Basics of black hole physics2. The Schwarzschild black hole

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH) Observatoire de Paris, CNRS, Université PSL, Université de Paris Meudon, France

https://luth.obspm.fr/~luthier/gourgoulhon/bh16/chennai/

School on Black Holes and Gravitational Waves Centre for Strings, Gravitation and Cosmology Chennai, India 17-22 January 2022

- What is a black hole? (yesterday)
- Schwarzschild black hole (today)
- Serr black hole (today)
- Black hole dynamics (on Wednesday)

Home page for the lectures

https://luth.obspm.fr/~luthier/gourgoulhon/bh16/chennai/ (slides, lecture notes, SageMath notebooks)

Lecture 2: The Schwarzschild black hole

- 1 The Schwarzschild solution in SD coordinates
- 2 Eddington-Finkelstein coordinates
- 3 Maximal extension of Schwarzschild spacetime
- 4 The Einstein-Rosen bridge

Outline

1 The Schwarzschild solution in SD coordinates

2 Eddington-Finkelstein coordinates

- 3 Maximal extension of Schwarzschild spacetime
- 4 The Einstein-Rosen bridge

The Schwarzschild solution in SD coordinates

The Schwarzschild solution (1915)

Spacetime manifold

$$\mathcal{M}_{\mathrm{SD}} := \mathcal{M}_{\mathrm{I}} \cup \mathcal{M}_{\mathrm{II}}$$
$$\mathcal{M}_{\mathrm{I}} := \mathbb{R} \times (2m, +\infty) \times \mathbb{S}^{2}, \quad \mathcal{M}_{\mathrm{II}} := \mathbb{R} \times (0, 2m) \times \mathbb{S}^{2}$$

Schwarzschild-Droste (SD) coordinates

$$(t, r, \theta, \varphi)$$

 $\begin{array}{ll} t\in\mathbb{R}, & r\in(2m,+\infty) \text{ on } \mathscr{M}_{\mathrm{I}}, & r\in(0,2m) \text{ on } \mathscr{M}_{\mathrm{II}} \\ \theta\in(0,\pi), & \varphi\in(0,2\pi) \end{array}$

Spacetime metric

$$ds^{2} = -\left(1 - \frac{2m}{r}\right) dt^{2} + \left(1 - \frac{2m}{r}\right)^{-1} dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}\right)$$

Éric Gourgoulhon (LUTH)

Schwarzschild original work (1915)

Karl Schwarzschild (letter to Einstein 22 Dec. 1915; publication submitted on 13 Jan. 1916)

Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitz. Preuss. Akad. Wiss., Phys. Math. Kl. 1916, 189 (1916)

 \implies First exact non-trivial solution of Einstein equation, with

- coordinates $(t, \bar{r}, \theta, \varphi)$
- "auxiliary quantity": $r:=(\bar{r}^3+8m^3)^{1/3}$
- parameter m = gravitational mass of the "point mass"

¹Schwarzschild's notations: $r = \bar{r}, R = r, \alpha = 2m$

Schwarzschild original work (1915)

Karl Schwarzschild (letter to Einstein 22 Dec. 1915; publication submitted on 13 Jan. 1916)

Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitz. Preuss. Akad. Wiss., Phys. Math. Kl. 1916, 189 (1916)

 \implies First exact non-trivial solution of Einstein equation, with

- coordinates $(t, \bar{r}, \theta, \varphi)$
- "auxiliary quantity": $r:=(\bar{r}^3+8m^3)^{1/3}$
- parameter m = gravitational mass of the "point mass"

The "center" according to Schwarzschild

Origin of coordinates: $\bar{r} = 0 \iff r = 2m$

¹Schwarzschild's notations: $r = \bar{r}, R = r, \alpha = 2m$

Éric Gourgoulhon (LUTH)

Basics of black hole physics 2 CSGC

CSGC. Chennai, 18 Jan 2022

Droste's contribution (1916)

Johannes Droste (communication 27 May 1916)

The Field of a Single Centre in Einstein's Theory of Gravitation, and the Motion of a Particle in that Field, Kon. Neder. Akad. Weten. Proc. **19**, 197 (1917)

 \implies derives the Schwarzschild solution (independently of Schwarzschild) via some coordinates (t, r', θ, φ) such that $g_{r'r'} = 1$; presents the result in the standard SD form via a change of coordinates leading to the areal radius r \implies performs a detailed study of timelike geodesics in the obtained geometry

Droste's contribution (1916)

Johannes Droste (communication 27 May 1916)

The Field of a Single Centre in Einstein's Theory of Gravitation, and the Motion of a Particle in that Field, Kon. Neder. Akad. Weten. Proc. **19**, 197 (1917)

 \implies derives the Schwarzschild solution (independently of Schwarzschild) via some coordinates (t, r', θ, φ) such that $g_{r'r'} = 1$; presents the result in the standard SD form via a change of coordinates leading to the areal radius r \implies performs a detailed study of timelike geodesics in the obtained geometry

Apparent barrier at r = 2m

A particle falling from infinity never reaches r = 2m within a finite amount of "time" t.

$$ds^{2} = -\left(1 - \frac{2m}{r}\right) dt^{2} + \left(1 - \frac{2m}{r}\right)^{-1} dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}\right)$$

• g is a solution of the vacuum Einstein equation: $\operatorname{Ric}(g) = 0$

4 3 > 4

$$ds^{2} = -\left(1 - \frac{2m}{r}\right) dt^{2} + \left(1 - \frac{2m}{r}\right)^{-1} dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}\right)$$

• g is a solution of the vacuum Einstein equation: Ric(g) = 0• (\mathcal{M}_{SD}, g) is spherically symmetric

$$ds^{2} = -\left(1 - \frac{2m}{r}\right) dt^{2} + \left(1 - \frac{2m}{r}\right)^{-1} dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}\right)$$

- g is a solution of the vacuum Einstein equation: $\operatorname{Ric}(g) = 0$
- $(\mathscr{M}_{\mathrm{SD}}, \boldsymbol{g})$ is spherically symmetric
- (\mathcal{M}_1, g) (r > 2m) is static: $\boldsymbol{\xi} := \boldsymbol{\partial}_t$ is a timelike Killing vector (stationarity) and is orthogonal to the hypersurfaces t = const (staticity)

$$ds^{2} = -\left(1 - \frac{2m}{r}\right) dt^{2} + \left(1 - \frac{2m}{r}\right)^{-1} dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}\right)$$

- g is a solution of the vacuum Einstein equation: $\operatorname{Ric}(g) = 0$
- $(\mathscr{M}_{\mathrm{SD}}, \boldsymbol{g})$ is spherically symmetric
- (\mathcal{M}_1, g) (r > 2m) is static: $\boldsymbol{\xi} := \boldsymbol{\partial}_t$ is a timelike Killing vector (stationarity) and is orthogonal to the hypersurfaces t = const (staticity)
- $(\mathcal{M}_{\mathrm{II}}, \boldsymbol{g}) (r < 2m)$ is *not* static: it has a translation symmetry along $\boldsymbol{\xi} := \boldsymbol{\partial}_t$, which is spacelike in $\mathcal{M}_{\mathrm{II}}$: $\boldsymbol{g}(\boldsymbol{\partial}_t, \boldsymbol{\partial}_t) = g_{tt} > 0$ for r < 2m.

$$ds^{2} = -\left(1 - \frac{2m}{r}\right) dt^{2} + \left(1 - \frac{2m}{r}\right)^{-1} dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}\right)$$

- g is a solution of the vacuum Einstein equation: $\operatorname{Ric}(g) = 0$
- $(\mathscr{M}_{\mathrm{SD}}, \boldsymbol{g})$ is spherically symmetric
- (\mathcal{M}_1, g) (r > 2m) is static: $\boldsymbol{\xi} := \boldsymbol{\partial}_t$ is a timelike Killing vector (stationarity) and is orthogonal to the hypersurfaces t = const (staticity)
- $(\mathscr{M}_{\mathrm{II}}, \boldsymbol{g})$ (r < 2m) is *not* static: it has a translation symmetry along $\boldsymbol{\xi} := \boldsymbol{\partial}_t$, which is spacelike in $\mathscr{M}_{\mathrm{II}}$: $\boldsymbol{g}(\boldsymbol{\partial}_t, \boldsymbol{\partial}_t) = g_{tt} > 0$ for r < 2m.
- $(\mathscr{M}_{\mathrm{SD}}, \boldsymbol{g})$ is asymptotically flat:

$$\mathrm{d}s^2\sim-\mathrm{d}t^2+\mathrm{d}r^2+r^2\left(\mathrm{d}\theta^2+\sin^2\theta\,\mathrm{d}\varphi^2\right)$$
 when $r\to+\infty$

First thing to do to study a given spacetime: compute null geodesics!

Radial null geodesics: $\theta = \text{const}$ and $\varphi = \text{const} \implies d\theta = 0$ and $d\varphi = 0$ along them.

A null geodesic is a null curve (NB: the converse is not true):

$$\mathrm{d}s^2 = 0 \iff \mathrm{d}t^2 = \frac{\mathrm{d}r^2}{\left(1 - \frac{2m}{r}\right)^2} \iff \mathrm{d}t = \pm \frac{\mathrm{d}r}{1 - \frac{2m}{r}}$$

First thing to do to study a given spacetime: compute null geodesics!

Radial null geodesics: $\theta = \text{const}$ and $\varphi = \text{const} \implies d\theta = 0$ and $d\varphi = 0$ along them.

A null geodesic is a null curve (NB: the converse is not true):

$$\mathrm{d}s^2 = 0 \iff \mathrm{d}t^2 = \frac{\mathrm{d}r^2}{\left(1 - \frac{2m}{r}\right)^2} \iff \mathrm{d}t = \pm \frac{\mathrm{d}r}{1 - \frac{2m}{r}}$$

Hence a priori two families of radial null geodesics:

• the outgoing radial null geodesics: $t = r + 2m \ln \left| \frac{r}{2m} - 1 \right| + u$, u = const

• the ingoing radial null geodesics: $t = -r - 2m \ln \left| \frac{r}{2m} - 1 \right| + v$, v = const

(a)

Exercise: check that the above two families of radial null curves do satisfy the geodesic equation

$$\frac{\mathrm{d}^2 x^\alpha}{\mathrm{d}\lambda^2} + \Gamma^\alpha_{\ \mu\nu} \frac{\mathrm{d}x^\mu}{\mathrm{d}\lambda} \frac{\mathrm{d}x^\nu}{\mathrm{d}\lambda} = 0$$

with $\lambda = r$

Exercise: check that the above two families of radial null curves do satisfy the geodesic equation

$$\frac{\mathrm{d}^2 x^\alpha}{\mathrm{d}\lambda^2} + \Gamma^\alpha{}_{\mu\nu} \frac{\mathrm{d}x^\mu}{\mathrm{d}\lambda} \frac{\mathrm{d}x^\nu}{\mathrm{d}\lambda} = 0$$

with $\lambda = r$

Hint: write
$$x^{\alpha}(r) = \left(r + 2m \ln \left|\frac{r}{2m} - 1\right| + u, r, \theta, \varphi\right)$$
, so that $\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}r} = \left(\frac{r}{r-2m}, 1, 0, 0\right)$ and $\frac{\mathrm{d}^2x^{\alpha}}{\mathrm{d}r^2} = \left(-\frac{2m}{(r-2m)^2}, 0, 0, 0\right)$,

then use the Christoffel symbols $\Gamma^{\alpha}_{\ \beta\gamma}$ given by the SageMath notebook: https://nbviewer.jupyter.org/github/sagemanifolds/SageManifolds/blob/master/Notebooks/SM_basic_Schwarzschild.ipynb

Radial null geodesics in Schwarzschild-Droste

coordinates:

- *solid:* outgoing family
- *dashed:* ingoing family
- yellow: interior of some future null cones

11/32

CSGC, Chennai, 18 Jan 2022

Outline

The Schwarzschild solution in SD coordinates

2 Eddington-Finkelstein coordinates

- 3 Maximal extension of Schwarzschild spacetime
- 4 The Einstein-Rosen bridge

Ingoing Eddington-Finkelstein (IEF) coordinates

Use the ingoing radial null geodesic family, parameterized by v, to introduce a new coordinate system $(\tilde{t},r,\theta,\varphi)$ with

$$\tilde{t} := v - r \iff \tilde{t} := t + 2m \ln \left| \frac{r}{2m} - 1 \right|$$

Ingoing Eddington-Finkelstein (IEF) coordinates

Use the ingoing radial null geodesic family, parameterized by v, to introduce a new coordinate system $(\tilde{t},r,\theta,\varphi)$ with

$$\tilde{t} := v - r$$
 \iff $\tilde{t} := t + 2m \ln \left| \frac{r}{2m} - 1 \right|$

Spacetime metric in IEF coordinates

$$\mathrm{d}s^{2} = -\left(1 - \frac{2m}{r}\right)\mathrm{d}\tilde{t}^{2} + \frac{4m}{r}\mathrm{d}\tilde{t}\,\mathrm{d}r + \left(1 + \frac{2m}{r}\right)\,\mathrm{d}r^{2} + r^{2}\left(\mathrm{d}\theta^{2} + \sin^{2}\theta\mathrm{d}\varphi^{2}\right)$$

NB: \tilde{t} was denoted t in the Schwarzschild horizon example of lecture 1.

Coordinate singularity vs. curvature singularity

$$\mathrm{d}s^2 = -\left(1 - \frac{2m}{r}\right)\mathrm{d}\tilde{t}^2 + \frac{4m}{r}\mathrm{d}\tilde{t}\,\mathrm{d}r + \left(1 + \frac{2m}{r}\right)\,\mathrm{d}r^2 + r^2\left(\mathrm{d}\theta^2 + \sin^2\theta\mathrm{d}\varphi^2\right)$$

All the metric components w.r.t. IEF coordinates are regular at r = 2m ! \implies the divergence of g_{rr} for $r \rightarrow 2m$ in Schwarzschild-Droste (SD) coordinates is a mere coordinate singularity.

Coordinate singularity vs. curvature singularity

$$\mathrm{d}s^2 = -\left(1 - \frac{2m}{r}\right)\mathrm{d}\tilde{t}^2 + \frac{4m}{r}\mathrm{d}\tilde{t}\,\mathrm{d}r + \left(1 + \frac{2m}{r}\right)\,\mathrm{d}r^2 + r^2\left(\mathrm{d}\theta^2 + \sin^2\theta\mathrm{d}\varphi^2\right)$$

All the metric components w.r.t. IEF coordinates are regular at r = 2m ! \implies the divergence of g_{rr} for $r \rightarrow 2m$ in Schwarzschild-Droste (SD) coordinates is a mere coordinate singularity.

The metric components in both SD and IEF coordinates do exhibit divergences for $r \to 0$. The Kretschmann scalar $K := R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$ is

$$K = \frac{48m^2}{r^6} \xrightarrow[r \to 0]{} + \infty$$

Since K is a scalar field representing some "square" of the Riemann tensor, this denotes a curvature singularity. *Physically:* infinite tidal forces at r = 0.

Eddington-Finkelstein coordinates

Pathology of Schwarzschild-Droste coordinates at r = 2m

Hypersurfaces of constant SD coordinate t in terms of IEF coordinates

 \implies singular slicing of spacetime near r = 2m

Extending the spacetime manifold

Metric components in IEF coordinates regular for all $r \in (0, +\infty)$ \implies consider

$$\mathscr{M}_{\mathrm{IEF}} := \mathbb{R} \times (0, +\infty) \times \mathbb{S}^2$$

for the spacetime manifold.

 $\mathscr{M}_{\mathrm{IEF}}$ extends the Schwarzschild-Droste domain $\mathscr{M}_{\mathrm{SD}}$ according to

$$\mathscr{M}_{\mathrm{IEF}} = \mathscr{M}_{\mathrm{SD}} \cup \mathscr{H} = \mathscr{M}_{\mathrm{I}} \cup \mathscr{M}_{\mathrm{II}} \cup \mathscr{H}$$

where \mathscr{H} is the hypersurface of $\mathscr{M}_{\mathrm{IEF}}$ defined by r=2m.

Éric Gourgoulhon (LUTH)

The Schwarzschild horizon

 \mathscr{H} : hypersurface r = 2mRecall from lecture 1 that

 \mathscr{H} is a Killing horizon, the null normal of which is $\ell = \partial_{\tilde{t}}$.

Topology: $\mathscr{H} \simeq \mathbb{R} \times \mathbb{S}^2$

 ${\mathscr H}$ is a non-expanding horizon, whose area is $A=16\pi m^2$

Black hole character

Radial null geodesics in IEF coordinates:

- *solid:* "outgoing" family
- dashed: ingoing family ($\tilde{t} = v - r$)
- yellow: interior of some future null cones

The region r < 2m $(\mathcal{M}_{\mathrm{II}})$ is a black hole, the event horizon of which is \mathcal{H} .

Outline

1 The Schwarzschild solution in SD coordinates

2 Eddington-Finkelstein coordinates

- 3 Maximal extension of Schwarzschild spacetime
 - 4 The Einstein-Rosen bridge

Kruskal-Szekeres coordinates

Coordinates (T, X, θ, φ) such that

$$\begin{cases} T = e^{r/4m} \left[\cosh\left(\frac{\tilde{t}}{4m}\right) - \frac{r}{4m} e^{-\tilde{t}/4m} \right] \\ X = e^{r/4m} \left[\sinh\left(\frac{\tilde{t}}{4m}\right) + \frac{r}{4m} e^{-\tilde{t}/4m} \right] \end{cases}$$

and $-X < T < \sqrt{X^2 + 1}$ on \mathcal{M}_{IEF} .

Spacetime metric

$$ds^{2} = \frac{32m^{3}}{r} e^{-r/2m} \left(-dT^{2} + dX^{2}\right) + r^{2} \left(d\theta^{2} + \sin^{2}\theta \,d\varphi^{2}\right)$$

with $r = r(T, X)$ implicitly defined by $e^{r/2m} \left(\frac{r}{2m} - 1\right) = X^{2} - T^{2}$

 \implies radial null geodesics: $ds^2 = 0 \iff dT = \pm dX$

(B)

SD coordinates in terms of KS coordinates

• solid: t = const

• dashed: r = const

Notice the singularity of SD coordinates on \mathscr{H}

IEF coordinates in terms of KS coordinates

• solid: $\tilde{t} = \text{const}$

• dashed: r = const

Notice the regularity of IEF coordinates on \mathscr{H}

Éric Gourgoulhon (LUTH)

CSGC, Chennai, 18 Jan 2022

Radial null geodesics $dT = \pm dX$ $\iff T = \pm X + T_0$ $(\pm 45^{\circ} \text{ straight lines!})$

- *solid:* outgoing family
- *dashed:* ingoing family
- \implies outgoing null geodesics are incomplete (to the past) \implies spacetime can be

extended...

Maximally extended Schwarzschild spacetime Kruskal diagram

- solid: t = const
- dashed: r = const

Null geodesics are either complete or terminating at a curvature singularity \implies maximal extension \mathcal{M} Each point of the diagram is a sphere: topology

 $\mathscr{M}\simeq \mathbb{R}^2\times \mathbb{S}^2$

CSGC, Chennai, 18 Jan 2022

Maximally extended Schwarzschild spacetime "Stationary" Killing vector field

Killing vector field $\boldsymbol{\xi} = \boldsymbol{\partial}_t = \boldsymbol{\partial}_{\tilde{t}}$

- $\boldsymbol{\xi}$ timelike in \mathcal{M}_{I} and $\mathcal{M}_{\mathrm{III}}$
- $\pmb{\xi}$ spacelike in $\mathscr{M}_{\mathrm{II}}$ and $\mathscr{M}_{\mathrm{IV}}$
- $\boldsymbol{\xi}$ null on the null hypersurfaces T = X(includes \mathscr{H}) and T = -X
- ξ vanishes on the central 2-sphere T = X = 0 (the bifurcation sphere)

Bifurcate Killing horizon

Standard Carter-Penrose diagram

Standard Carter-Penrose diagram

 \implies does not correspond to a regular completion at infinity (d $\Omega = 0$ on \mathscr{I}^+ , \tilde{g} degenerate on \mathscr{I}^+)

Éric Gourgoulhon (LUTH)

CSGC, Chennai, 18 Jan 2022

Carter-Penrose diagram with regular \mathscr{I} based on Frolov-Novikov coordinates

solid: t = const, *dashed*: r = const

https://nbviewer.jupyter.org/github/egourgoulhon/BHLectures/blob/ master/sage/Schwarz_conformal.ipynb

Éric Gourgoulhon (LUTH)

Basics of black hole physics 2 CSGC,

CSGC, Chennai, 18 Jan 2022

Outline

- 1 The Schwarzschild solution in SD coordinates
- 2 Eddington-Finkelstein coordinates
- 3 Maximal extension of Schwarzschild spacetime
- 4 The Einstein-Rosen bridge

The Einstein-Rosen bridge

Constant KS-time hypersurfaces Σ_{T_0}

Éric Gourgoulhon (LUTH)

Flamm paraboloid

Flamm paraboloid

Isometric embedding of the equatorial slice $\theta = \pi/2$ of the (spacelike) hypersurface T = 0 of the extended Schwarzschild spacetime into the Euclidean 3-space \mathbb{E}^3

8.0

Topology: $\Sigma_{T=0}^{\mathrm{eq}} \simeq \mathbb{R} \times \mathbb{S}^1$

The Einstein-Rosen bridge

Sequence of isometric embeddings of slices $(T, \theta) = (T_0, \frac{\pi}{2})$

 $T_0 = 0$

 $T_0 = 0.9$

Éric Gourgoulhon (LUTH)

Basics of black hole physics 2

CSGC, Chennai, 18 Jan 2022