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Some of the essential general principles governing cosmic string mechanics in a conformally expand-
ing blackbody radiation background are described. It is shown that the effect of dissipative drag damp-
ing may be given a strictly conservative (i.e., variational) representation in which the usual Goto-Nambu
action is simply multiplied by an appropriate cosmological temperature-dependent conformal factor. A
simplified thermodynamic description is used to investigate approximately stationary equilibrium states
such as may occasionally be produced as the long term outcome of large scale damping in the case of a
cosmic string loop for which the (thermal or more general) distribution of surviving microscopic wiggles
on an isolated cosmic string loop is characterized by a strong preponderance of “right movers” over “left
movers” (or vice versa). For nonsuperconducting strings, such states can be represented very simply us-
ing the nondispersive “warm” cosmic string model whose dynamics is characterized by a pair of “left”-
and “right”-moving characteristic surface currents that will be independently conserved so long as the
effective heat loss to the environment is negligible. It is predicted that one of these currents will still
remain conserved in the long run when account is taken of radiative energy loss from the approximately
stationary equilibrium state, which will evolve with negative specific heat, monotonically increasing its

effective temperature as it contracts.

PACS number(s): 98.80.Cq, 11.27.+d, 98.80.Hw

I. INTRODUCTION

Much of the numerical work on the earlier stages of
the evolution of cosmic string networks (starting with the
pioneering work of Bennet and Bouchet [1]) drew atten-
tion to the likely relevance of widely differing characteris-
tic length scales on which qualitatively different kinds of
behavior occur. Whereas larger scales, ranging up to the
current Hubble length, enter the picture as the outcome
of subsequent dynamical developments, it is typically ob-
served (see, e.g., discussions by Albrecht [2], Allen and
Shellard [3], and Sakellariadou and Vilenkin [4]) that the
simulations tend to conserve the memory of relatively
much smaller scales, which were put in at the outset, typ-
ically as the scale of a Vachaspati-Vilenkin-type [5] lat-
tice structure from which the calculation was initiated.
With a pessimism representative of the point of view of
the numerical simulator’s approach rather than the more
intuitive line of thought followed here, one of the refer-
ences cited above described the situation by saying [4]
that a “distressing aspect of our results is their depen-
dence on the energy cutoff,” drawing from this the obvi-
ous (and in the present framework not at all distressing)

0556-2821/94/50(2)/682(18)/$06.00 50

inference that “‘small-scale processes . . . play an essential
role.” It seems safe to presume that a realistic description
would indeed show a similar feature whereby the buildup
of large scale features is accompanied by the survival of
relatively microscopic structure on scales that would typ-
ically be even smaller than could conveniently be allowed
for in the computer simulations. These small scales cor-
respond to values that might conceivably be as low as the
correlation lengths characterizing the phase transition
during which the strings were supposed to have been pro-
duced. In any case, they could hardly be supposed to
exceed the Hubble length at the stage at which damping
became unimportant, i.e., at a stage much earlier than
that involved in the simulations concerned with large
scale structure formation. This is in agreement with a re-
cent work by Austin, Copeland, and Kibble [6], that the
small scale structure initially does not grow, but eventual-
ly scales at a rather low level, as a result of the effect of
the gravitational back reaction.

In order to study analytically the evolution of a string
network, we will start by providing a coherent overview
of some of the essential general principles governing cos-
mic string mechanics in a conformally expanding back-
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ground of ambient cosmological blackbody radiation.
We will then deal more specifically with very short length
scale effects by describing them using the nondispersive
“warm cosmic string” model. This is a specially simple
macroscopic string model, which approximates the mi-
croscopic substructure of wiggly Goto-Nambu cosmic
strings [7]. To study the equilibrium states of such string
loops in the late time quasistationary limit, we will follow
a simplified thermodynamical description.

The plan of this work is organized as follows. We start
in Sec. II by recalling the Lagrangian method for both
Goto-Nambu and elastic strings. In Secs. III and IV we
analyze both the drag force exerted by a thermal back-
ground medium on elastic strings and the second funda-
mental tensor in order to obtain in Sec. V the string
dynamical evolution in a conformally expanding
universe, particularly in a Friedmann-Robertson-Walker
universe. It will also be shown in this section that in suit-
able cosmological circumstances the effect of drag force
can also be given a conservative variational treatment in
terms of a modified action. Following the general presen-
tation of the properties of the warm cosmic string model
in Sec. VI, we shall proceed in Sec. VII by describing the
quasistationary states that may be attained by closed
loops for such a string model. Finally, in Sec. VIII we
shall present some simple conclusions that can be drawn
about the secular evolution of such quasiequilibrium
states as a result of thermal energy loss by gravitational
radiation.

II. PRELIMINARIES

Before considering the effects of dissipative drag forces
resulting from movement relative to a background field,
it will be useful to start by recalling [8] that in the freely
evolving limit, in which such dissipative effects are absent,
the motion of a cosmic string in a background spacetime
with coordinates x* (41=0,1,2,3) and metric g, will be
conservative in the technical sense of being governed by a
variation principle based on an appropriate action J. In
all such cases, the action will be constructed as an in-
tegral over the relevant world sheet, which will be
specifiable by an embedding mapping of the form o'—x*,
where o' are internal coordinates with the index taking
the values i =0, 1 in the two-dimensional case of a string
world sheet. The action will thus take the form

J=[d¥1 2.1)
(using a tilde to distinguish quantities defined with
respect to the world sheet from their four-dimensional
analogues), where L is the relevant scalar Lagrangian
and d&§ is the surface measure element induced on the
world sheet by the background metric. It will therefore
be expressible as d§=V —[h|do’do!, where |h| is the
determinant of the induced world sheet metric as given
by

hab =gyvx”,ax v,b ’ (22)

using a comma to indicate partial differentiation with
respect to internal coordinates.
For such an action, the corresponding surface stress

momentum-energy density tensor 7" is definable by the
condition that the effect of an infinitesimal localized vari-
ation 8g,, of the background metric be expressible by

87=1[d&THsg,, . 2.3)

The application of the variation principle (in the absence
of external coupling effects) automatically ensures [8] that
this tensor will satisfy a pseudoconservation law of the
form

V“T“v=0 (2.4)
as a Noether identity, where VH is the surface-projected
covariant derivation operator,

v.=7"v,, 2.5)
which is constructed by contraction of the usual Rieman-
nian covariant derivation operator V., with the tangential
projector %,. The latter is obtained by lowering an index
of the fundamental tensor of the world sheet, which is
defined as the background spacetime pullback of the in-
dex raised (inverse) version /° of the internal world sheet
metric, i.e.,

P=h%x# x7, . (2.6)

The projector n*, obtained this way will be of rank 2 for
a string world sheet so that the complementary orthogo-
nal projector

¥, =gk, —7", 2.7)
will have rank 2 for a string in four-dimensional space-
time.

It is to be remarked in passing that, in circumstances
requiring consideration of the active effect of the string
on the background, it may be useful to express the action
as a distributional integral over the four-dimensional
background with surface measure element d&§
=V/||g||dxdx 'dxdx? in the form

J=[dsZ,

using a circumflex to indicate that the four-dimensional
Lagrangian density scalar is singular, being given in
Dirac notation as

L=|gl|"'?[d§ L s*x—x{c}} .

However, if one is not concerned with the inevitably
singular but usually very weak active effects of the string
on the background, whose treatment in any case poses
delicate problems of renormalization, the use of such ela-
borate distributional machinery (although popular with
many authors) will be quite unnecessary. For purposes
such as ours, it will be quite sufficient to work exclusively
with the simple formalism exemplified by (2.1) and (2.3)
as expressed directly in terms of £ and 7*", which have
the advantage of just being ordinary regular differentiable
functions of position, the special property that is indicat-
ed by the tilde being simply that their support is confined
to the world sheet.

The simplest Lagrangian for a string is that of the
Goto-Nambu action: namely,
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m2

L Pl
where # is the Dirac-Planck constant and m is a constant
having the dimensionality of a mass. In the case of a sim-
ple cosmic string, m can be presumed to have the order
of magnitude of the Higgs boson mass scale involved in
the spontaneous symmetry breaking responsible for the
formation of the relevant underlying Nielsen-Olesen-type
vortex [9]. The corresponding Goto-Nambu string stress
momentum-energy tensor is thus obtained as

(2.8)

2

Frr= v 2.9

p n (2.9)

The fundamental tensor for the two-dimensional world
sheet of a string will be expressible in the form

=—ata"+ov'v", (2.10)
where #* is a timelike unit tangent vector and 0" an or-
thogonal spacelike unit tangent vector so as to obtain an
orthonormal frame that is characterized by #"#,=—1,
17"27#=O, and if“’ﬁ#=l. Such a frame is unique only
modulo Lorentz rotations, which of course will not affect
the form of the tensorial expression (2.10).

For the not quite so simple elastic string models [8,10]
that will be needed below, the trivial Goto-Nambu La-
grangian must be replaced by a Lagrangian scalar that is
variable. Such an elastic string always has conserved
currents (as exemplified by superconducting strings); we
can therefore define an appropriate stream function ¥,
say, on the string world sheet which will be constant
along the flow lines of a conserved surface current. The
Lagrangian can thus be taken to be a function of the
magnitude v, say, of the gradient of the stream function

/3

,Z———_Z[v} , (2.11)
where v is given by
V2= ‘hab¢,a¢,b = — Y vywvvlp . (2.12)

By using the freedom of Lorentz rotation to align the
orthonormal frame introduced in (2.10) with its eigenvec-
tors, the corresponding string stress momentum-energy
density tensor will be expressible in the standard form

T™"=Ua"g"— To"v" , (2.13)

where the corresponding eigenvalues U and T are what
will be interpretable as the energy density (per unit string
length) and the tension of the string. It can be seen that
this form is still applicable in the isotropic Goto-Nambu
limit case for which the eigenvalues are equal and con-
stant, being given by
m?
u=T Pl
so that there is no preferred frame.
In the general elastic string case, as in the Goto-
Nambu limit, the energy density will still be given direct-
ly by the Lagrangian scalar in the form

Uv=—.,

(2.14)

(2.15)

the difference from the Goto-Nambu case being that £
will no longer be a constant but a variable function of v.
However, in the generic case the tension 7 will have a
lower value, whose derivation requires, as an intermedi-
ate step, the evaluation of the relevant chemical potential
or effective mass u per idealized particle of the flow impli-
citly defined by the timelike streamlines on which ¥ is
constant, which will be given by

_du

R (2.16)

[The relativistic chemical potential defined in this stan-
dard way has the dimensionality of a mass and is not to
be confused with the dimensionless quantity Gm?2/#
characterizing the gravitational coupling of a Goto-
Nambu string, for which the symbol pu is frequently used
by writers dealing with the specialized topic of cosmic
strings of this type, particularly in the context of strings
formed during grand unified theory (GUT) symmetry
breaking for which the relevant value is expected to be
given roughly by Gm? /%=~ 10"°, though not in more gen-
eral contexts.] In terms of this chemical potential, the
string tension T itself is finally obtained as a function of
the number density v (and hence implicitily of the energy
density U) in the form

T=U—wvu. (2.17)

The original reason for introducing such general elastic
string models in the context of cosmic string theory was
for dealing with the mechanical effects [10,11] of the
currents that occur in “superconducting” cases of the
kind first considered by Witten [12], but it has more re-
cently [7] become apparent that a particular class of
“warm” string models within this general elastic category
are potentially useful for the large scale averaged descrip-
tion of the mechanical behavior of strings whose behavior
on smaller scales is of the simple Goto-Nambu kind.

III. DRAG FORCE
OF A THERMAL BACKGROUND MEDIUM

The purpose of the present and following sections is to
summarize the general principles of elastic string
mechanics that are relevant not only to the “warm” cos-
mic string models, to which they will be applied in the
subsequent sections, but also to the more general
category of models [10,11,8] that is needed for the macro-
scopic representation of ‘superconducting” cosmic
strings of the kind first discussed by Witten [12]. The
treatment here goes beyond previous discussions in giving
particular attention to the related effects of cosmological
expansion and of the drag force F”, say, exerted by the
ambient thermal background medium.

The definition of the force vector to be considered is
provided by the relation

V. IT"=F"; 3.1)
i.e., F¥ measures the deviation from the conservative
behavior governed by the Noetherian relation (2.4) that
would have been satisfied if the behavior had been
governed completely by the relevant variational principle.
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Although more general possibilities can be imagined (e.g.,
cases involving accretion from the ambient medium), our
discussion here will be limited to cases whose internal dy-
namics remains conservative in the strict sense. This
means that we only consider the kind of force that
remains orthogonal to the world sheet in the sense that its
contraction with the fundamental tangential projection
tensor 9", vanishes, i.e.,
7 FY=0 .
The vector F" that has just been defined has the dimen-
sionality of a force per unit length.

Whereas most previous accounts of cosmic string dy-
namics have been limited to the late-time regime in which
the evolution can be treated as “free” in the sense that
coupling to the ambient cosmological background medi-
um can be neglected, our purpose here is to consider al-
lowance for a drag force F*. Such a force can be expect-
ed to be significant at earlier times because of relative
motion with respect to the ambient thermal gas as
characterized by the cosmological temperature measured
in energy units (i.e., with Boltzmann’s constant set to uni-
ty), which we denote by the symbol ® (the symbol T be-
ing reserved for the tension). According to an estimate of
Kibble [13], damping by the environment would continue
until the cosmological temperature had dropped below
the critical temperature ® =m of the symmetry-breaking
transition at which the strings are supposed to have been
formed by a factor of the order of magnitude V' Gm?2/#,
so that the strings could be treated as free only after the
temperature had fallen below a critical value which
would be given by ©@=(G /#)!"?’m?, where the factor
V'Gm?/# would be of the order of 1073 for the usual
GUT value of the Higgs boson mass scale m on which the
much discussed “heavyweight” string scenario for
cosmological structure formation is based. Moreover, it
has been emphasized by Vilenkin [14] that the duration
of the regime in which drag forces could be effective
would be even longer for relatively “lightweight” strings
(of which a potentially interesting class arises in modified
versions of the electroweak unification scheme [15]).

In accordance with the usual idealization that is ex-
pected to provide a good description of conditions in the
early Universe, we shall suppose that the ambient cosmo-
logical medium can be treated as a perfect gas that is
determined by an entropy current s¥, say, and that is
governed by an appropriate equation of state whereby the
corresponding entropy density s, as defined by

(3.2)

si=—s,s", (3.3)
will determine the corresponding energy density p, say.
The corresponding perfect fluid stress momentum-energy

density tensor will have the form

TH=ps ~sts¥+PyH , (3.4)
with

yRY=gh¥ 45 T 2gkg"Y (3.5)
for a pressure given by

P=0Os—p, (3.6)

where the relevant temperature is obtained from the
blackbody equation of state as

7]
® ds ’
in units such that Boltzmann’s constant is unity. The re-
lation (3.6) is the continuum analogue of (2.17) (the fluid
pressure P being the analogue of the negative of the
string tension T'), its form being such that the
momentum-energy pseudoconservation law

(3.7

v, T*"=0 (3.8)
automatically entails the conservation law
V.s#=0 (3.9)

for the entropy. [It is to be remarked that the latter is al-
ways a conservation law in the strict sense, whereas (3.8)
is a genuine conservation law only if the background
spacetime metric g,,, is flat.]

In the relativistic limit in which the radiation gas is
dominated by effectively massless particles, the equation
of state will have the form

(3.10

where a is a dimensionless constant of order unity (which
in the familiar case of a gas consisting only of photons is
given exactly by a=(%)3(/3)2/3, but which would be
somewhat larger when many species are involved), which
corresponds to a radiation pressure given by

a
%

while the corresponding expression for the entropy densi-
ty will be given by
_a’e?
==
In the absence of detailed coupling with the internal
structure of the string or particle [which, if relevant,
would be likely to cause the partial conservation condi-
tion (3.2) to be violated], the only covariant possibility for
the specification, consistent with (3.2), of the drag force

exerted by the thermal current s* is that it should have
the form

Fr=BHI* 5",

P= e, (3.11)

(3.12)

(3.13)

in which, following Vilenkin [14], we use the notation 8
for the relevant scalar coefficient, whose value will de-
pend on the particular circumstances, and where the ten-
sor 1#, is the operator of projection orthogonal to the
string world sheet, as given by (2.7).

In the case of a string, the coefficient £ in (3.13) will be
dimensionless, being expressible in the form B=r/A,
where 7 is the effective string thickness characterizing the
interaction. This would be expected to be of the order of
the geometric cross section of the string if this were large
compared with the thermal wavelength A. However, in
the case of a Goto-Nambu string model for a Nielsen-
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Olesen-type vortex, one would expect the geometric cross
section to be of the order of the relevant Higgs particle
Compton radius #i/m, whereas after the epoch of forma-
tion of the string the thermal wavelength A would be ex-
pected to have become very much larger so that it, rather
than the Higgs length scale, might be expected to deter-
mine the relevant effective width r. In this case, in accor-
dance with more detailed analysis based on more special-
ized assumptions by Vilenkin [14], as a rough order of
magnitude estimate one would simply get B=1.

For the purpose of the general considerations
developed below, the particular form of the expression
for B will not be important. It will be sufficient to sup-
pose that, as is likely to be a good approximation in all
the diverse string scenarios envisaged in the preceding
paragraphs, the value of B should be specified only as a
function of the entropy density s or equivalently as a
function of the ambient temperature ©.

IV. DYNAMICAL EVOLUTION EQUATIONS
AND THE SECOND FUNDAMENTAL TENSOR

We can always use a Lagrangian function such as those
described in Sec. II as a means of specifying a string mod-
el and the associated tensor T"*, but in the presence of an
external force the evolution of the model thus obtained
will no longer be completely governed by the correspond-
ing variational principle. Nevertheless, provided that
electromagnetic and other long range forces can be
neglected (which is likely to be justifiable as a good ap-
proximation, even when they are not entirely absent
[16,17], at least as long as radiation remains small) so that
the drag force density given by (3.13) is the only external
force contribution, its world sheet orthogonality property
will, by the general principles of classical relativistic
brane mechanics [8,18], be sufficient to ensure the respect
of the purely internal pseudoconservation law that is the
analogue of (3.8). The orthogonality property of the drag
force density (3.13) implies that the tangentially projected
part of the pseudoconservation law (2.4) will still be ap-
plicable; i.e., as in the case of a free string motion, we
shall still have

.V, T7=0. 4.1)

In the case of a simple Goto-Nambu string model as
characterized by (2.8), the tangentially projected conser-
vation law (4.1) is trivial: All it contains is the statement
that, as was in any case postulated at the outset in the
formulation of the variational principle, the mass param-
eter in the specification of the model is constant over the
world sheet, i.e., V#m =0. However, in the case of a gen-
eric elastic string model as characterized by (2.11) and
(2.13), the tangentially projected conservation law (4.1)
provides the nontrivial information that is both necessary
and sufficient for determining the internal mechanical
evolution of the model (whereas for more complicated
models than those considered here further information
from other internal field equations might be needed).
Part of the information contained in (4.1) will be ex-
pressed by the conservation law for surface current
defined by the relation [8]

Vit =6EMT 4 , 4.2)

which specifies both the number density v and the unit
eigenvector #* in terms of the stream function . &*" is
the surface alternating tensor, which will be expressible
in terms of any orthonormal tangent frame consisting of
unit timelike and spacelike tangential vectors #* and 7%,
as characterized by #*7,=—1, 7"7,=1, and #"7,=0,
in the form

M =akty¥—u'v* . 4.3)
As well as the kinematically obvious surface conservation
law

v, (va?)=0 4.4)

obtained for this current, (4.1) also implies the existence
of another, dynamical rather than merely kinematical law
of the analogous form

Vp(u'v"’)=0 . 4.5)
Unlike (4.4), which is the analogue of the perfect fluid
current conservation law (3.9), the second surface conser-
vation law (4.5) has no perfect fluid analogue and its ex-
istence is not so obvious from the point of view of the
variational principle. It is, however, evident that it is im-
mediately obtainable from its partner (4.4) by application
of the dual symmetry property [8,10] that is a unique dis-
tinguishing factor of strings (as opposed to point particles
and to higher-dimensional membranes, and fluids in par-
ticular).

The equations just described apply directly to “super-
conducting cosmic strings” (of the kind proposed by Wit-
ten [12]) in circumstances compatible with the neglect of
electromagnetic and other such coupling effects, al-
lowance for which would require the inclusion of external
forces of a less simple kind than that given by (3.13), in
which case the relevant “superconducting current” has
either the form ud ” or else the form vii? depending on
whether it is spacelike (the possibility that was most com-
monly considered in the early discussions) or timelike.

One of the general consequences that can be drawn
[8,11] from the intrinsic equations (4.4) and (4.5) of the
elastic string model that has just been described is that
the characteristic speed c;, say, of longitudinal “woggle”
(as opposed to “wiggle”’) perturbations will be given by an
expression that corresponds exactly to its perfect fluid
analogue (c} =dP /dp=1 in the case of the thermal gas
discussed above), namely,

ar

. 4.6
U (4.6)

ct=—

To complete the set of equations governing the dynam-
ics of the string, it remains to specify the extrinsic equa-
tions of motion governing the evolution of the supporting
world sheet itself, which will differ from those for the free
string case by the inclusion of the force term character-
ized by (3.1) and (3.2) on the right-hand side. What this
means is that the extrinsic equation of motion [as ob-
tained from (3.1) by orthogonal projection] will take the
form
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T™K,,"=F" @.7)

(whose validity is universal in the sense that it applies
[8,18] not just to string world sheets, but also to point
particle and to membranes and higher-dimensional “p-
branes”), where K, " is the second fundamental tensor or
“extrinsic curvature tensor” of the world sheet, which is
defined [8,11] in terms of the (first) fundamental tensor
" by

Kkyv= "prvp"?pv .

This second fundamental tensor might equivalently be
considered to be implicitly defined by the condition,
which can easily be seen to follow directly from (4.8), that
for any vectors #* and 0" that are tangential to the world
sheet, i.e., such that

1 at=1""=0,

(4.8)

(4.9)

and hence in particular for the eigenvectors introduced in
(2.13), the orthogonally projected derivative of one with
respect to the other will be given by

vV 5P M= — j7P7H v
1Y, 0PV u av'K,," . (4.10)
In terms of the internal metric components £ and the
Christoffel connection components r,", of the back-
ground spacetime, this second fundamental tensor is ex-
pressible more explicitly as

Kk,uvz J-Vp( nkanprh “h bdx a,ax T,bxp,c,d + UAUU#TFUPT) .
(4.11)

As compared with (4.8), this later version has the disad-
vantage that the tensorial covariance is no longer im-
mediately apparent, but it has the advantage of manifest-
ly displaying the symmetry and tangentiality properties
of the first two indices and the world sheet orthogonality
property of the third index.

In the case of a string, it can be seen that substitution
of the generic expression (2.13) in (4.7) gives an extrinsic
equation of motion of the standard form

1P (Ua*V a*—To"V o#)=F"° . (4.12)
It is to be noted that, since the expression (3.13) for the
force term on the right-hand side of this equation does
not involve gradients, the presence of this external force
will not affect the characteristic speed cj of extrinsic, i.e.,
“wiggle,” perturbations (relative to the preferred frame
specified by #*), which will therefore be given by a for-
mula of the same form as applies [8,11] in the free string
case: namely,

k= (4.13)

<N

The preceding Eqgs. (4.12) and (4.13) are applicable, in
particular, to the “usual” Goto-Nambu-type model as
characterized by (2.8). In this special case, substitution in
(4.7) of the relevant expression (2.9) for the world sheet
stress momentum-energy density tensor leads directly to
a dynamic equation of motion of the simple standard
form

TK*+FE=0, (4.14)

where T now has the constant value given by (2.14) and
where K* is the extrinsic curvature vector of the world
sheet, which is defined as the trace,

Kt=K" 1=V n*, (4.15)
of the second fundamental tensor.

The force driven Goto-Nambu equation of motion
(4.14) evidently agrees with what is obtained by setting
U=T in (4.12), but whereas the eigenvectors #* and v*
involved therein are well determined in the generic case;
on the other hand, in the degenerate Goto-Nambu case
they can be adjusted by an arbitrarily variable two-
dimensional Lorentz frame rotation, which will not have
any effect on the corresponding expression

KP=1P#(5VVVE“—H"VVﬁ”) (4.16)
for the curvature vector itself.

It is to be remarked that, using (4.11), the curvature
vector (4.15) can, if desired, be worked out as a sum of
coordinate-dependent terms, involving the internal
metric h,, and its determinant A, in the explicit form

1

\/——_h (\/t—};h abxﬂ,b ),a +h abx ”,ax‘r,brau'r ’

KI‘:

4.17)

whose substitution can be used to verify that the compact
standard form (4.14) of the force-driven Goto-Nambu
equation does in fact agree with the more unwieldy ver-
sion given by Vilenkin [14].

This last expression arises naturally when the left-hand
side of the equation of extrinsic motion (4.14) is derived
directly from the variation that arises in the use of the
Goto-Nambu action principle (whose application is
violated in the present case by the presence of the force
term on the right). However, compared with the simple
definition (4.15), the version (4.17) has the double disad-
vantage of hiding both the vectorial covariance and the
world sheet orthogonality property of the curvature vec-
tor. The expression (4.17) is of course susceptible to
simplification by adoption of a particular choice of gauge
for the internal coordinates. For example, one might
choose to use a conformal gauge of the widely familiar
kind characterized by gunx"*x"=0 and
8uv(x"#x"V—x¥x")=0, using the abbreviated notation
scheme exemplified by x"#=x* | and x¥=x*, so as to
obtain V'—h =g, x"#x"V=—g  x"x", in terms of which
(4.17) would reduce to the form

K#= \/—l—_h [x"F=xXF+(x""x""—% %) H,] .

But in particular applications it may be shrewder to use a
different, more specifically adapted, choice (such as that
employed by Vilenkin [14]). It is to be remarked that
even if one uses a gauge of the standard conformal type,
there will still be a considerable amount of freedom in the
way it is set up, just as there is a considerable degree of
freedom in the choice of the orthonormal tangent frame
in the corresponding covariant formula (4.16).
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V. DYNAMICAL EVOLUTION
IN A CONFORMALLY EXPANDING UNIVERSE

Following up a remark made by Vilenkin [14], namely,
that the effect of a drag force is similar to the effect of the
expansion of the Universe, the new points that we wish to
make in this section concern the way the equations of
motion discussed in the previous section are affected by a
conformal transformation of the form

ghgh=aghv (5.1)

such as is discussed in the Appendix. Before proceeding,
we remark that such a transformation does not affect the
tangential and orthogonal projection tensors whose
respective behavior is given by

‘n'u'v’_)n‘uv’ l#leuv ’ (5 2)

but that it does affect the corresponding contravariant
tensors, so that for the world sheet fundamental tensor it-
self we shall have

Pt =agt (5.3)
while similarly
1Hv, TPV =g2 Y (5.4)

The first point is that when the ‘“true” spacetime
metric g, is related by such a conformal transformation
to an auxiliary metric §,, that is comparatively simple, it
may evidently be technically advantageous to evaluate
the second fundamental tensor in terms of the latter. If
the conformal transformation is of ‘“homothetic” type
(i.e., if the expansion factor a is uniform), the second fun-
damental tensor K;,” will be unaffected, but whenever
the generalized Hubble covector H, defined by (A3) is
nonzero, the transformation (5.1) will induce a corre-
sponding transformation that is given [19] by the univer-
sally applicable formula

K, —K,, =K, +n,,PH, (5.5)
(which holds for an embedding of arbitrary dimension in
a background that may also have arbitrary dimension).

Assuming that the auxiliary metric §,, is simpler than
the “true” spacetime metric g, (as will be the case if it is
stationary), then it will follow that the direct evaluation
of K au’ Will be simpler than that of K, " itself. This im-
plies that it may be advantageous to work directly with
the correspondingly transformed version of the extrinsic
equation of motion (4.7) which will be expressible as

TMK,,*=1"F, , (5.6)
where the correspondingly transformed force density, as
seen from the point of view of the simplified, e.g., station-
ary, static, or even flat, metric §,,, is identifiable just as
the net quasiforce covector F, that is introduced in the
Appendix by the basic defining relation (A 10).

It is to be emphasized that formulas (5.5) and (5.6) are
of quite general validity, applying not only to the case of
strings with which we are concerned here, but also to
higher-dimensional “branes” and to particles [8,18,19].

In the case of a Goto-Nambu string, it follows from (2.14)
that the required trace will be given by 7%, =—2m?2/4#,
so that in this case the net quasiforce will be given by the
almost equally simple formula

2m?

7+ Hu - (5.7)

In the standard application to the conformally static
Friedmann cosmological models, the entropy current
vector s* as defined in (3.3) and the conformal Killing
vector k* are both aligned oppositely to the Hubble vec-
tor H*, which is itself directed towards the big bang, so
that, taking account of the conservation law (3.9), one has

F,=F,—

S
H

It can be seen (as the generalization of a remark first
made under more restricted conditions by Vilenkin [14])
that if the true force F* is given just by the simple string
drag formula (3.13), then the adjustment involved in the
replacement of the true force by the quasiforce in (5.6)
merely gives a change in the magnitude, but not in the
direction in which acts the force term L"*F,.

In the simplest case, that of a “parabolic,” i.e., margin-
ally open, Robertson-Walker model, the relevant confor-
mally adjusted metric §,, is just that of a flat Minkowski
space, and the Hubble rate H will be given by the corre-
sponding Friedmann equation [20] as

sz 87TGB
3 .

For the pure radiation gas specified by (3.10), the ex-
pression (5.8) will reduce to the simple form

H,=-V,/(noO),

sh=Epn=— (5.8)
a

1
H”_?I;V#s .

(5.9)

(5.10)

and so in this case it follows from the Friedmann equa-
tion (5.9) that the temperature gradient itself will be given
by

172

Sy - (5.11)

20GH

a3

v,0=

Under these circumstances, it follows that the formula
(3.13) for the (“true”) drag force covector F, acting on a
point particle or string will be expressible as

172

1",v,0;

a3

(5.12)
27G#

F,=B

i.e., it will be proportional to the projection of the cosmo-
logical temperature gradient. The relevant total quasi-
force covector will therefore be given by
172

BOLP,

F,=

a

5.13
27G#Hh ( )

T g%, — H,.

And therefore, for the parabolic pure radiation gas
case, the adjusted force term on the right-hand side of
(5.6) will be expressible explicitly, for a general string
model with

T .=—(U+T), (5.14)
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by

172
u+T
BO

27GH

a3

1MF, = |1+

F* (5.15)

it is to be remarked that when the extrinsic equation of
motion (4.7) is transformed to the equivalent version (5.6)
it can be considered as implicit that since the eigenvec-
tors transform according to the rule

at—aut, vHrav* ), (5.16)

S0 as to preserve their unit normalization, the eigenvalues
U and T themselves will remain invariant:

U—-U, T—T. (5.17)

The particular case considered by Vilenkin [14] was
that of the “usual” Goto-Nambu-type model with equa-
tion of motion given by (4.14). It can be seen that the
transformed version (5.6) of the extrinsic equation will
reduce in this case to the form

TK*+1MF =0, (5.18)
the advantage of the latter being that if §,, is simpler
than g, then the evaluation of K ¥ will be corresponding-
ly simpler than that of its analogue K#: For instance,
there will be no need for the analogue of the second term
involving the spacetime connection in the expression
(4.17) when the conformally adjusted metric is flat.

Whereas Vilenkin’s observation was that the effect of
expansion in a Friedmann universe can be taken into ac-
count as a force renormalization with respect to the con-
formally related static background, it may now be
remarked that the trick can be played the other way
round in the sense that one can use an artificially ac-
celerated rate of expansion to represent the effect of the
drag force as given by (5.12). Instead of the usual confor-
mal transformation to the stationary system determined
by

gn=a"%g,, (5.19)

let us proceed the other way by introducing a new con-
formally transformed metric

8=¢"g,, , (5.20)

in which, instead of being slowed down, the acceleration
is speeded up. If we choose 7 to be the function of the
cosmological entropy density s that is specified, modulo a
constant of integration that will merely fix the overall
scale in (5.20), by the equation of state for the mass densi-
ty p and the formula for the drag coefficient 8 in terms of
s as the solution of the differential equation

dr____ #B
ds 2mWVénGp ’

then, by calculations analogous to those we have already
carried out for the ‘“usual” conformal transformation
(5.19), it can be seen that for a Goto-Nambu string model
as characterized by (2.8) subject to a force law of the
form (3.13) in a parabolic Friedmann universe as charac-
terized by (5.9), the net force (that in the analogue of our

(5.21)

previous notation scheme would be designated by F )
perceived from the point of view of the new metric (5.20)
will cancel out altogether (i.e., we shall get F u =0). This
means that the equation of motion (4.14) or equivalently
(5.18) for the thermally damped string motion is
equivalent to that of a free Goto-Nambu string,

R*=0,

as evaluated with respect to the artificially transformed
metric (5.20).

In the case of a simple ultrarelativistic gas with equa-
tion of state given by (3.10), the usual conformal factor a
will be given directly in terms of the cosmological tem-
perature © by

0

a=g
where ®, is a constant of integration representing the
temperature at some conveniently chosen time origin
(such as now). If (in accordance with the considerations
discussed at the end of Sec. III) we suppose that f3 is sim-
ply a constant, independent of s and hence of ®, then in
this same case as governed by (3.10) the relation (5.21) is
integrable to give a corresponding simple formula of the
form

B

2m?

(5.22)

(5.23)

172

3
Sz 1 (@,-0).

227G

(5.24)

The fact that the string behaves with respect to the
transformed metric as if it were free means that although
from a physical point of view the drag forced motion is
dissipative, nevertheless from a mathematical point of
view it will be conservative in the sense of being governed
by a variational principle expressible in terms of an ac-
tion integral of the form (2.1). The effect of the drag is
simply that instead of using a Lagrangian scalar of the
trivial Goto-Nambu form (2.8) we must use a less trivial,
but nevertheless still extremely simple, Lagrangian that
will be expressible in terms of the known (cosmological
temperature dependent) scalar background field 7 in the
form

m2

—_— ,T
L PaCHE
The effect of the drag force on a cosmic string in a con-
formally expanding background is equivalent to a renor-
malization of the effect of the conformal expansion of the
metric. In particular, the result found by Vilenkin [14] is
recovered in the case of a Friedmann universe. Further-
more, it is shown that the effect of the drag force can be
simulated by an artificially accelerated expansion. As a
consequence, a rather simple Lagrangian exists to de-
scribe the interaction between a Goto-Nambu string and
the surrounding medium.

(5.25)

VI. WARM STRING MODEL

The underlying intuition that was used as a basis for
setting up the “warm” elastic string model [7] for the
macroscopic averaged description of (thermal or other)
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microscopic substructure is that although (compared
with the speed of light propagation that occurs in the un-
derlying “bare” Gotu-Nambu model) the effective propa-
gation speed should be slowed down because of the extra
microscopic distance that needs to be traveled when
small wiggles are present, there is no way in which
dispersion can arise between distinct longitudinal and
transverse modes. What appear as “woggles,” i.e., longi-
tudinal perturbations from the point of view of the mac-
roscopic treatment, would be perceived merely as
bunched packets of “wiggles,” i.e., extrinsic (transverse)
perturbations, when analyzed in microscopic detail. The
requirement of consistency between the pictures provided
by the effective macroscopic model and the underlying
microscopic dynamics therefore imposes the condition
that the “woggle” and “wiggle” speeds should agree, i.e.,

c; =Cp . (6.1)

Equating the explicit expressions (4.6) and (4.13) immedi-
ately gives a differential equation of state which can be in-
tegrated to give a relation of the constant product form

m4

UT:? R 6.2)
where m is a constant of integration which must evident-
ly be identified with the mass scale m characterizing the
underlying ‘“bare” Goto-Nambu model, with which the
“warm” string model must agree in the limit
U=T=m’/h

Like any other elastic string model of the category
specified by (2.11) and described in Sec. IV, this warm
string model will be governed by a Lagrangian scalar
which can be taken to have the explicit form

m2

L=

3h2 1/2
1= 5hS .S, ] , (6.3)

where S is an appropriate stream function which in this
case will be interpretable as a measure of effective entro-
py. This Lagrangian corresponds, by (2.15), to an energy
density U that is given [7] by the formula
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, (6.4)

_m?

#

3%%2

U 2

1+

2mm

as a function of the relevant number density 5, which is
specified as the magnitude of the corresponding effective
entropy current vector 3 by

§2=§p§u, §”:6"“’V“S . (6.5)

In order to obtain an agreement with the general elastic
string formalism presented in Secs. II and IV, the con-
served number density v that was used could be taken to
be any constant multiple of this particular choice 3,
whose precise normalization is motivated by thermo-
dynamic considerations that will be explained below.
According to the principles recapitulated in the previ-
ous section, the way to calculate the tension 7 from such
an expression is first to work out the corresponding
chemical potential, which we shall in this case denote by

®, as given by the derivative of the energy with respect to
the number density under consideration, i.e.,
o= (6.6)
ds
and then to use a relation of the general form (2.17),
which in this case will be expressible as

U—T=30 . 6.7)

Since the application of (6.6) to (6.4) gives a result expres-
sible as

3m%
27U

it can easily be seen that (6.7) leads back to the original
constant product relation (6.2).

It is evident that, by working with a rescaled number
density v taken proportional to § with a suitably adjusted
numerical factor, it would be possible to simplify the nu-
merical coefficient of the 37 term within the square root
in (6.4). The motivation for the particular choice [7] of
the numerical coefficient in the “warm string” equation
of state (6.4) is that if the spectrum of the microstructure
actually is that of local thermal equilibrium (so that it is
given by the one-dimensional analogue of the three-
dimensional bosonic photon gas spectrum that is familiar
in the context of Planckian blackbody radiation), then the
variable § will be directly identifiable with the entropy
density (per unit length of string) in units (of the kind
used for describing the blackbody radiation gas discussed
in Sec. III) such that Boltzmann’s constant is unity. It
follows that, under the same conditions of local thermal
equilibrium, the associated chemical potential ® will be
directly identifiable with the relevant temperature of the
microstructure on the string. As already remarked in
Sec. III, our reason for not using the letter T but employ-
ing the symbol ® (with a tilde to distinguish it from the
background radiation temperature ®) is that in the
present context the former symbol has already been
preempted to denote the tension, whose functional depen-
dence on the quantity ® can be seen to be expressible as

{ ﬂ 12
m

0= (6.8)

“mz*z%@z . (6.9)

The thermal interpretation of ¥ and @ is potentially im-
portant in view of the likelihood that the microscopic ex-
citation spectrum really will be approximately thermal in
many physical circumstances, in which case use of the
appropriate normalization will be helpful as a guide in
making quantitative estimates. Nevertheless, it is to be
emphasized that the validity of the formulas of the
preceding paragraph is not limited to the case of exact or
even approximate equilibrium. The formulas (6.4)-(6.9)
will still characterize a well-defined “effective entropy”
density ¥ and a well-defined “effective temperature” © re-
gardless of whether or not the spectrum actually is in a
state of exact or even approximate thermal equilibrium.
Soon after the original, heuristic, derivation [7] of the re-
lation (6.4) (on which these formulas depend), the validity
of this way of representing the cumulative effect of small
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scale moderate amplitude ‘“‘wiggles” was confirmed,
without any restriction on the qualitative (thermal or oth-
er) nature of their spectrum, by a more explicit calcula-
tion by Vilenkin [21]. The convenient feature that the
effective equation of state is not affected by deviations
from true thermal equilibrium is not a mere simplifying
approximation, but occurs as a special consequence of the
one-dimensional spatial geometry of the string (which
means that no such convenient simplification could be ex-
pected to arise in an analogous description of wiggles on
a membrane).

Having completed this brief summary of the basic as-
sumptions and underlying motivation of the ‘“‘warm
string model,” we can now apply the formalism described
in Sec. IV. In particular, the (in this case unique) charac-
teristic velocity as given by (4.13) is expressed as

AT

CE
m?

(6.10)

The relevant effective temperature ® will be given in
terms of this dimensionless factor by

2r®*=3m*1—c}) . (6.11)

While it is to be anticipated that the description
presented in this section should work very well as long as
the amplitudes of the wiggles are small compared with
their wavelengths (and as long as the latter are small
compared with the large scale structure under considera-
tion), it cannot plausibly be expected to remain satisfacto-
ry when the effective temperature ® approaches the
Hagedorn-type saturation limit that can be read off from
(6.11) as

@2 . 3m2

max 21

(6.12)

at which the effective tension T and the characteristic
speed cg tend to zero. In this singular “hot” limit, the
“wiggles” spill out to such an extent that a “string” (i.e.,
spatially one-dimensional) description ceases to make
sense, so that some sort of fractal description [3,22], and
ultimately just a simple low-pressure gas description,
would become more appropriate. The nature and extent
of deviations from the simple model characterized by
(6.2) as this “hot” limit is approached remains a poten-
tially interesting subject for further investigation [23]. It
is also of interest [24] to study the generalization of this
simple model (going beyond the framework of the single
current elastic string formalism to which the present
analysis is confined) that would be needed to allow for the
effect of thermal excitations in a cosmic string of super-
conducting type.

Although dimensional considerations suggest that at
the epoch of the symmetry-breaking phase transition by
which it is formed the string network might well be
characterized by an effective temperature ® of the order
of the corresponding Higgs boson mass m and hence
comparable with the critical limit value given by (6.12),
the network would at first be strongly coupled to its envi-
ronment by drag forces of the kind described in the previ-
ous section, which might be expected to damp it down to

an effective temperature ® not greatly in excess of the
ambient cosmological temperature ®. Such drag forces
might also be expected at the same time to tend to
smooth out most larger scale structure on scales large
compared with the thermal wavelength, but small com-
pared with the cosmological relevant horizon radius. Un-
der such circumstances the short run dynamical behavior
of the string might be expected to be well described on a
macroscopic scale by “warm string model” with effective
temperatures adequately small compared with the “hot”
limit value (6.12), i.e.,

0’«<el,, . (6.13)
Insofar as longer term behavior is concerned, deviations
from the strictly elastic behavior characterizing the mod-
el presented above can be expected to arise as a conse-
quence of “heat” losses. Such losses will be caused by the
action on microscopic scales of the ambient drag mecha-
nism that has just been referred to and also by back reac-
tion from gravitational radiation whose effect will be dis-
cussed in the following section. However, over time
scales short enough for such effects to be neglected, so
that the use of the strictly elastic “warm string” model is
justified, the internal evolution of the string will be
characterized by a pair of conserved surface currents of
the kind described in the previous section. In the partic-
ular case of the model specified by (6.2), the currents in
question are specifiable as the mutually orthogonal pair

sh=3mu", *@'=0v" . (6.14)
The first of these currents, namely, 3¥, is of a physically
familiar type, being interpretable in the local thermal
equilibrium case as that of the entropy of the microstruc-
ture. The physical nature of its conjugate partner, the
other conserved current %®*, is less immediately obvi-
ous: It can be interpreted as the surface dual, as con-
structed by contraction with the surface alternating ten-
sor (4.3), of the effective thermal momentum-energy
covector
6,=0u (6.15)

‘u_ ’
the implication of the relevant conservation law (which
will remain valid only as long as microscopic thermal
emission can be neglected) being that the latter should (in
this conservative case) be expressible locally as the sur-
face gradient of a certain scalar field 4, say, that may be
considered as a “thermal winding angle” on the world
sheet.

One of the purposes of the present paper is to show
that it is useful to consider the effective entropy current
3* in the “warm” string model as being constructed from
a pair of “right”- and “left’-moving characteristic current
contributions 34 and 3 , whose difference is proportional
to the dual current:

3,“,:3,41_ +:s,~ﬂ , *éﬂ:ﬁ(fﬁ‘ ——3'/‘_) , (6.16)
2T
where
1 T =
v — 2 ;li_ 3 (617)
SET A
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These currents share a common magnitude:

32
il :_:7/-2— ,
where v is the Lorentz factor associated with the (unique)
characteristic velocity (6.10), which will be given by

20U

U-—-T
In terms of these currents, the stress momentum-energy
density tensor can be rewritten as

(6.18)

Y (6.19)

2
UV — 6m <(sv)
T - S+S__ >
7s®

where the parentheses denote index symmetrization. The
existence of such characteristic currents is a special
feature distinguishing the “warm string model” from
more general elastic string models (such as are appropri-
ate for describing the “‘superconductivity” phenomenon).
The justification for describing them as ‘“‘characteristic”
is that, as well as being separately conserved,

(6.20)

n”Vv,35L=0, (6.21)
they have the property of being everywhere tangential to
the corresponding ‘‘right”- and “left”’-moving charac-
teristic directions that move relative to the locally pre-
ferred rest frame specified by #* with the relative velocity
given by (4.6). When the external force F, is absent, the
corresponding unit characteristic vectors

LK =2(y /3534 (6.22)
have the very convenient property [7] of being parallelly
propagated along each other; i.e., one gets

LYV L~ =0. (6.23)

What makes the pair of independent current conserva-
tion laws so important in applications to closed string
loops is their implication that, whatever its detailed
behavior may be, each such loop will be characterized by
a corresponding pair of independent contour integrals,
which are expressible, using the abbreviation

dl, = 6,,dx" (6.24)

as

[S]=$ds=Psdl, , (6.25)
which is evidently identifiable as the total effective entro-
py, and as the dually related quantity

[9]=§ «®"dl, = $Ou,dx" (6.26)
which may be described as the thermal action.
Equivalently, from the characteristic current conserva-
tion laws (6.21), one obtains a corresponding pair of con-
served characteristic charges,

[S.]=Pshdl, (6.27)

in terms of which the conserved circuit integrals (6.25)
and (6.26) will evidently be given by

[S]1=[S.]+[S_], [0]=-§—j—([s+ 1—[S_1). (628
It is to be noted that [.S'] will automatically be positive
and that, whereas [¢] could in principle be negative, we
can in practice eliminate this eventuality by a choice of
the orientation in the direction of the loop integral. Sub-
ject to this convention, it follows from the useful alterna-
tive expression
=20 6.29)
35
(which is easily derivable using the formulas in Sec. IV)
for the characteristic speed ¢z =c; , which must of course
be less than unity, that the integral (6.27) will be restrict-
ed by inequalities of the form

[S.]1=[S_]>0. (6.30)

We have presented a thermodynamical description of
the warm cosmic string model, defining the notion of
temperature and entropy for the string microstructure
and the associated conserved integral quantities, which
will now be used to study the equilibrium properties of a
circular rotating loop and its slow secular evolution.

VII. WARM QUASISTATIONARY
EQUILIBRIUM STATES

In a wide range of physical contexts the long term
effect of resistive drag forces such as were described in
Sec. II, as well as of other loss mechanisms such as radia-
tion reaction, may typically be expected to be describable
in terms of a “damping” scenario in which the system un-
der consideration tends toward some ultimate state of sta-
tionary equilibrium in which the relevant loss mecha-
nisms cease to operate.

Strictly speaking, of course, it is impossible in an ex-
panding universe to attain exact stationarity, which
means invariance with respect to the action of a timelike
Killing vector k¥, i.e., a timelike solution of the Killing
equation V,k, =0. However, although a timelike Kil-
ling vector in this strict sense does not exist, the Fried-
mann models do have a conformal Killing vector of the
kind discussed in the Appendix, which, in the simple case
characterized by (5.23), will be expressible in terms of the
unit flow vector u* of the cosmological background by

0

kt=—ut . (7.1)
Over short time scales, during which the cosmological
temperature ® does not vary too much from its value @,
at a chosen initial time, the conformal adjustment term
on the right of the conformal Killing equation (A5)
satisfied by this vector will be unimportant, so that k*
will act to a good approximation as if it were a true Kil-
ling vector in the strict sense.

In particular, subject to a normalization convention
fixed by the choice of the initial time at which the fixed
temperature @, is evaluated at the epoch under con-
sideration, the total quasi mass energy of the string loop,
as defined in terms of the corresponding surface quasi-
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mass-energy current (A8), using the notation (6.24), by

M=Pptdl, , (7.2)
will be interpretable as a mass of the ordinary kind pro-
vided the relevant length and time scales are cosmologi-
cally small. Because of the effects of cosmological drag
and expansion, not to mention losses by gravitational ra-
diation, this mass will not be exactly conserved, but it can
typically be expected that it will diminish toward a
minimum in an ultimate approximately stationary state
that is attained when the contribution to the right-hand
side of (A9) from the effective force F, given by (A10)
ceases to be significant on dynamic time scales.

A scenario of this familiar kind cannot, however, occur
in the exceptional case of a degenerate Goto-Nambu
string model, for which an isolated loop in an approxi-
mately flat neighborhood cannot settle down toward any
such equilibrium state for the simple reason that no such
state exists, the implication being that it will ultimately
lose all its energy and simply disappear. If gravitational
radiation is the only loss mechanism involved, it is gen-
erally believed, on grounds provided by several mutually
concordant studies [25-27], that the survival time scale
for such a loop will be given roughly, in terms of its
overall length scale /, say, by

(7.3)

For a “heavyweight” string with Gm?/%i=~10"%, this
time scale will be about 10* times larger than the light
crossing time scale that is roughly of the same order as
the fundamental dynamical oscillation time scale of the
loop, which means that gravitational radiation reaction
will be negligible on time scales comparable with or even
many times longer than the dynamical time scale, but it
nevertheless prevents the survival of the loop over cosmo-
logically long time scales, thereby avoiding the danger
that a distribution of relic loops might constitute a
cosmological mass excess, while if other mechanisms
were also effective, the survival time scale would corre-
spondingly be shorter still.

For a general elastic string model of the kind charac-
terized by (2.11)-(2.13), the situation is entirely different
because in the generic case nonvanishing stationary equi-
librium states do exist. In the context of superconducting
cosmic string theory, the existence of centrifugally sup-
ported equilibrium states, and the consequent danger of a
cosmologically catastrophic mass excess, was first pointed
out by Davis and Shellard [28-30]. (It is to be mentioned
that it had been pointed out even earlier that electromag-
netically supported equilibrium states could also exist in
principle [31-34], but in view of the weakness of the elec-
tromagnetic coupling constant e?/fi~ =, the elec-
tromagnetic support mechanism is of practical
significance only as a minor correction effect [16,17]). As
a conceivable mechanism for avoiding the buildup of a
cosmological mass excess, it was pointed out at the outset
[28] that a strictly conservative string model might cease
to provide an accurate description in the long run due to
quantum tunneling processes whose efficiency is sensitive

dependent on provisionally unknown coupling constants
in the underlying quantum field theory. However, even
in the absence of any effective quantum or other decay
process, it would appear [29-31,35,36], that the cosmo-
logical mass buildup would remain within observationally
acceptable bounds if the strings in question were of the
lightweight variety characterized by Gm?/#i~1073? that
might have been formed as a by-product of electroweak
symmetry breaking [15].

However that may be, our purpose in the present work
is to consider the analogous centrifugally supported equi-
librium states that exist for closed loops of the nonsuper-
conducting “warm” string model described in Sec. VI.
This application does not entail any danger of cosmologi-
cal mass excess even for strings of the “heavyweight”
variety characterized by Gm2/#i=~10"° because for such
strings there is no need to speculate about hypothetical
quantum decay processes in view of the undoubted ex-
istence of an efficient classical loss mechanism: The va-
lidity of the description by the perfectly elastic “warm”
string model can be confidently expected to be limited to
time scales of roughly the order given by the formula
(7.3) or even less, i.e., short by cosmological standards,
though long compared with the relevant dynamical time
scales, since (although further detailed checking still
needs to be done) it seems clear that (7.3) provides a
rough upper limit on the time scale characterizing energy
loss by gravitational radiation from the (thermal or other)
distribution of microscopic wiggle modes whose averaged
effect is described by the model.

As in the analogous superconducting examples, the
consideration that the string loop is characterized by a
pair of conserved contour integrals, namely, [S] and []
in the case under consideration, obviously implies that
within the time scale during which losses remain
sufficiently small for the perfectly elastic model to remain
valid as an accurate description, the loop cannot disap-
pear through gravitational radiation. However, whether
the loop will have time to get close to the stationary equi-
librium state minimizing its mass energy ! for the given
values of [S] and [] is less obvious than in the analo-
gous superconducting case because in the wiggly string
case the same kinds of drag and radiation loss mecha-
nisms are involved both in the macroscopic damping pro-
cess and in the microscopic delay process. All that can
be said pending further detailed investigation is that the
observed tendency [37,38] for radiation efficiency to be
enhanced by highly salient features such as cusps and
kinks suggests that evolution will tend to proceed in the
direction of increasing smoothness and that a recent
study [39] of the effect of the drag force in the “wiggly”
string case reinforces the impression that they will tend
toward the smoothest conceivable states, which are of
course circular equilibrium configurations.

Before restricting our attention to such circular
configurations (whose superconducting analogues were
referred to as “vortons” [28-30]) on space and time
scales sufficiently small for the background to be treated
as flat, it is to be remarked that these were the only kind
that was considered in the earlier studies of stationary
cosmic string states for generic elastic string models
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[8,40]. However, more recent and comprehensive studies
of stationary equilibrium [41,42] have made it clear that
more general ‘“‘deformed” equilibrium states are also pos-
sible. What characterizes all stationary equilibrium
states of an isolated string loop in any such conservative
mode is the transcharacteristic running condition [43]
v =cg, where v is the running velocity of the global rest
frame with respect to the intrinsically preferred rest
frame of the string and cj is the extrinsic characteristic
speed as given by (4.13). (In a generic model, it is also
necessary that the equilibrium state should be longitudi-
nally uniform, meaning that physical quantities such as
the rest frame energy density U and the tension 7 be con-
stant throughout, but in the very special case of the mode
under consideration here this further simplifying condi-
tion is not an obligatory requirement for equilibrium,
though it will of course hold automatically in the circu-
larly symmetric case.)

Since we are now considering only a limited approxi-
mately flat spacetime neighborhood, we can take it that
k* is an exact Killing vector with components given sim-
ply by k*—{1,0,0,0} in its own rest frame. The trans-
characteristic running condition means that with respect
to a local orthonormal frame aligned not only with the
Killing vector, but also with the direction of the string,
the timelike and spacelike stress energy-momentum
eigenvectors #* and 0* will have the form

#"—y{1,v,0,0}, v"—y{v,1,0,0}, (7.4)
where, using the transcharacteristic condition,
1/2
y= 1 = |= (7.5)
‘/1 — v 2 b U ’ .

It follows in the present case that the corresponding
values of the conserved integrals [S] and [J] will be
given in terms of the total circumferential length

l=¢d1, d12=d1#d1“=nuvdx“dx" , (7.6)
of the loop (which if it is circular will be given in terms of
the corresponding radius r by / =27r) by formulas of the
very simple form

1/2
ml

v’

172

2m miv . (7.7)

s1=| =

[9]=

Thus, from a knowledge just of the total entropy [S]
and of the thermal action [¢], it will be possible to pre-
dict both the total length / of the corresponding equilibri-
um configuration, which will be given by the product of
the conserved numbers

p=ASI9) (7.8)

m2

and also the local state, which will be determined by (7.5)
from the running velocity v, which will itself be given by
the ratio of the two conserved quantities according to the
formula

27 (9]

[s1”’

3

vi= (7.9)

w2
gl

which by (6.30) will always give a satisfactorily non ta-
chyonic solution v2<1. Using the formulas of Sec. VI,
we can immediately go on to evaluate all the other
relevant local quantities including the string tension

m2U

T= , .
7 (7.10)

the mass energy density eigenvalue

v="-, 7.11)

the entropy density scalar

5 172
T m
§= |=— -, 7.12
3 3 P (7.12)
and finally the effective temperature

. ©

o=—"2 (7.13)

Y

The latter is of crucial importance since it is presumably
what will mainly determine the radiative energy loss rate
that will govern the time scale over which the strictly sta-
tionary description remains valid. The requirement that
the “effective temperature” ® should remain low can be
seen to entail that the relevant Lorentz factor should be
high. Subject to the sign convention adopted in (6.30), it
can be seen that the Lorentz factor y appearing here will
be expressible rather simply in terms of the conserved en-
tropy contributions by

yi= (S]

s (7.14)

It also turns out that the value of the minimized mass en-
ergy JU that is obtained in this case depends only on the
“right”-moving contribution [S,], being derivable
[8,36,41] as

172
M=1U+T)= %] m(s,]. (7.15)

It is to be remarked that in order for the picture
presented above to be valid it is of course necessary that
the absolute values of [#] and [S] should be sufficiently
large for the circumference / as given by (7.6) to be large
compared with the relevant length scale characterizing
the underlying spectrum of microscopic wiggles; i.e., we
must have

32

25N
l>>y2’

(7.16)
where A is an estimate of mean wavelength of the wiggles
with respect to their own local reference system as
specified by ##, which will, of course, be longer by a fac-
tor ¥ than what is observed with respect to the global
reference system in which the loop is perceived to be sta-
tionary. If the spectrum really is of exactly or approxi-
mately thermal type, the typical value of the intrinsic
wavelength will be given in order of magnitude simply by
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=t ,
®

and it will then follow from (7.13) and (6.12) that al-
though X itself will be much longer (as is obviously neces-
sary for the thin string description to be valid), the corre-
sponding blueshifted wavelength A/y that will be ob-
served in the stationary rest frame of the loop will reduce
to the same order of magnitude as the estimated value [9]
of the thickness of the vacuum vortex; i.e., one will have
just

(7.17)

(7.18)

It can thus be seen that provided [S] and [#]/# are each
reasonably large compared with unity the requirement
(7.16) will automatically be satisfied since by (7.8) and
(7.18) it will obviously be equivalent to the simple condi-
tion

[S1[F]>4% . (7.19)

However, it is clear from (6.13) and (7.13) that there is
another, more delicate, condition, applying not to the
product of [S] to [$], but to their ratio, which must also
be satisfied in order for the description we are using to
avoid breaking down as a result of “overheating,” name-
ly, that the Lorentz factor, as given by (7.14), should be
sufficiently large,

yi>1, (7.20)

which implies that the value of the total thermal winding
angle [{] must be sufficiently close to the upper limit al-
lowed by (6.30), which is equivalent to the requirement
that one of the characteristic contributions (the ‘“right”
one with the sign convention we have been using) be very
much larger than the other; i.e., we must have

[S;y]1>[8_]. (7.21

This means that the kind of “warm” quasistationary
equilibrium state we are considering can be obtained only
for loop in which there is a highly asymmetric noise dis-
tribution, i.e., one in which there is a heavy relative
preponderance of “right-moving” over ‘left-moving”
wiggles or vice versa (which, it is to be remarked, is in no
way incompatible with approximate or even exact
thermal equilibrium in the appropriate, sufficiently boost-
ed, local frame with respect to which the distribution
would appear to be symmetric).

In the cases for which this condition is satisfied, so that
the thermal loss rate is sufficiently low for approximately
stationary equilibrium to be maintained in the short run,
the next question to be addressed is what will happen
after that. In other words, we will address the issue
whether in the long run when even this very low thermal
loss rate starts to have a significant effect, the residual
temporarily minimized mass energy J of the loop, as
given by (7.15), will further diminish as the parameters
[¢] and [S] continue to undergo a slow “secular” evolu-
tion.

VIII. SECULAR EVOLUTION
OF CIRCULAR EQUILIBRIUM STATES

The formulas in the previous section were based only
on the assumption that the equilibrium state under con-
sideration be longitudinally uniform in the sense of hav-
ing constant tension (a condition that would be rigorously
necessary for equilibrium for a more general equation of
state, but that is an optical simplifying postulate in the
present case), but did not depend on any presupposition
as to its extrinsic geometry. In order to address the ques-
tion posed at the end of the previous section, we now
adopt the further postulate that the configuration under
consideration is circular, which means that it maximizes
the angular momentum & for the given values of the pa-
rameters [S ] and [#] by which it is characterized at any
given instant, the magnitude of this angular momentum
being then given [8,36] [using the sign convention adopt-
ed in (6.30)] by

2.2
F= [”2]7[75] - 2’"; - (8.1)
where
r———# (8.2)

is the corresponding loop radius. It may be commented
that the situation is analogous to that in simple black
hole equilibrium theory, in that the state is determined by
just two parameters which may be taken to be the angu-
lar momentum & and the total entropy [S ], with respect
to which the formula for infinitesimal mass variations
takes a form precisely analogous to that of the standard
“first law of black hole thermodynamics” [44]: In terms
of the appropriately redshifted effective temperature ® as
measured with respect to the stationary background,
which is given in relation to the local temperature ®, as
measured in the corotating frame, by

0=—, (8.3)

= |@

and of the relevant angular velocity (2, which is given by

<

=—, (8.4)
’

the variation law obtained from the formulas derived
above can be seen to conform to the general law

dM=0d[S]+Qdd , (8.5)

with explicit values of the coefficients given, in the
present case, by

__[e mm[S_] 56
T [S] ’
and
(27T)3/2m
=<1’ T 8.7
V3A[S] ®.7)

Subject to the supposition that the subsequent “secu-
lar”” evolution of the loop is describable approximately in
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terms of a slow variation through a succession of such
circular quasiequilibrium states, it is possible to draw
some clear-cut quantitative conclusions from the follow-
ing qualitative considerations.

Since according to (7.16) the wiggles that give rise to
the radiative losses are supposed to have wavelengths
whose blueshifted magnitude A /y is small compared with
the circumference / of the loop, it follows that their rela-
tive propagation speed will be close to the unique charac-
teristic speed (6.1). Since the rotation speed v of the ring
configuration is also known [8,40] to be the same as the
characteristic speed, it follows that the net speed of the
relatively backward “leftward” propagating wiggles will
be zero; i.e., they will be effectively static, with vanishing
angular velocity

(8.8)

which presumably implies that they will not contribute at
all to the radiation losses. This means that the radiation
will be entirely attributable to the wiggles that propagate
in the opposite, “rightward,” i.e., relatively forward,
direction. These forward propagating modes will all have
an angular velocity that is close to the uniquely defined
value Q ,, say, that would simply be twice the corotation
angular velocity (8.4) if the ordinary nonrelativistic veloc-
ity addition law were applicable. Since by (7.20) the
relevant Lorentz factor ¥ must be large, it is necessary to
use the relativistic velocity addition law, from which one
deduces that the angular velocity (1, of the radiating
wiggle modes will be given by the rather lower value

2v
@+ r(l1+v?)
The foregoing conclusion allows us to apply the well-
known principle that radiation from any rigidly rotating
pattern gives rise to losses of mass energy J//l and angular
momentum & that will be related by the simple
differential formula [45]

dM=9Q.dd ,

(8.9)

(8.10)

where ) is the angular velocity of the pattern, which in
the present case is obtainable from (8.9) in a very con-
venient simple form as

__ 4mm?

O, =
T oam
It is apparent that this enables (8.10) to be integrated im-
mediately to give a relation of the form

(8.11)

2
mZ——"’TT"’o«:@?-, (8.12)
from which one obtains
M=C2y*—1), (8.13)

where @ is a positive constant of integration.

The relation (8.12) shows how, as gravitational radia-
tion from the microstructure proceeds, the corresponding
slow decrease in the mass energy M will be accompanied
by a corresponding slow decrease in the angular momen-

tum & and, hence, as can be seen from (8.1), by a corre-
sponding quasistationary contraction of the ring radius.
It follows from (7.13) that the relation between the
effective temperature ® and the mass energy J of the
slowly contracting ring will have the form

_2c@,

S oMm+e

It can also be seen that the effective entropy parameter
[S] and the thermal action [$] of the loop will decrease
together in such a way as to preserve the value of the
“left”’-moving effective entropy contribution [S_ ], for
which one obtains the relation
172 o
— . (8.15)
m

e’ (8.14)

[s-1=

T
6

The conclusion that the “left”-moving contribution
should thus be left constant might have been guessed
from the consideration that the “left”’-moving wiggles do
not radiate, but its derivation as a precise mathematical
result provides a reassuring check on the coherence of
the scenario as a whole.

It is apparent from (8.14) that the circular string loop
has a negative specific heat property analogous to that of
self-gravitating stars and black holes: As it continues its
slow contraction, the ring will gradually heat up, accord-
ing to an approximate power law obtainable from (8.14)
and (8.15) in view of (6.13) as
1/2

G)max >

2C

.16
N (8.16)

O~

until the effective temperature ® (as measured locally in
the corotating frame) becomes comparable with ®_,, at
which stage more rapid evolution will again take place, so
that within a comparatively short time thereafter there
will be nothing left at all. When converted into terms of
the redshifted effective temperature ®, as defined with
respect to the stationary background by (8.3) and given
by (8.6), this relation takes the form

—  6m? [S-]

0= — (8.17)
It is to be remarked that this behavior is similar to what
occurs in the well-known black hole case, in which the
effective Hawking [46] radiation temperature ® observ-
able at large distance also varies inversely as the mass, be-
ing given by @ ~#/GM .

IX. CONCLUSION

It is rather reasonable to believe that in addition to the
large scale structure, a string network is also character-
ized by the survival of microscopic substructure on scales
possibly as low as the correlation lengths of the phase
transition during which strings were formed. This has
been our motivation for the work presented above, which
was basically to provide an analytic description of the mi-
croscopic extrinsic world sheet perturbations, wiggles, as
well as to analyze the effects of such relatively microscop-
ic string substructure.
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At early times, cosmic string dynamics are affected by
the drag force caused by the relative motion with respect
to the ambient cosmological background medium. Con-
sidering cosmic strings in a conformally expanding black-
body radiation background, we have shown that the
effect of dissipative drag damping is mathematically
strictly conservative, in the sense that it can be
represented by a variational principle expressible in terms
of an action integral. The effect of the drag force is to
multiply the usual Goto-Nambu action by an appropriate
cosmological temperature-dependent conformal factor.

For the macroscopic averaged description of the sur-
viving microscopic wiggles, we have used the warm string
model, based on the intuition that this extra microscopic
structure will not cause any dispersion between distinct
longitudinal and transverse modes. Moreover, as a
consequence of the one-dimensional spatial geometry of
the string, the effective equation of state is such that the
product of the effective energy density with the corre-
sponding effective tension remains constant, unaffected
by deviations from true thermal equilibrium.

Neglecting effects of both the ambient drag force on
the string microscopic scales, as well as gravitational ra-
diation back reaction, the internal evolution of the string
can be characterized by a pair of conserved surface
currents. These currents represent the left- and right-
moving distributions of microscopic wiggles according to
the strictly elastic warm string model. In addition, the
sum of the pair of left- and right-moving characteristic
currents forms the conserved effective entropy current.

In the long run, the effect of large scale damping
caused by resistive drag forces, radiation reaction, or any
other loss mechanism leads to an approximately station-
ary equilibrium state, in which any loss mechanism
ceases to operate. Within the warm string model, such a
quasistationary equilibrium state can be obtained only for
a closed loop with a heavy relative predominance of left-
over right-moving wiggles or vice versa.

When the thermal energy loss by gravitational radia-
tion to the environment can no longer be neglected, such
a quasiequilibrium state will follow a secular evolution
characterized, in the case of a circular string loop, by a
negative specific heat, while as it continues its slow con-
traction, the ring will monotonically increase its effective
temperature.

Finally, we think that the analysis described in this pa-
per should be incorporated in the numerical simulations
of cosmic string evolution. According to our understand-
ing, we have the appropriate formalism in order to in-
clude the survival of microscopic substructure and its
effects in the discrete lattice representation of cosmic
strings. In addition, it is conceivable that such numerical
simulations are easier to carry out in a flat background,
since the effect of expansion in a Friedmann universe can
be obtained by a force renormalization with respect to
the conformally related static background. Along these
lines we are planning to pursue our future work.
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APPENDIX: QUASIENERGY AND QUASIFORCE
IN CONFORMALLY STATIONARY COSMOLOGY

The familiar concept of energy as a useful conserved
quantity is dependent on having a background that is sta-
tionary, so that although it is applicable on a planetary or
even galactic scale, it is not globally well defined on a
cosmological scale in an arbitrarily expanding universe.
There is, however, a generalized definition of what may
be qualified as quasienergy that goes over to ordinary en-
ergy on a local scale, but that is globally meaningful on a
cosmological scale, in the very extensive category of
cosmological models that can be characterized as confor-
mally stationary. This category, which includes the stan-
dard homogeneous isotropic Robertson-Walker cosmo-
logical models (and hence in particular the familiar
Friedmann solutions [20] of the Einstein equations) as a
special subcategory, is defined by the condition that the
“true” spacetime background metric 8, should be ob-
tainable by a conformal transformation from an auxiliary
metric §,,, that is stationarity in the ordinary sense. This
means that there is a timelike vector field k* that gen-
erates an ordinary symmetry of the auxiliary metric, i.e.,
which satisfies the corresponding Killing equation

Viuk,)=0 (A1)
(using parentheses to denote index symmetrization),
where the breve symbol is used to indicate that the
Riemannian covariant differentiation operation and the
index lowering operation that are involved have been car-
ried out not with respect to the “true” metric, but with
respect to the auxiliary metric, so that in particular we
have k »=8&uyk". Using the symbol a to denote the con-
formal amplification factor, the “true” spacetime metric
will be given by

g=0%,, . (A2)
As far as the definition of conformal stationarity is con-
cerned, @ may be an arbitrarily variable function of time
and space, so that even if the auxiliary metric were homo-
geneous (or even flat) it would not follow that the “true”
metric would have to be homogeneous.

The conformal stationarity conditions (A1) and (A2) do
not fix the amplification factor a uniquely, since it can be
renormalized by an arbitrary constant factor that can be
absorbed in a complementary renormalization of the aux-
iliary metric §,,, whose strict stationarity property (and
other symmetries if any) will be unaffected thereby. Such
a renormalization also has no effect on the logarithmic
derivative of the amplification factor, which we shall
refer to as the Hubble covector, namely,

H,=V,(na)=a"'V,a . (A3)

The magnitude H of this covector, as given, assuming it
is timelike, by

H?=—H,H", (A4)

is a generalization of the Hubble expansion rate that is fa-

miliar in the particular case of the Friedmann models.
With respect to the “true” metric 8> it can be seen
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that the vector k* will satisfy not a strict Killing equa-
tion, but a conformal Killing equation, which will be ex-
pressible in terms of the Hubble covector as

Yk, =8 kPH, . (A5)

The existence of a vector field k* satisfying an equation
of this form can be considered as a definition of local con-
formal stationarity, since it is the Yano condition [47]
that is sufficient for the local existence of an amplification
factor a satisfying (A2) for a metric §,, with respect to
which (A1) holds.

It is to be noted that the conformal Killing condition
(AS5) is not by itself sufficient to determine the covector
H,, uniquely. If, as well as satisfying (AS5), the vector k*
also satisfies the hypersurface orthogonality condition

k[uvvkp] =0

(where square brackets denote antisymmetrization), the
metric will be describable as conformally static. The con-
formal staticity condition is necessary, though not
sufficient, for it to be possible to resolve the indetermina-
cy in the Hubble covector by taking it to be aligned with
the conformal Killing vector in the sense that

Hk, =0,

in which case the metric may be described as conformally
static in the strong sense. This special property of strong
conformal staticity is exemplified by the Robertson-
Walker models and hence in particular by the Friedmann
solutions.

Not only in the weakly or strongly conformally static
case, but quite generally for any locally conformally sta-
tionary space time, we can use the conformal Killing vec-
tor k* as if it were an ordinary Killing vector to define
the corresponding conformal quasienergy current p#, say,
associated with a stress momentum-energy density tensor
T as

ph=—THrE" . (A6)

As in the case of an ordinary energy, defined in the same
way with respect to a Killing vector in the strict sense, it
will be possible to adjust the normalization of the
quasienergy by an arbitrary constant multiplicative factor
since the conformal Killing equation, like the ordinary
Killing equation, will be preserved when the vector in
question is multiplied by a constant factor. In a space-
time that is asymptotically flat, this ambiguity can be
resolved by taking k* to have unit normalization in the
asymptotic limit, but in the generic case the choice of

normalization will be arbitrary, both for ordinary energy
and for its conformal generalization as introduced here.
The reason why ordinary energy is such a useful quan-
tity to work with is that it is conserved whenever the
relevant stress momentum-energy tensor satisfies the cor-
responding pseudoconservation law. In a similar way,
though not quite to the same extent, conformal pseudoen-
ergy will also be a useful quantity since it will also be con-
served in suitable, though more restricted circumstances.
To be specific, for a medium that is decoupled from all
external influence other than gravity, so that a covariant
pseudoconservation law of the form (3.8) is satisfied, i.e.,
v, T#,=0, it follows from (AS5) that the corresponding
conformal energy current as defined by (A6) will satisfy

Vp=—T"k*H, . (A7)

The term on the right-hand side here is interpretable as
representing the residual effect of the inflation of the scale
on which the quasienergy is measured after allowance for
the work done pushing the cosmological expansion. Al-
though it will not be conserved in general, it can be seen
that the quasienergy will be conserved if the stress
momentum-energy tensor is trace free, as will be the case
for a simple ultrarelativistic radiation gas with equation
of state given by (3.10), for which (A7) reduces simply to
the form V p#=0.

In the case of a point particle or string, the energy
current corresponding to that given in the continuum
case by (A6) will be given in terms of the corresponding
world sheet restricted tensor T, by

pt=—TFk". (A8)
It can be seen that if the particle or string evolves in ac-
cordance with a force law of the standard form (3.1), then
this world sheet energy current will satisfy a correspond-
ing world sheet divergence relation of the form

V.p'=—k'F, , (A9)
where what we shall refer to as the quasiforce covector
F M is given in terms of the “true force” covector F > as
introduced in (3.1), by the basic defining relation

F,=F,+T"H, . (A10)
This formalism will be very useful in the following by
enabling us to study all the quantities relevant to string
dynamics in Sec. V in a static and even flat background
metric.
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