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Relativistic equations governing perturbations of an elastic medium under the influence of gravitational
waves are derived firstly in a gauge-independent way in terms of relative strains, and secondly in terms of
gauge-dependent displacements. The derivations are based on the exact nonlinear theory of elasticity in
conjunction with Einstein’s theory of gravity, and hence are applicable to the solid crusts and cores of
neutron stars. It is shown that in the approximately Minkowskian weak-field limit the equations reduce to
those derived by previous workers for application in terrestrial contexts such as the detection of gravitational

waves by a Weber bar.

I. INTRODUCTION

The purpose of the present work is to describe
the application of the exact nonlinear theory of an
elastic medium to the description of perturbations
such as would be generated by an influx of gravi-
tational waves according to Einstein’s general
theory of relativity.

The equations describing such perturbations in
the approximately Minkowskian weak-field 1imit
are now fairly well known owing to the work of
Rayner,' Dyson,? Papapetrou,® and others. (For
a recent account with many references see Maugh-
in.?)

The full nonlinear theory of relativistic elastic-
ity, suitable for application in contexts such as
that of a neutron-star crust or core where gravi-
tational curvature is large, has been developed by
several authors, but no comprehensive and author -
itative review of the relevant literature is yet
available. The absence of any adequate historical
review is attributable to the fact that the subject
has been developed with very diverse physical
motivations, using different languages and dis-
parate notation systems, by isolated groups or in-
dividuals sometimes laboring under serious but
not always superficially apparent misconceptions.
We shall not attempt to remedy this situation here,
but simply remark that to the best of our present
knowledge the earliest completely correct treat-
ment of the nonlinear fully relativistic elasticity
theory is that of Souriau® (cf. Souriau®’). The
present work will be entirely based on the mathe-
matically equivalent but more fully developed ap-
proach that we introduced ourselves (Carter and
Quintana®) at a time when we (and virtually all
other workers in the field) were unaware of Sou-
riaw’s work. This particular line of approach has
already been applied effectively to specific prob-
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lems arising in an astrophysical context, (see Car-
ter,®'>!! Friedman and Schutz,'? Carter and Quin-
tana,'® ' and Quintana'®). For a brief introductory
account, see Ehlers.!®

The plan of the present work is as follows: In
Sec. II we derive an exact equation relating the
second derivatives of the relative strvain tensor to
the Weyl tensor of the gravitational field. In Sec.
III we apply linearized perturbation theory in a
background space that may be strongly curved,
and derive a system of equations of motion for an
infinitesimal gauge-dependent relative displace-
ment vector, and for the gravitational perturba-
tion of the metric itself. In Sec. IV we show how
the well-known equations describing the approxi-
mately Minkowskian weak-field limit may be ob-
tained directly from the formulas either of Sec. II
or of Sec. III. We have included a list of minor
copying errors in our original paper (Carter and
Quintana®) as an Appendix.

II. STRAIN VARIATIONS IN A GRAVITATIONAL FIELD

The most direct way to obtain an equation of
motionfor strain variations in agravitational field
described by Einstein’s theory is to start from
the generalized Raychadhuri equation (see, e.g.,
Ellis'”) obtained by applying the Ricci identity to
the matter flow velocity whose components (in
terms of coordinates x?) are given by

dx*®
ar ’

a

(2.1)

where the proper-time differential d7 is defined
in terms of the Lorentzian metric tensor by

ds®=g,dxtdx® = ~c%dr?, (2.2)

so that the velocity vector U satisfies the normali-
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zation condition
uu, = —c*. (2.3)

Following Ellis'” we introduce a flow gradient ten-
sor with components v,, defined by

1,
ua;bzvab"?!'uaubf (2.4)

where a semicolon denotes covariant differentiation
and the acceleration vector is defined by

g =g, u° . (2.5)

This tensor is orthogonal to the flow in the sense
that

U =0=0v,,u". (2.8)

We shall use the symbol Ef: to denote the operation
of Lie differentiation with respect to any vector
field £, and we shall use the abbreviation 8, for
differentiation with respect to the matter flow
field 4, i.e., we set

8 =08, (2.7)

For any covariant tensor that is orthogonal to the
flow [in the sense defined by (2.6)] the Lie deriva-
tive with respect to the flow will be given by the
formula

£‘rfab57ﬁygfcd:eue+fcbvca+facvcb ’ (2.8)
where the orthogonal projector is defined by

1
y‘,‘,=g’,‘,+?u"ub. (2.9)

In particular for the Cauchy strain tensor, which
has covariant components y,, obtained by lowering
the indices of the orthogonal projector itself (in
the standard way by contraction with the metric),
we shall have

£.7.,=26,, (2.10)
where 6,, is the symmetric part of v,,, i.e.,

Vgp=Bgp+ Wgp » (2.11)
with

6ta51=0, W(e)=0 (2.12)

using round and square brackets on indices to de-
note symmetrization and antisymmetrization, re-
spectively. Using the Ricci identity

Ug;(b5e1= 3uq R (2.13)

where R%, are Riemann tensor components) we
abe

can go on to express the Lie derivative of the flow
gradient tensor in the form

o o

1
_cds c ¢ d
£1'Uab“7u7’buc;d+v aVeb t P Uy —UU R yopg -

(2.14)

(A better known, but for the purposes of elasticity
theory less useful, form of this identity is given
by Ellis'? in terms of the covariant derivative
instead of the Lie derivative of v,,.) The antisym-
metric part of this identity gives

(2.15)

and the symmetric remainder gives a second-order
strain variation equation of the form

—aC.,de
£'rwab_'ya‘ybu[::;ti]

—aCy a2 c
%£f£17ab_yaybu(c;d)+v a{vcb
1

+ cTi‘a ilb —ucu"R,cM .

(2.16)

For purposes of physical interpretation it is con-
venient to express this in terms of the Weyl con-
formal tensor given by

C®,,=R%®,,-2g (R} -1Rg3), (2.17)

where the Ricci tensor and scalar are defined by
Ry = cacb; R= Rcc . (2.18)

It will also be useful to introduce a relative strain
tensor with components defined by

(2.19)

€ap= %('yab - Kub) ’

where k,, are components of some as yet unspeci-
fied strain reference tensor satisfying

B.K:=0 (2.20)

so that by (2.10) the expansion tensor with com-
ponents 6,, may be interpreted as measuring the
relative strain vate, i.e.,

eubzﬂveab' (2.21)

(When the physical circumstances do not suggest
any other more useful choice, we are always free
to set k,, equal to zero for the sake of definite-
ness.) In terms of these quantities the strain var-
iation equation (2.16) may be written as

—.,C., de c,,d
BB e,=Y Y0y — 4 U Chopa

1 d, 1 2 1 d 2
—3Vap(Requu’+ 3RC?) + 3 ¥ ¥ 3R 4C

+ v°nv,,,,+-;—z1f¢aﬂb . (2.22)
So far we have been dealing purely with kine-
matics, i.e., properties of the motion that would
be valid for any medium —elastic or otherwise—
in terms of any metric theory of gravity. We now
introduce the condition that the medium has an
elastic energy-momentum tensor of the form

T“b=p"+ puaub , (2_23)

where p°® are components of the pressure tensor,
which is symmetric and orthogonal, i.e.,

pleI=0, poPy, =0 (2.24)
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and where p is the local mass density, which may
if one wishes be expressed in terms of an invari-
ant conserved particle (e.g., baryon) number den-
sity n, a constant “rest mass per particle” m,
and an energy density € by

p=nmy+€/c?. (2.25)

However, the “rest mass per particle” is a some-
what arbitrary concept, depending on what kinds
of (chemical, nuclear, or other) transformations
are treated as being “allowed” in the physical con-
text under consideration. It is always legitimate,
and in highly relativistic situations will usually

be most convenient, simply to set m, equal to zero.

Independent of the way that the constant m, is
chosen, the pressure tensor will be determined
from the corresponding function €(y,5), defining
the energy density as a function of strain, by the
differential relation

AB _ d¢ AB
b ——2—3—}/—A;—E'}’ ) (226)
where we use capital indices to denote the com-
ponents of the natural projections (defined by the
flow lines) of ordinary orthogonal space-time ten-
sors onto the three-dimensional manifold repre-
senting the idealized particles of the medium.

(See Carter and Quintana,® and Ehlers'®; since

the projected Cauchy strain tensor is necessarily
symmetric its components y,5 cannot be varied
independently but the tensor operator 8/dy ,, can
nevertheless be made well defined by imposing the
condition that it be symmetric, i.e., that it be
equal to 8/9y,,.)

Equation (2.26) is an exact relation which is
valid for any linear or nonlinear equation of state
function €(y,p), and for any metric theory of gra-
vity in which the conservation law

T%,=0 (2.27)

holds. In particular (2.26) would hold in the case
of special relativity theory, wherein gravity is
ignored so that C,,, and R,, could be set equal to
zero in (2.22). We are concerned here with the
case of general relativity wherein the Ricci tensor
is given by the Einstein equations

871G
Rnb=_CﬂT(Tnb - %Tgab) ’ (2'28)
where
T=T¢,=p°, - pc?, (2.29)

and wherein the conformal tensor is algebraically
restricted only by the purely kinematic conditions

Cabea= Cedav = Cravitears (2.30)
Ca[bcd]=0a Cabac: 0 (2.31)

although by the Bianchi identities its derivatives
must obey

coved, = 867;6 (T°10:5) _ 4 gotaidl) (2.32)

(cf., Ellis'?).
We shall use the abbreviation

Cap =UUC g =2V EV Y ®C opq (2.33)

for the “electric” part of the gravitational field (with
respect to the local rest frame of the medium),
which by (2.30) and (2.31) will satisfy

Cran=0, Cguu’=0, CS*=0. (2.34)
Then using the equation of motion

.

1
PUt = =p® 4+ —3 1 POy (2.35)

[obtained from (2.27)] to eliminate the acceleration,
and using (2.21) to eliminate the expansion rate
tensor, we may replace the purely kinematic equa-
tions (2.15) and (2.22) by the corresponding dynam-
ic equations

1
s'rwub = 'yc[a'yb]d'p_z(p,dpce;e - ppce;e;d)

1
+ pC§ wabp‘:d£'recd (2‘36)

and

1
£‘rﬁfeab = Yc(a'yb)d'zf ( p,dpce;e = ppce; e;d)

4nG
- Cab - prab

+ wcawcb + 2(“":(aﬁ'reb)c +g Cd(g'reac)ﬁ'rebd
1
+ W [yac Vbdp”; epdf;f + ppw(s‘recd)ﬁreab]

471G c
+ —Ez‘(pab—%pc’ Yab) - (2.37)

Bearing in mind that p andp®® are algebraic func-
tions of the strain components ¢°? we see that the equa-
tions (2.36) and (2.37) together form a coupled set
of nonlinear partial differential equations for w,,
and e, (of first order in the former and of second
order in the latter). The vorticity equation (2.36)
differs from the corresponding equation in New-
tonian theory only by the presence of the special
relativistic correction term in the last line. The
strain equation (2.37) differs from the correspond-
ing Newtonian equation by the terms on the last
two (fourth and fifth) lines. Thus in the Newton-
ian limit one is left with only the first, second and
thivd lines, of which the first consists of ordinary
Navier-Stokes terms, linearized in velocity; the
second consists of terms representing the effects
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of Newtonian gravity (C,, is the tidal force term),
while the third consists of the Newtonian dynamic
terms that are quadratic in the velocity. In the
special relativistic limit wherein gravity is com-
pletely ignored, only the terms of the first, thivd,
and fourth lines of (2.37) would remain; those of
the fourth line are the relativistic correction
terms. Thus the only truly geneval-relativistic
correction terms are those of the last (fifth) line
of (2.37).

A particularly simple example in which the strain
dependence of the terms in (2.36) and (2.37) can
be made to appear more explicit is that of an exact-
ly Hookean solid (in the sense defined by Carter
and Quintana®), wherein the pressure tensor is
related to the strain tensor via the elasticity ten-
sor by an apparently linear relation of the histori-
cally familiar form

P = —Elg (2.38)

However, in a rigorous treatment, the appearance
of linearity in this relation is illusory since the
elasticity tensor itself is necessarily strain de-
pendent; it is governed in this particular case by
the equation of motion

BB pea=4Eq" (Brlget 4E " (1),

ab (¢ cd (a

—Egpeqy 8 e, . (2.39)

In practice the Hookean idealization is physically
relevant as a good approximation only in the weak-
field small strain limit discussed in Sec. IV,
wherein higher-order corrections such as those
arising from the terms on the right-hand side

of (2.39) may be neglected.

The exact equations (2.36) and (2.37) are rather
too unwieldy to be of much practical use in general
circumstances. They become much more amen-
able in situations where the motion can be con-
sidered to be approximately rigid (as when treat-
ing approximate equilibrium states of a solid star)
in which circumstances the strain reference com-
ponents k,5 may be chosen in such a way that the
strain components e,, remain small. However, if
we are obliged to approximate then it is advantage-
ous to do so systematically from the outset in the
manner described in the next section.

III. THE DISPLACEMENT PERTURBATION EQUATION

In Sec. II we derived an exact equation governing
the strain variations in an elastic medium. We
now describe an alternative approach using linear-
ized perturbation theory along the lines developed
by Carter.® In this approach one compares the
“perturbed” state of the medium under the influ-
ence of acoustic and gravitational waves with anear-

by “unperturbed” state which in practice will usual-
ly be required to have specially convenient sim-
plifying properties such as stationarity. As a
basic unknown variable we shall work with an in-
finitesimal displacement vector, with components
£% say, which specifies the position of any particle
in the perturbed state relative to its position in
the unperturbed state. Such a displacement is
highly gauge dependent in that its value depends
on the way one chooses to identify points in the
perturbed and unperturbed space-time manifolds.
In principle it is always possible to take £° to be
zero—identifying points by the use of a Lagrangian
(comoving) coordinate system. In practice, how-
ever, it will usually be more convenient to speci-
fy the points by their coordinates with respect to
some geomelrically fixed (e.g., harmonic) Euler-
ian system (such Eulerian systems include stan-
dard Minkowski coordinates in special relativity
and ordinary Cartesian coordinates in Newtonian
theory). The difference between the Lagrangian
(comoving) variation of any quantity, which we de-
note by A, and the corresponding Eulerian (“fixed
point”) variation, which we denote by 5, is given
by the Lie derivative with respect to the displace-
ment vector field, i.e.,

A-5=E8. (3.1)

The freedom to alter the way in which the space-
time manifolds of the perturbed and unperturbed
states are identified by arbitrary infinitesimal re-
lative displacements, with components ¢* say (cor-
responding to arbitrary infinitesimal coordinate
transformations), gives rise to gauge tvansfor-
mations of the first kind, where the Eulerian vari-
ation undergoes transformations of the form

6~0-18 . (3.2)

The Lagrangian variation is subject only to a much
more restricted group of gauge transformation

of the second kind, arising from infinitesimal dis-
placements with components of the form ou® (i.e.,
displacements leaving the world lines invariant),
where o is an arbitrary infinitesimal scalar, which
gives rise to alterations of the form

A=-A-0Ug (3.3)

in the Lagrangian variation. It is to be remarked
that in the special case when the flow vector 1 is
parallel to the genevatov of an invariance grvoup

of the unperturbed motion, the Lagrangian vari-
ation of any covariant tensor orthogonal to the flow
will clearly be gauge invariant. This applies in
particular to the Lagrangian perturbation

€ =0€,= 307, (3.4)

of the strain, which will be gauge invariant when-
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ever the unperturbed motion is 7igid (i.e., when-
ever 6,, is zero). The material displacement vec-
tor E will always be affected by gauge transforma-
tions of both kinds. The combined effect of the
transformations (3.2) and (3.3) is to induce a
change of the form

=1+ 5% —ou, (3.5)

as is evidently required for (3.1) to remain valid.

Even when one wishes to express the final re-
sults in terms of Eulerian variations, the inter-
mediate calculations directly involving the medium
are nevertheless most easily carried out in terms
of Lagrangian variations. If as usual we use the
abbreviation

hap =624 (3.6)

to denote the Eulerian variation of the metric com-
ponents, then the corresponding Lagrangian varia-
tion, which we shall denote by

8 =880%, (3.7

may be evaluated by means of (3.1) using the fami-
liar formula

g"a"gabzz‘g(a;b)' (3.8)
This leads to the expression
Anb:h'ab+ 2£(a;b), (39)

which may be used for the explicit evaluation of
the Lagrangian variations of functions of strain,
including, in particular, the Lagrangian variation
of the strain tensor itself, which will be given by

Eab=-é-'yf;"ydbAcd (3.10)

(see Carter®).

In order to evaluate variations of covariant devi-
vatives it is also necessary to have an expression
for the variation of the affine connection compon-
ents I' 3, since for any mixed tensor with com-
ponents T%.:. we shall have

A(TE, )= AT+ T5 . AT+

e.

T8 AT, —eee. (3.11)
When the Eulerian metric variation is expressed
by (3.6) it is well known (see, e.g., Weinberg,'®
or Landau and Lifshitz'®) that the corresponding
formula for the Eulerian variation of the connec-
tion is

OT%, = %y, oy = Sy’ . (3.12)

By applying (3.1) to (3.12) and using the formula
€£F§c= % (bser = EdRa(bc)d (3.13)

(see, e.g., Yano®) for the Lie derivative of the
connection, or alternatively by applying (3.12)

directly in a gauge with zero displacement, one
obtains for the Lagrangian variation of the connec-
tion the expression

Ar‘;c: Aa());c) - %Abc;a . (314)

An elementary example of the application of this
formula is to the variation of the acceleration.
Thus starting from the formula

a 1 a, b c
Ayt = ST WU by (3.15)
(Carter®) for the Lagrangian variation of the unit
flow tangent vector, and using the expression

Bypie =284 AT 4o (3.16)
we obtain the formula
. 2 .
Au'= Y'z’zucudAFga‘f'C?u“ub)“cAbc, (3.17)

which may be evaluated in more explicit form
using (3.14).

We can now obtain the fundamental equation of
motion for the displacement vector £ (in an arbi-
trarily chosen gauge) by taking the Lagrangian
variation of both sides of the basic equation of
motion in the form

pi’ +yip®.,=0, (3.18)

evaluating the variations of density and pressure
by means of the formulas

Ap=-3py° Ay (3.19)

and
Ap"bz _%<Eabcd+paby cd _%pc(aub)ud>Am’ (320)

(Carter®) where we have introduced the abbrevia-
tion
yoh=y oty 1 ped (3.21)
pc?
and where E®*? are components of the elasticity
tensor (see Carter and Quintana®) which has the
symmetry and orthogonality properties

Eted= (ad)(cd) _ pedad (3.22)
By, = 0. (3.23)
Introducing the further abbreviation
A% 4 Fob 4 _ a0 (3.24)

for the modified “Hadamard” elasticity tensor
previously introduced by Carter!® in a discussion
of the characteristic wave fronts of sound propaga-
tion, we may write the perturbed equation of mo-
tion derived from (3.18) in the compact form
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which is arranged with the second term (in paren-
theses) on the right-hand side consisting exclusive-
ly of relativistic correction terms, so that in the
Newtonian limit only the first term remains. The
terms of (3.25) may be evaluated explicitly in
terms of £¢ and %, by using the expressions (3.9)
and (3.10) for A, and €,,, and using (3.14) to express
the connection perturbation components in the form

AT, =7 R T %hbd;c - &R haye - (3.26)

Equation (3.25) thus takes the form of a wave equa-
tion for the displacement components &%, with the
second partial derivative terms all grouped on the
left-hand side. It is important to notice, however,
that since all the terms are identically orthogonal
to the flow vector U, there are only three indepen-
dent equations for the four components £°. The
consequent indeterminacy is a manifestation of
the freedom to make arbitrary gauge transforma-
tions of the second kind: It may be removed by
imposing the orthogonality requirement

&u,=0

as a gauge restriction on the displacement vector.
The characteristic acoustic wave fronts may be

defined as hypersurfaces on which the second deri-

vatives £%,. . may be discontinuous while £° and

£%, (as well as h,, and h,,,.) remain continuous.

If A, are components of a covector normal to such

a hypersurface of discontinuity then by the well-

known principle of Hadamard the discontinuity

in the second derivative must have the form

[ga;b;c]:zlaxbxc (3.28)

for some vector ¢*, which characterizes the am-
plitude and polarization direction of the discon-
tinuity. Since the right-hand side of (3.25) contains
only first derivatives it gives no contribution at all
when we take the discontinuity, so that we obtain
the characteristic equation directly, in the simple
form

(3.27)

(A% ¢ _ py3 uPu®)1oa ;= 0. (3.29)

If 7 is parallel to { then (3.29) will be satisfied
identically for arbitrary A, —this is merely the
mode corresponding to gauge transformations of
the second kind. This trivial mode is automatical-
ly eliminated by the orthogonality condition (3.27),
which automatically implies the corresponding re-

striction
Pu,=0. (3.30)

The genuine physical sound wave fronts are thus

1 . . .
(/labcd _ py‘c'u"ud)Arf,f _,},gEcebd; e€bd + _?_(pabud _ %uapbd _2Aa(bce) vceud + pyg ucubud)Abd s

(3.25)

IS

obtained by solving the purely three-dimensional
eigenvalue problem determined by (3.29) subject
to (3.30). [See Carter'® for a more direct deriva-
tion of (3.29) and a more thorough discussion of
its implications.]

In order to obtain a complete system of equations
of motion for the perturbations, we must of course
supplement the wave equation (3.25) for the
£%by a corresponding equation for the metric pertur-
bation components k,,. Inspecial relativity one could
simply take the i, tobe zero. Ingeneral relativity,
however, the ,, will be governed by the dynamic
wave equation given by the perturbation of the Ein-
stein equation (2.28), which takes the form

8rG

6R®="" srab
C4
- 8—;-7;19(AT"° _teT™), (3.31)
where
R = R% _ jRg®®. (3.32)

The Lagrangian variation of the energy-momen-
tum tensor may easily be obtained (cf., Carter®)
combining (3.15), (3.19), and (3.20). Following
Friedman and Schutz,'? we may express the result
compactly in the form

AT = _%(gabod+ Tabgcd)Acd’ (3.33)

where 8%%¢ are components of a tensor having the
same symmetry properties as those [given by
(3.22)] of the elasticity tensor, i.e.,

Sabed _ Slab)ca) _ Gedad (3.34)

but without the orthogonality property (3.23); its
explicit form is given by

- 1
&abed . pabed (?(Gu (“ubp“) _ 8u(apb)(cud)

— puubufus), (3.35)
Combining this with the formula
ERTo= T, o _oTotey), (3.36)

we have all the elements necessary for the evalua-
tion of the right-hand side of (3.31).

The evaluation of the left-hand side of (3.31) is a
mere routine exercise. Starting from the expres-
sion

OR%.q=2(0I'5,); 9 (3.37)

and using (3.12) one obtains by contraction the
familiar formula

6Rab= re (a3d)ic — %(hnb;c;c + h’cc HH b)'

(3.38)
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The left-hand side of (3.31) may now be obtained
in the form

SR = hele i? — %(hab;c;c +h, T a0) - gy g
~Co0 Jitt 1 SRR~ L(RP — SRS, (3.39)

In order to obtain a well-behaved wave equation
for the components %, it is necessary to elim-
inate the indeterminacy that would result from the
direct substitution of (3.39) in (3.31) as a conse-
quence of the freedom to make arbitrary gauge
transformations of the first kind. The standard
way to do this is to use the harmonic gauge condi-
tion, which may be expressed in terms of the
quantity

ﬁab=hab _%hccgab (340)
by the divergence condition
e, =0, (3.41)

This does not entirely eliminate the freedom to
make gauge transformations of the form (3.2):
We are still free to make arbitrary displacement
adjustments Z on an initial hypersurface provided
that their subsequent evolution is made to obey
the wave equation

oge=0, (3.42)

where, for ad hoc convenience, we have intro-
duced a generalized wave operator whose action
on a contravariant vector is defined by

Oge=ge,ie+ ROEC. (3.43)

(it is to be noted that this is not the same as the
Lichnerowicz-De Rham operator, in which the
curvature term would appear with the same mag-
nitude but with the opposite relative sign.) When
the harmonic condition (3.41) is satisfied, the ex-
pression (3.39) reduces to the form

6R® = 007 (3.44)

where the action of the operator J on a symmetric
contravariant tensor is defined by

Oh = hab;c;c _Rabhcc + zcacbdhcd
~2R(W% -4 g%h ). (3.45)
The resulting equation of motion for the metric
perturbation may thus be expressed in the form

167G

Oh® = - 0T, (3.46)

where by (3.32) and (3.36)
57T ab = _%(gabcd + Tabng)(hcd+2£(c;a))
+2Tc(a€b);c_Tab;cgc. (347)

The evolution of the perturbations is determined

completely by solving the equations (3.25) and
(3.46) simultaneously, with the gauge condition
(3.41) imposed only as an initial-value constraint;
the structure of the system is such that the con-
dition (3.41) will be preserved automatically in
the subsequent evolution. To see this we start by
remarking that the equation (3.25) is (by its deri-
vation) equivalent to the perturbation

(T ;) =0 (3.48)

of the energy-momentum conservation condition,
so that by the unperturbed Einstein equations (2.28)
it also implies

871G

04

(6T ), = ~2Re@6T?) . (3.49)

Hence taking the divergence of (3.46) subject to
(3.25) and (2.28) gives

(D];ab);b+§c(a5rgg= 0, (3.50)

which reduces, after substitution of the explicit
expression (3.45) for the wave operation on a ten-
sor, to the simple form

O(he,,) =0, (3.51)

where the operator T (now acting only on a vector)
is as defined by (3.43). Since this O is a well-be-
haved hyperbolic wave operator, the automatic
preservation of the gauge condition (3.41) is thus
established.

In the perturbation theory of gravitational waves
in a flat-space background it is customary to make
use of the remaining gauge freedom allowed by
(3.42) so as to impose further restrictions to the
effect that the trace %.° and the contraction of %,
with a time translation Killing vector K be zero.
Unlike the harmonic condition (3.41), however,
such additional simplifications will nof be com-
patible with the equation of motion (3.46) in a gen-
eral background space. [It may be remarked,
however, that the trace z.° can still be set equal
to zero in an empty curved space, since when the
medium is absent the right-hand side of (3.46) van-
ishes, and the structure of (3.45) is such that the
trace will decouple from the trace-free part of
hab' ]

We complete this section by observing that the
presence of the background medium does not af-
fect the second-order terms in (3.46) so that the
characteristics on which the second partial deri-
vatives of %,, may be discontinuous are just the
ordinary null hypersurfaces with tangent covec-
tor components specified by

2N, =0. (3.52)

Thus the discontinuity fronts of acoustic and gravi-
tational waves move independently even though the
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continuous perturbations behind the fronts are in-
extricably coupled.

IV. THE WEAK-FIELD LIMIT

In Sec. III we imposed no restriction on the
strength of the gravitational curvature fields in
the unperturbed background space, so that the re-
sults would be applicable, e.g., to the theory of
gravitational radiation by an oscillating neutron
star—a problem that has been dealt with previous-
ly only be using a perfect fluid treatment (see
Thorne®! or Ipser?®) in which many important ef-
fects (such as torsional vibration modes) could
not be taken into account at all.

In the present section we shall show how the
standard results of Dyson,? Papapetrou,® and oth-
ers may be recovered in the linearized weak-field
approximation wherein the background is treated
as being approximately flat, as is appropriate in
the analysis of weak gravitational wave interac-
tion with a nonrelativistic body such as a white
dwarf or planet, and hence a fortiori with a Weber
bar detector.

It is important to emphasize that the weak-field
theory to be considered here is somewhat differ-
ent in spirit from the type of weak-field theory
whose use for problems such as the emission of
gravitational radiation by a binary system is de-
scribed by Landau and Lifshitz!® and criticized by
Ehlers et al.?® In the limit when the background
space is approximately flat, it might at first sight
appear that our fundamental gravitational radiation
equation (3.46) is the same as the Landau-Lifshitz
radiation equation. In fact, however, there is a
fundamental difference in the interpretation of the
source term on the right-hand side. In the Landau-
Lifshitz theory (which was originally sponsored by
Einstein himself) the 6T *° term would represent
in its entivety the effect of introducing low-den-
sity matter (such as that of the sun and planets),
with a motion described approximately by Newton-
ian theory, into a background space that was pre-
viously completely empty. On the other hand in
our present theory the term 6T %® merely rep-
resents a small fractional adjustment in a back-
ground space in which the relevant (stellar or
planetary) matter has already been introduced at
the outset. Thus if we apply (3.46) to an exactly
flat—and therefore empty —background space the
term 6T ** will simply vanish. (Perturbing the
world lines of nonexistent matter can have no ef-
fect at all.) Since the unperturbed background
space is postulated to obey the exact Einstein
equation (whether the fields be weak or strong)
our treatment completely bypasses the well-known
consistency difficulties that beset the Landau-

Lifshitz type theory. (The inconsistencies arise
from the fact that the Bianchi identities would re-
quire the Landau-Lifshitz energy-momentum
source to be conserved relative to the flaf back-
ground, which is incompatible with the existence
of any gravitational interaction at all.) The per-
fect self-consistency of our present treatment is
achieved at the expense of a limitation of its do-
main of applicability: It cannot be used ab initio
for the construction of any solution of a problem
such as that of a radiating binary system; but if
just one (perhaps specially simple) solution for
such a system is supposed to have been given in
advance by other means then our method can be
used for the construction of other (perhaps more
complicated) solutions in the neighborhood of the
first one. In practice the present formalism is
most suitable for application to a single body,
such as the earth as a whole, or an individual
Weber bar, in which the unperturbed state is sup-
posed to be one of rigid motion, which in practice
must necessarily be supposed to be static (non-
rotating) unless—as in the case of the earth—the
body may be treated as being axisymmetric so
that nongravitationally radiating stationary rotat-
ing states exist.

Our linearized weak-field treatment will be based
on the assumption that the unperturbed background
space is characterized by a small dimensionless
parameter €, such that the magnitude a say of the
gravitational, centripetal, or other accelerations
characterizing the motion has a maximum value
given by

<& 4.1
a ‘)_L— €o> (4.1)
where L is a characteristic length scale of the
body under consideration. This implies a cor-
responding upper limit

WS — 601/2 (4.2)

on the magnitude of the characteristic angular
velocity w of the bqdy, and also an upper limit

2

pS G—Lz€o, (4.3)

on the characteristic density. If we assume that
the only internal pressures and stresses are those
required to maintain equilibrium against the gra-
vitational and other acceleration forces, then
their magnitude will be characterized by

p/ps c’e,. (4.4)

The magnitude C, say, characterizing the cor-
responding gravitational curvature will be given by
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Cs z—g . (4.5)
If we suppose that the unperturbed state is strictly
rigid then the expansion tensor will be zero; how-
ever, for the resultsithat follow it will be more
than sufficient if we postulate that the character-
istic magnitude 6, say, of the expansion rates is
only restricted by

o< Lﬁ €. (4.6)
Finally we remark that since the characteristic
magnitude v,, say, of sound speeds will certainly
be less than the speed of light (by a factor of or-
der at least 10* in ordinary terrestrial matter),
the order of magnitude E, say, of the elasticity
components (in an orthonormal frame) will be
given by

4
E~pv52Ls§E<°. (4.7)
As a particular example the earth as a whole sat-
isfies all these requirements with ¢,~ 107*°; for
a Weber bar—unless in a state of ultrarapid ro -
tation—we could take €, to be even smaller.

We shall suppose that the perturbations them-
selves are characterized by a second small di-
mensionless parameter €,, in terms of which the
order of magnitude # say of the space-metric
perturbation and €, say, of the strain perturba-
tion components (in an orthonormal frame) are
given by

hs ey, (4.8)
€S €. (4.9)

If the perturbations have a characteristic fre-
quency v, the characteristic wavelength will sat-
isfy

AS0,/v (4.10)

(since the speed of sound cannot be greater than
the speed of light), and hence the magnitude £,
say, characterizing the relative displacements
will satisfy

gs%‘-el. (4.11)

For waves induced in the earth by a supernova
explosion in even a very nearby star the corres-
ponding value of €; would be very much smaller
than the value of ¢,, but of course the ratio would
be reversed if the source were a nearby earth-
quake. We shall make no assumption about the
absolute ratio of €, to €, but will consider the
limiting situation in which both are postulated to
tend to zero together, using the notation O(¢) to

denote quantities that tend to zero, irrespectively,
when divided by either ¢, or «,.

If we apply this limiting procedure to the exact
strain evolution equation (2.37), considering it as
describing either the weak background alone o7
the background plus perturbation, we are left with

£,8,6,5=-7 (ayb)d(p-lpce :e) d

_cab_ 4_gqpyab+wcawcb+o(€)‘ (4‘12)

If instead we consider the evolution of the periur-
bation alone then it is easy to see that the self-
gravitational and centrifugal force terms drop out
and that we are left only with

£-r£’r € ab =7c(ayb)d[p-l (E ceflefg):e] H
—~AC,,+0(€) (4.13)

[having used (3.10) and (3.20)]. Since the perturbed
Einstein equations give

AR ,,=0(€), (4.14)
we shall have

AC%.4=AR%,,+0(€), (4.15)
and since

AR% g =2(AT% () )
=Aa[d:c];b+Ab[c;d];a+O(€), (4.16)
the definition (2.33) gives

ACab = czya(e)'bf)'}' “(2€cs:d i €efica € :e:f)
+0(€). (4.17)

[Note that in the special relativistic limit where
the %, are zero, the term on the right-hand side
of (4.17) will vanish identically.] It is apparent
that by substituting (4.17) in (4.13) we can obtain

a second-order linear wave equation for the strain
perturbation components ¢,, alone (cf., Papape-
trou®). However, despite its attractive feature

of containing only gauge-invariant quantities, the
strain wave equation obtained in this way does not
provide the most efficient way of dealing with
practical problems, and in order to decouple the
various components from among themselves one
would be led ineluctably to break the gauge invari-
ance. In practice it is more effective to work with
the displacements &% and the metric perturbation
components k,, from the outset as in Sec. III, us-
ing the harmonic condition (3.41) so that by (3.46)
the metric perturbation is described by the ef-
fectively source-free flat-space wave equation

O =0(e), (4.18)

where O is now just the flat-space wave operator
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given simply by

Oh% =R e, (4.19)

When this decoupled equation for the %°® has been
solved (e.g., by taking a standard plane-wave
solution) it remains only to satisfy the wave equa-
tion (3.25) for the three independent displacement
components, which reduces in the present limit to

Ygubud(g c:b;d+hcb:d—%hw;c)
=p-1[Eabcd(£c;d+%hcd)];b+0(€). (4.20)

An equivalent displacement wave equation has been
given by Papapetrou.® As pointed out by Papape-
trou, the gauge-invariant strain wave equation [in
a form equivalent to (4.13)] can be obtained by
taking the symmetrized derivative of the displace-
ment wave equation and using, instead of (4.17),
the alternative expression

AC,,=uu?6C,,p +0(€)

=1 U (afa;p15c +Relniatsa) +O(€) (4.21)

Dyson? presented the displacement wave equation
in an even more highly simplified form than (4.20),
effectively using the fact that under the postulated
weak-field conditions, we shall have

r,2=0(e),
and

O(u, k%) = O(€),

(4.22)

(4.23)

which makes it possible to use the remaining gauge

freedom [still consistently with (3.14)] to set
kS =0(€) (4.24)

and
uh®®=0(e), (4.25)

provided we are considering only a bounded time
interval. Using the last of these conditions (4.24),
together with the displacement gauge condition
(3.27), the displacement wave equation (4.20) may
be reduced to the form

ubudga;n;d= p! [E e (gc;d"' %hca)];b‘*' O(e),
(4.26)

and the expression (4.21) to be substituted in (4.13)

may be reduced to
AC,,=38,8 h,yy+0(€). (4.27)

If the unperturbed medium is in an approximately
isotropic state, we shall have

E abed =Byab,ycd+2u(7u(cyd)b _ %'y"b'yc‘)+0(€) ,

(4.28)

where B is the bulk modulus and p the shear modu-
lus, so that using (4.24) we obtain

PpHE® (3heg)].p=p i 42+ O(e), (4.29)

which shows that (as pointed out by Dyson?) a
passing gravitational wave has no effect on the
wave equation (4.26) (i.e., the acoustic mode will
be completely decoupled from the gravitational
mode) unless there are inhomogeneities in the
modulus of rigidity.

Most of the previous workers cited have at least
by implication based their treatment of weak
gravitational wave interactions on the use of a
coordinate system that is comoving with the med-
ium in the unperturbed background. Such a sys-
tem may be based on the use of approximately
Euclidean space coordinates x* (taking Greek in-
dices to run from 1 to 3) with fixed values on
given unperturbed particle world lines, together
with a proper-time coordinate x°=7, where 7 is
a measure of proper time along the world lines.
Under the weak-field conditions postulated here
we may arrange to have

(4.30)
(4.31)

gnb=n4b+o(1) ’
u®=563% +0(1),

in such a system, where 7, are components of the

flat metric defined by
Nap dx % dx® = (dx')? + (dx 2)? + (dx®)? - c%dr?, (4.32)

0(1) denotes terms that tend to zero as ¢, tends to
zero. [If the unperturbed medium were suffi-
ciently slowly rotating we could replace O(1) by
O(€) here.] In terms of such a system the covar-
iant equations (4.18) and (4.26) may be replaced
by the specialized forms

Ruyoo=Chy,,'"”, (4.33)

Eu00=P HEL (6 o+ 2hyo) ], +Ole),  (4.34)

the gauge conditions having the form
hoq = O(€), huu = 0(e), huv:” =0(e), £°=0.
(4.35)

The corresponding specialized form for the gauge-
invariant strain equation is

€uv,0,0 + Acuu = [p_l(E(u 19)‘ ue)\c);p] Jdwyt 0(6)
(4.36)

(the bars indicate that only u and v are affected by
the symmetrization), where the tidal force tensor
is defined gauge invariantly by

Acuu = %(huo,o.u +huo.0,u _huu.o.o-hoo.u,v)+ 0(6) ’

(4.37)
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which reduces under the conditions (4.33) to

AC,, :-%huy,o,o"'()(f)~ (4.38)

APPENDIX: ERRATA

We take this opportunity to rectify some arith-
metical copying errors in our original paper
(Carter and Quintana®) that have been kindly
drawn to our attention by J. Leroy and M. A. H.
MacCallum. These errors are of three kinds:

(1) Misordevring of indices. The covariant
indices d, g should be interchanged in the first
term on the right-hand side of (5.41); the covar-
iant indices b,d should be interchanged in the last
term of both the second and the third line of

(6.13), and in the second term of (3.34).

(2) Evvor of sign. On the left-hand side of
(5.7), n,{... should read -n,°{... ; in the second
term of the numerator in (5.18), —&s,”. . .should
read +%s,°...; in the first term of the second
line of (6.13), —n(2w - ... should read +n(2w
+%...; in the first term on the right of (6.19),
—4 1 should read +% .

(3) Factor of 2 missing. On the first line of
(6.13) the coefficient 3 should be 4.

None of the sign or factor errors listed here is
of practical importance: They affect only higher-
order corrections that were included for the sake
of exact mathematical consistency, but which are
negligible in all the practical applications that we
have considered.
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