to be physically unrealistic) for
regular electromagnetic perturbations that are source-free
and asymptotically vanishing, the dropping of these latter
restrictions permits one to envisage many other possibilities.
Among these, one particular example is specially singled out
(if not for any obvious astrophysical relevance, at least for its
remarkable mathematical properties), namely what we shall
refer to as the Killing—-Maxwell field. It is demonstrated in
this paper that if this field is taken seriously, in the sense of
being considered to act in the usual way on charged scalar or
spinor fields and discrete classical particles on the black hole
background, then the resulting coupled systems have the
same kind of very special separability properties as have al-
ready been found, respectively, *'° when such charged fields
and particles are coupled to the familiar source-free electro-
magnetic perturbations allowed by the no hair theorems.

The existence of a Killing-Maxwell system in the sense
to be defined below is an equivalent (necessary and suffi-
cient) condition to the existence—in four dimensions—of a
second degree Killing-Yano tensor,

f;l# =f[i~y]’ f;l(l-l;P) =0 (L.1)
(using a semicolon for covariant differentiation, with square
and round brackets for symmetrization and antisymmetriza-
tion of tensor indices) . It was the culmination of a systematic
attempt (using two-spinor methods) by several co-
workers!'™'* to obtain (from the Weyl tensor degeneracy
property that was the basis of Kerr’s original discovery of his
metric'®) a simple underlying reason for the remarkable in-
tegrability properties of so many kinds of systems in the Kerr
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(and Kerr-Newman'®) black hole metrics®'®!"-2! that the
existence of such a tensor in these metrics was first brought
to light by Penrose® (with Floyd). Much further work (in-
cluding the use of a Debever-type bivector formalism**for
transcription of earlier two-spinor resuits into equivalent but
more widely readable tensorial form) has explored the gen-
eral properties of such systems, essentially confirming that
the remarkable properties just referred to can indeed be con-
sidered as automatic consequences of (1.1). A recent sum-
mary and guide to many relevant references, of which only a
sample can be mentioned here,*° has been given by Kam-
ran and Marck.?! This body of work together with earlier
results® soon made it clear that the existence of a (nonzero)
solution of (1.1) is by itself sufficient to characterize the
Kerr (or Kerr-Newman) solution uniquely among asymp-
totically flat pure vacuum Einstein (or source-free Einstein—
Maxwell) solutions (and likewise for the author’s asymp-
totically de Sitter black hole solutions >***—though it re-
mains a teasing mystery why the solutions of the (global)
black hole problem should turn out to belong to this (local-
ly) privileged class.

We start by collecting some essential conclusions that
can be drawn directly from (1.1) (without recourse to Ein-
stein or any other equations) by straightforward tensor anal-
ysis. Among the most basic of these results is the existence of
an ordinary (symmetric) Killing tensor (whose presence in
the case of the Kerr solutions was directly implied by the
original discovery'® of a quadratic generalized angular mo-
mentum constant of the motion)

a/{y :'ﬁp pre? a(i,u;p) = 0’ (12)
together with the existence of what we shall refer to as the

primary and the secondary killing vector (giving rise to linear
constants of motion, interpretable as linear combinations of
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energy and axial angular momentum), the first defined (us-
ing the alternating tensor) as the dual of the (necessarily
antisymmetric) covariant derivative of the Killing-Yano
tensor,

K = (1/3!)6'{#pafﬂp;a’ k(/l;u) =0, (1.3)
and the second given in terms of the first by
W =a*k,, heg, =0. (1.4)

Furthermore, as well as having the Killing vector property
of generating symmetries of the metric, g,,, , these two vector
fields also generate symmetries of the Killing—Yano tensor
itself (and hence of the system as a whole, which entails in
particular that they must commute) in the sense that the Lie
derivatives of the Killing—Yano tensor (and hence of any-
thing constructed directly from it) with respect to each of
these vectors must vanish. (The primary Killing vector has
the additional special property that the corresponding co-
variant derivatives along it must also vanish.)

. THE CONCEPT OF A KILLING-MAXWELL SYSTEM

The basic defining equation of what we refer to hence-
forth as a Killing-Maxwell system may be taken to be

A[#;U];,D = (47r/3)}[ugv]p’ (21)

where 2 L isa four;potential one-form, associated with a
four-current vector j#, and g, is the metric of the back-
ground space-time (and where we have introduced a cir-
cumflex to distinguish quantities pertaining to the Killing-
Maxwell field from the analogous quantities pertaining to
the closely related source-free Maxwell field to be mentioned
below). Such a system evidently satisfies the (much less
highly restrictive) ordinary Maxwell equations for the cor-
responding electromagnetic field tensor

Fpp =240, (2.2)
since the contraction of (2.1) leads directly to the source
equation

Foe | =agje. (2.3)
By straightforward tensor algebra and the use of the Max-
well-Faraday integrability condition for (2.2),

Flyu;p} =0, (24)

it can easily be checked that the systems (1.1) and (2.1) are
equivalent (modulo gauge transformations in the latter)
since one can be constructed from the other and vice versa by
the simple duality relation

*/\ P
—_ =1
f;w - F,uv ——jsluvpangy

(2.5)

which evidently entails that the current is to be identified,
modulo a rationalization factor, with the primary Killing
vector:

Kt = (4m/3))*. (2.6)

For many purposes it is convenient to work with the
corresponding complex self-dual Killing-Maxwell Yano
tensor

+F/1y =FA/1;1 +if;l;t (27)

Using the fact that by (2.1) its contraction with the primary
Killing vector is a pure gradient,
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kP*F, = —§(*E, *F7),, (2.8)
it is straightforward to check that one can construct a new
(complex) proportionally related self-dual field of the form

+F,1# :CS_3 +/f\‘/1.u’ (2.9)

which will satisfy the full set of source-free Maxwell equa-
tions, whose complex form is

+rFHP o = 0’
for an arbitrary value of the complex (charge) constant C,

provided that s is taken to be the scalar field given in terms of
the scalar invariants of the Killing-Maxwell field by

45 = *F,, *F. (2.10)

The fact, mentioned above, that the Killing—Yano ten-
sor and hence also the Killing-Maxwell system (not to men-
tion the associated source-free field that has just been con-
structed) will be invariant under the action generated by the
primary Killing vector can at this stage be seen directly by
combining the gradient property (2.8) with the condition
[obtained by contracting the Killing vector with the dual of
its defining relation (1.3)], which leads to a pair of equa-
tions

’F\’A#;pkp 20, zﬁp['{k

7 =0 (2.11)
which add up to the condition that the Lie derivative with
respect to & vanishes. For the secondary Killing vector #*,
we do not have analogs of the separate equations (2.11) but
we can nevertheless obtain the combination expressing the

corresponding invariance condition,
Fou b0 +2F,, b e =0, (2.12)

from (2.4), using the fact that the imaginary (magnetic)
part of (2.8) implies a corresponding real (electric but not
magnetic) gradient property for the effective electric (but
not the magnetic) field as defined with respect to the second-
ary Killing vector:

WE, = — 3 {Euf7),.

We can use (2.12) together with (1.3) to see that the Killing
bivector 2k * ! has a dual two-form given by

(2.13)

el‘upakpha = 2f;[/‘l h# );P, (2.14)
which enables us to derive the equations
h{l;ykphg]:'o’ k[lwkphgl=0, (2.15)

of which the first is an obvious consequence directly of
(2.15), while the second can be obtained from (2.11), which
evidently entails a formally identical pair of equations with
/3. inplaceof F,,, . The same considerations also, respective-
ly, imply

Khof,, =0, keheFf,, =0. (2.16)
It can be seen that (2.15) and (2.16) are the same circularity
conditions as those deduced from the generalized Papape-
trou theorem in the black hole problem?*® from quite a dif-
ferent starting point (involving Einstein curvature equations
and global boundary conditions) instead of the very simple
equations (1.1) or equivalently (2.1), which is all that we
have assumed here. In particular (2.15) is interpretable as
the Frobenius integrability condition for the two-surface ele-
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ments orthogonal to the Killing bivector to be themselves
two-surface forming.

lil. THE KILLING-MAXWELL ONE-FORM

We have so far mainly been collecting results that (al-
though rather dispersed about the literature quoted above,
and derived by perhaps more devious routes and in more
specialized notation than the ordinary tensor calculus used
here) are nevertheless for the most part, in principle, “well,”
albeit not “widely,” known by now. However, we shall now
concentrate our attention on what is in a sense the most
fundamental element of all in the foregoing tree of relation-
ships, which does not yet seem to have had the attention it
deserves (or even to have been considered explicitly at all),
namely what we have dubbed as the Killing-Maxwell one-
form, A,. Once it has been specified (assuming that the
metric tensor is also known) all the other quantities can be
constructed by successive differentiations (the Killing-
Yano tensor at first order, the ordinary Killing vectors at
second order, and so on.) One reason for the neglect of the
zero-order element at the base of the tree may be that to
make it explicit one must, of course, make some specific
choice of the gauge. In practice, however, there is no real
ambiguity because there turns out to be a canonical gauge
that imposes itself naturally (justas I found long ago™'° to be
the case for what can now be interpreted as the canonically
associated source-free fields).

To pin down the gauge we start by requiring that the
four-potential one-form 4,, should have the same properties
of inyariance under the action of the Killing vectors as the
field F,, itself, properties which are simultaneously compa-
tible in consequence of the commutation relation

kP —k#h? =0 (3.1)
that follows from the fact that the secondary Killing vector is
constructed from quantities known [by (2.11)] to be invar-
iant under the action of the primary Killing vector. We can
thus obtain

A,k +4,k", =0, (3.2)

and
A, 0 + A,k =0. (3.3)
Using the real (electric) part of (2.8) we see from (3.2) that

it is possible by a further minor adjustment to arrange to
have

Ap = —iF,F", (3.4)
while similarly, by (2.13) [again bearing in mind the com-

patibility property (3.1) ], we see from (3.3) that it is possi-
ble also to arrange to have

Aphp = —ili(FpofUp)z' (3.5)
Finally, leaving aside the possibility of degenerate limit cases
in which the primary and secondary Killing vectors might
not be independent, it can be seen that (as in the analogous
stage in the black hole problem?) the orthogonal transitivity
and field circularity properties, (2.15) and (2.16), allow us
to impose the gauge circularity condition

Ay kb, =0, (3.6)
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which now ties down the gauge completely. Although there
is now no longer any freedom to impose further gauge re-
strictions, it is apparent that (3.2), (3.3), and (3.6) together
are sufficient to ensure automatically that the standard Lor-
entz gauge condition

2,);'0 -0

is also satisfied.

(3.7)

IV. ALGEBRAICALLY PREFERRED COORDINATES
AND SEPARABILITY

Up to this stage we have kept to fully covariant termin-
ology, but it is now useful (at the price of leaving aside de-
generate limit cases in which the two Maxwellian scalar in-
variants do not vary independently) to bring in algebraically
preferred coordinates of the kind introduced by the present
author® and commonly used in studies of the general
cases’®?®>*° (as opposed to the more particular physical
black hole case, for which the slightly different geometrical-
ly preferred coordinates of the type introduced by Boyer and
Lindquist® are usually chosen). Within the present ap-
proach the algebraically preferred system may be specified
to consist of two nonignorable coordinates, r and g say, given
in terms of the Killing-Maxwell invariants by

P — @ =\F, F*°, 2rg=\F,.f*, (4.1)

together with two ignorable coordinates, t and ¢ say, taken
to be constant on the orthogonal hypersurfaces whose exis-
tence is established by (2.15) and such that the primary and
secondary Killing vectors, ¥ and A, can be identified, re-
spectively, with the operators d / 9z and 9 /9¢. It can be seen
that the specification (4.1) is satisfied simply by taking  and
g as the real and imaginary parts of the scalar field defined by
(2.9), i.e., we have

s=r+1iq. 4.2)

In this system the gauge conditions imposed at the end of the
previous section lead unambiguously to the explicit expres-
sion

A, dxf =4(g° — P)di — 1Pq* dp. (4.3)

Nothing in the preceding line of reasoning makes it ob-
vious in advance that this field should share the already
known property of the associated source-free Maxwell field
of satisfying the author’s condition®® for separability of the
Klein—-Gordon wave equation (and hence a fortiori the cor-
responding classical charged orbit equations) for a charged
scalar field coupled to an electromagnetic field. In the pres-
ent terminology this very restrictive condition is expressible
as the requirement that the four-potential one-form should
have the form
A, X (it qdp) —X (i1 df)

A, dx°
P r2+q2

(4.4)

where X . (r) is a function of 7 only, and X _(gq) is a function
of ¢ only. It transpires nevertheless that in the gauge (4.3)
the Killing-Maxwell one-form does indeed satisfy this con-
dition, the two single variable functions having the simplest
form imaginable on dimensional grounds, namely
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X. (=1 X_(g)=1" (4.5)

For comparison, it may be recalled that the analogous
functions for the family (2.9) of source-free associated fields
(including those coupled gravitationally in the Kerr—-New-
man'® solutions) are correspondingly expressible>®'® in
terms of the real (electric charge) part Q and the imaginary
(magnetic monopole) part P of the complex charge param-

eter C appearing in (2.8) by

X, (n=0r X_(9)=Pg (P+iQ=C). (4.6)

The significance of the property of being expressible in
the form (4.4) is strengthened by the recent work of Kam-
ran and McLenaghan,®® which shows that the condition
(4.4) is sufficient to ensure (undecoupled Chandrasekhar-
type'®) separability in the case where the charged scalar is
replaced by a charged Dirac spinor. Although such separa-
bility properties can be studied more easily in the algebrai-
cally preferred coordinates used here, they are, of course,
preserved by the transformation to the standard geometri-
cally preferred Boyer-Lindquist®* coordinates according to
the prescription

r—r, g—acos 6, d—a='p, 1t — as. (4.7)

(I would insist, by the way, that contrary to a widespread
myth that has been implicitly perpetuated by a recent major
treatise on the subject® the transformation to Boyer-Lind-
quist coordinates does not imply any need to transform to a
noncanonical—e.g. Kinnersley-type*® —tetrad in place of
the maximally symmetric one.®?%*7%) It is also to be re-
marked that the separability condition (4.4) is preserved by
the trivial gauge changes corresponding to addition of
constant multiples of df and dé. The Boyer-Lindquist form
of the Killing-Maxwell potential quoted in the abstract does
in fact differ from (4.3) by such a separability-preserving
adjustment.

Despite the fact that the corresponding constants of the
motion could have been constructed in advance as eigen-
functions of corresponding operators in both the scalar*’
and Dirac spinor®® cases, the fact that these constants are
associated with full separability still seems somewhat mirac-
ulous. In the simplest case, that of a classical particle with
charge to mass ratio ¢/m on an orbit whose unit tangent
vector u* evolves according to

ut ,uf = (e/m)yFru®, (4.8)

our original postulate (1.1) implies that the generalized
(specific) angular momentum vector and scalar, defined by

(4.9)

will satisfy corresponding precessing translation and conser-
vation laws,

Hou? = (e/m)F* 17, (171)),,u° =0, (4.10)
for any field F,, given by an expression of the form (2.9)
whatever the field s may be. Now although any field satisfy-
ing the separability condition (4.4) will have the form (2.9)
for some scalar field s, the converse requirement is highly
restrictive.' It is therefore remarkable that such a require-
ment (which in this case is manifestly not necessary for the

I =ftoup, 171, =a, uru’,
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conservation law to apply) should turn out to hold both for
the source-free solutions [with s given by (2.10) or (4.3)]
and for the Killing-Maxwell field (with s uniform so that
Cs—? =1). Indeed even in the Minkowski space limit, for
which the Killing-Maxwell field is interpretable as that
within a uniform spherical charge distribution, the spherical
symmetry of which is broken by the superposition of a uni-
form magnetic field, the (scalar and Dirac) separability that
has been revealed was hardly obvious in advance.
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