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Basics of black hole physics
Plan of the lectures

1 What is a black hole? (Monday)
2 Schwarzschild black hole (Tuesday)
3 Kerr black hole (Tuesday)
4 Black hole dynamics (today)

Home page for the lectures
https://luth.obspm.fr/~luthier/gourgoulhon/bh16/chennai/
(slides, lecture notes, SageMath notebooks)
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Lecture 4: Black hole dynamics

1 Formation of black holes

2 First law of black hole dynamics

3 Second law of black hole dynamics

4 Black hole thermodynamics

5 Applications of the second law
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Formation of black holes

Outline

1 Formation of black holes

2 First law of black hole dynamics

3 Second law of black hole dynamics

4 Black hole thermodynamics

5 Applications of the second law
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Formation of black holes

Gravitational collapse: the astrophysical scenario of black
hole formation

Gravitational collapse of a star giving
birth to black hole
yellow: matter; orange: stellar surface
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Formation of black holes

Gravitational collapse: the astrophysical scenario of black
hole formation

Carter-Penrose conformal diagram
I +: future null infinity
I −: past null infinity
J−(I +): causal past of I +

B := M \ (J−(I +) ∩M ),
black hole region
H = ∂B, event horizon
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Formation of black holes

Compare with the “eternal” Schwarzschild black hole
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solid: t = const, dashed: r = const
(cf. Lecture 2)
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Formation of black holes

Binary black hole merger
Head-on collision

[Cohen, Pfeiffer & Scheel, CQG 26, 035005 (2009)]

← event horizon of a head-on
binary black hole merger
(computed a posteriori)

blue curves: null geodesics
that will eventually become
become null generators of the
event horizon.
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Formation of black holes

Binary black hole merger
Head-on collision

[Cohen, Pfeiffer & Scheel, CQG 26, 035005 (2009)]

← cross-sections St

of the event horizon
H of a head-on
binary black hole
merger at various
coordinate times t

black: St

green dashed: trace of
null geodesics that will
become null
generators of H

red and blue dashed: apparent horizons (marginally trapped surfaces)
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Formation of black holes

Binary black hole merger
Inspiral from circular orbit

[Cohen, Kaplan & Scheel, PRD 85, 024031 (2012)]

← First connected
cross-section of the
event horizon of an
inspiralling binary
black hole merger
(slicing by coordinate
time t)

(x, y)-axes: orbital
plane
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First law of black hole dynamics

Outline

1 Formation of black holes

2 First law of black hole dynamics

3 Second law of black hole dynamics

4 Black hole thermodynamics

5 Applications of the second law
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First law of black hole dynamics

Small change in a black hole equilibrium

Physical setup: initially isolated Kerr black hole, of parameters (m, a),
perturbed by the arrival of some external body or some gravitational
radiation.
After some transitory dynamical regime (e.g. absorption of the external
body and emission of gravitational waves), the black hole relaxes to a new
equilibrium configuration. According to the no-hair theorem, the final state
has to be a Kerr black hole, of parameters (m+ δm, a+ δa) say.

Question: how do the black hole global properties evolve during the
process?
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First law of black hole dynamics

Global properties of a Kerr black hole

As seen in Lecture 3, a Kerr black hole of parameters (m, a) has
mass M = m

angular momentum J = am

area A = 8π(M2 +
√
M4 − J2)

angular velocity ΩH =
J

2M(M2 +
√
M4 − J2)

surface gravity κ =

√
M4 − J2

2M(M2 +
√
M4 − J2)
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First law of black hole dynamics

Relating the change in M to that in A and J

From A = 8π(M2 +
√
M4 − J2), we get:

1

8π
dA = 2M dM +

2M3

√
M4 − J2

dM − J√
M4 − J2

dJ

=⇒
√
M4 − J2

8π
dA = 2M(M2 +

√
M4 − J2) dM − J dJ

=⇒ dM =
1

8π

√
M4 − J2

2M(M2 +
√
M4 − J2)︸ ︷︷ ︸

κ

dA+
J

2M(M2 +
√
M4 − J2)︸ ︷︷ ︸

ΩH

dJ

Hence

dM =
κ

8π
dA+ ΩH dJ
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First law of black hole dynamics

On the way to the first law of black hole dynamics...

dM =
κ

8π
dA+ ΩH dJ

dM : change in mass ≡ energy
ΩH dJ : change in “rotational kinetic energy”
κ

8π
dA: ??

Looks premature to call this relation a first law of black hole
(thermo)dynamics.
We shall come back to it later...
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Second law of black hole dynamics

Outline

1 Formation of black holes

2 First law of black hole dynamics

3 Second law of black hole dynamics

4 Black hole thermodynamics

5 Applications of the second law
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Second law of black hole dynamics

Evolution of a cross-section of an event horizon

Framework: generic (dynamical) black hole, event horizon H

H is ruled by null geodesic
generators (cf. Lecture 1).

Let ` be the future-directed null
normal vector field associated with a
affine parameter λ of these geodesics:

` =
dx

dλ
and ∇`` = 0

Let us consider a cross-section S of
H and study its evolution along `
(Lie dragging of S along `)
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Second law of black hole dynamics

Evolution of a cross-section of an event horizon

T⊥p S = Span(k, `)

Since S is a spacelike surface, for all
p ∈ S , the tangent space TpS to
S is a spacelike 2-plane and admits
an orthogonal complement T⊥p S ,
which is a timelike plane:
TpM = TpS ⊕ T⊥p S

The intersection of the null cone at p
with T⊥p S define 2 null directions
orthogonal to S :

one is along ` (and thus tangent
to H )
the other one is along a null
vector k, unambiguously defined
via the normalization
g(k, `) = −1
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Second law of black hole dynamics

Induced metric and orthogonal projector

We introduce the symmetric bilinear form q by

qαβ = gαβ + `αkβ + kα`β

q is a spacetime extension of the metric induced by g on S :
Proof: if u and v are vectors tangent to S :
qµνu

µvν = gµνu
µvν + `µu

µ︸︷︷︸
0

kνv
ν + kµu

µ `νv
ν︸︷︷︸

0

= gµνu
µvν ,

i.e. q(u,v) = g(u,v).

The orthogonal projector onto S is the type-(1,1) tensor −→q whose
components are deduced from those of q by raising the first index:

qαβ = δαβ + `α kβ + kα `β

In particular qαµ`
µ = 0 and qαµk

µ = 0.
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Second law of black hole dynamics

Deformation rate tensor

The deformation rate tensor of S
measures the evolution of the metric
q of S along the null normal `, i.e.
how the metric of S varies when S
is Lie-dragged along `. The relevant
operator is then the Lie derivative
along `, L` :

Θ :=
1

2
−→q ∗L` q

⇐⇒ Θαβ =
1

2
qµαq

ν
βL` qµν

Expressing the Lie derivative in terms of the covariant derivative, via
L` qµν = `σ∇σqµν + qσν∇µ`σ + qµσ∇ν`σ, we get

Θαβ = qµαq
ν
β∇µ`ν
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Second law of black hole dynamics

Expansion and shear tensor

From Lecture 1, the expansion along ` is

θ(`) := lim
ε→0

1

ε

δAε − δA
δA

Since in adapted coordinates δA =
√
q dy1dy2, we get

θ(`) = L` ln
√
q =

1

2
L` ln q =

1

2
qabL` qab =

1

2
qµνL` qµν = gµνΘµν

Hence the expansion θ(`) is nothing but the trace of the deformation rate
tensor Θ.

The trace-free part of Θ defines the shear tensor of S :

σ := Θ− 1

2
θ(`) q ⇐⇒ σαβ = Θαβ −

1

2
θ(`) qαβ

Éric Gourgoulhon (LUTH) Basics of black hole physics 4 CSGC, Chennai, 19 Jan 2022 21 / 41

https://luth.obspm.fr/~luthier/gourgoulhon/bh16/chennai/lecture1.pdf


Second law of black hole dynamics

Expansion and shear tensor

From Lecture 1, the expansion along ` is

θ(`) := lim
ε→0

1

ε

δAε − δA
δA

Since in adapted coordinates δA =
√
q dy1dy2, we get

θ(`) = L` ln
√
q =

1

2
L` ln q =

1

2
qabL` qab =

1

2
qµνL` qµν = gµνΘµν

Hence the expansion θ(`) is nothing but the trace of the deformation rate
tensor Θ.

The trace-free part of Θ defines the shear tensor of S :

σ := Θ− 1

2
θ(`) q ⇐⇒ σαβ = Θαβ −

1

2
θ(`) qαβ

Éric Gourgoulhon (LUTH) Basics of black hole physics 4 CSGC, Chennai, 19 Jan 2022 21 / 41

https://luth.obspm.fr/~luthier/gourgoulhon/bh16/chennai/lecture1.pdf


Second law of black hole dynamics

Null Raychaudhuri equation (1/3)

Starting point: Ricci identity (≡ definition of the Riemann tensor Rγδαβ)
applied to the vector field `:

(∇α∇β −∇β∇α) `γ = Rγµαβ `
µ

Contracting over α and γ makes the Ricci tensor Rαβ := Rσασβ appear:

∇σ∇β`σ −∇β∇σ`σ = Rµβ`
µ

Then, contract with ` to get a scalar equation:

`ν∇µ∇ν`µ − `ν∇ν∇µ`µ = Rµν`
µ`ν

Using `ν∇µ∇ν`µ = ∇µ(`ν∇ν`µ︸ ︷︷ ︸
0

)−∇µ`ν∇ν`µ yields

`ν∇ν∇µ`µ = −∇µ`ν∇ν`µ −Rµν`µ`ν
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Second law of black hole dynamics

Null Raychaudhuri equation (2/3)

Now, from Θαβ = qµαq
ν
β∇µ`ν , with qαβ = δαβ + `α kβ + kα `β , we get

∇α`β = Θαβ − kσ∇α`σ `β − kρkσ∇ρ`σ `α`β − `αkσ∇σ`β

from which (using Θαµ`
µ = 0, `µ`µ = 0, `µ∇α`µ = 0 and `µ∇µ`α = 0),

∇µ`µ = Θµ
µ = θ(`)

and
∇µ`ν∇ν`µ = ΘµνΘµν = ΘabΘ

ab

=
(
σab + 1

2θ(`) qab
) (
σab + 1

2θ(`) q
ab
)

= σabσ
ab + 1

4(θ(`))
2 qabq

ab︸ ︷︷ ︸
2

= σabσ
ab + 1

2(θ(`))
2
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Second law of black hole dynamics

Null Raychaudhuri equation (3/3)

Hence
`µ∇µθ(`) = −1

2
(θ(`))

2 − σabσab −Rµν`µ`ν

Finally one invokes Einstein’s equation:

Rµν`
µ`ν − 1

2
Rgµν`

µ`ν︸ ︷︷ ︸
0

= 8πTµν`
µ`ν

and use ` =
dx

dλ
to rewrite `µ∇µθ(`) =

dθ(`)

dλ
and get

Null Raychaudhuri equation
dθ(`)

dλ
= −1

2
(θ(`))

2 − σabσab − 8πTµν`
µ`ν

Evolution of the expansion along a null geodesic generator of H
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Second law of black hole dynamics

Null energy condition

Physical assumption: in the vicinity of the event horizon H , matter and
(non-gravitational) fields obey the null energy condition:

Tµν`
µ`ν ≥ 0 for any null vector `

NB: this is a very mild assumption:
it is trivially satisfied by vacuum: Tµν = 0

it is satisfied by any electromagnetic field F :

Tµν`
µ`ν =

1

µ0

(
Fσµ`

µF σν`
ν − 1

4
FρσF

ρσ gµν`
µ`ν︸ ︷︷ ︸

0

)
=

1

µ0
EµE

µ,

with Eα := Fαµ`
µ being necessarily spacelike or colinear to `, since it

is orthogonal to ` thanks to the antisymmetry of F :
Eµ`

µ = Fµν`
ν`µ = 0; hence EµEµ ≥ 0 and Tµν`µ`ν ≥ 0

it is implied by the weak energy condition, which shall be obeyed by
any “reasonable” matter: Tµνuµuν ≥ 0 for any u timelike (positivity
of the energy)
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Second law of black hole dynamics

Positivity of the expansion on H

Positive expansion theorem
On a black hole event horizon H , the expansion along any future-directed
null normal ` is everywhere positive or zero:

θ(`) ≥ 0

Proof: if ` is only pregeodesic (κ 6= 0), rescale it ˜̀= α`, α > 0 to get a
geodesic vector field (∇˜̀

˜̀= 0), then θ(˜̀) = αθ(`) ≥ 0 ⇐⇒ θ(`) ≥ 0.
Consider the null Raychaudhuri equation along with the null energy
condition:

dθ(`)

dλ
= −1

2
(θ(`))

2 −σabσab︸ ︷︷ ︸
≤0

−8πTµν`
µ`ν︸ ︷︷ ︸

≤0

where −σabσab ≤ 0 follows from the fact that σab is a symmetric matrix in
the 2-dimensional vector space TpS , equipped with the positive definite
metric q. It can thus be diagonalized, so that, in a q-orthonormal basis,
σab = diag(σ,−σ), with σ ∈ R, so that σabσab = 2σ2 ≥ 0.
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Second law of black hole dynamics

Positivity of the expansion on H

We have then necessarily
dθ(`)

dλ
≤ −1

2
(θ(`))

2

Assume that θ(`) = θ0 < 0 at some point p ∈H . Let us choose the affine
parameter λ of the null geodesic generator L through p such that λ = 0
at p. The above equation implies

∀λ ≥ 0, θ(`)(λ) ≤ θ̄(λ)

where θ̄(λ) obeys
dθ̄

dλ
= −1

2
θ̄2 with θ̄(0) = θ0 =⇒ θ̄(λ) =

θ0

1 + θ0λ/2
=⇒ θ̄ → −∞ as λ→ −2/θ0 > 0
=⇒ θ(`) → −∞ as λ→ λ∗ with 0 < λ∗ ≤ −2/θ0

=⇒ the point p∗ ∈ L of parameter λ∗ is a focusing point, i.e. a point
where neighbouring null geodesic generators of H intersect
=⇒ contradiction with Penrose theorem (see Property 3 of event horizons
in Lecture 1): there must be exactly one null geodesic generator through
each point of H , except at points where null geodesic generators enter H
(p∗ cannot be such point since λ∗ > 0).
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Second law of black hole dynamics

Second law of black hole dynamics

Second law (Hawking 1971)

Let (M , g) be a spacetime containing a
black hole of event horizon H . Assume ∃ an
open region V ⊃M ∩ J−(I +) that is
globally hyperbolic (no naked singularity, no
Cauchy horizon).
Consider a foliation of V by a family of
spacelike hypersurfaces (Σt)t∈R, with t
increasing towards the future, such that each
Σt is a Cauchy hypersurface for V .
Let A(t) be the area of the cross-section
St = H ∩ Σt. Then, assuming Einstein’s
equation and the null energy condition,

dA

dt
≥ 0
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Second law of black hole dynamics

Second law of black hole dynamics

[Hamerly & Chen, PRD 84,

124015 (2011)]

Proof: Let ` be the null normal of H compatible
with the foliation (St)t∈R, i.e. such that
∇` t = 1. If there is no null geodesic entering
H between St and St+dt, the cross-section
St+dt is deduced from St by Lie dragging along
` by the parameter dt (see Lecture 1). By the
very definition of θ(`), we have then
dA

dt
≥
∫

St

θ(`)
√
q dy1dy2

with equality iff no new null geodesic is entering
H (as the ones depicted in orange in the
adjacent figure)

If Einstein’s equation and the null energy condition hold, then the result
follows from the positive expansion theorem: θ(`) ≥ 0 .
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Black hole thermodynamics

Outline
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Black hole thermodynamics

The first law revisited

dM =
κ

8π
dA+ ΩH dJ

Second law =⇒ A can only increase towards the future
=⇒ A may be identified with some entropy and κ with some temperature,
to get a TdS term in the first law:

S = αA

T =
1

8πα
κ

 =⇒ κ

8π
dA = TdS

with α to be determined...
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Black hole thermodynamics

Zeroth law

For a Kerr black hole: κ =

√
m2 − a2

2m(m+
√
m2 − a2)

=⇒ κ is constant (i.e. it does not depend on θ).

More generally, one can show (cf. Sec. 3.3.5 of the lecture notes)

Zeroth law of black hole mechanics
Let H be a Killing horizon and κ the non-affinity coefficient of the null
normal coinciding with the Killing vector field on H . If the matter and the
non-gravitational fields obey the null dominant energy condition on H , κ
is uniform over H :

κ = const

Null dominant energy condition: −Tαµ`µ is future-directed null or
timelike for any future-directed null vector `
NB: null dominant energy condition =⇒ null energy condition invoked in
the second law
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Black hole thermodynamics

Third law

For a Kerr black hole: κ =

√
m2 − a2

2m(m+
√
m2 − a2)

Hence κ = 0 ⇐⇒ a = m (extremal Kerr black hole)

Is it possibe to reach a = m by accretion of matter onto a Kerr black hole
with a < m ? The answer is no:

Third law (Israel 1986)

No continuous process in which the energy-momentum tensor of accreted
matter remains bounded and satisfies the weak energy condition in a
neighbourhood of the apparent horizon can reduce the surface gravity κ of
a black hole to zero within a finite advanced time v (or equivalently Kerr
time t̃).

Éric Gourgoulhon (LUTH) Basics of black hole physics 4 CSGC, Chennai, 19 Jan 2022 33 / 41



Black hole thermodynamics

Third law

For a Kerr black hole: κ =

√
m2 − a2

2m(m+
√
m2 − a2)

Hence κ = 0 ⇐⇒ a = m (extremal Kerr black hole)

Is it possibe to reach a = m by accretion of matter onto a Kerr black hole
with a < m ? The answer is no:

Third law (Israel 1986)

No continuous process in which the energy-momentum tensor of accreted
matter remains bounded and satisfies the weak energy condition in a
neighbourhood of the apparent horizon can reduce the surface gravity κ of
a black hole to zero within a finite advanced time v (or equivalently Kerr
time t̃).

Éric Gourgoulhon (LUTH) Basics of black hole physics 4 CSGC, Chennai, 19 Jan 2022 33 / 41



Black hole thermodynamics

Third law

For a Kerr black hole: κ =

√
m2 − a2

2m(m+
√
m2 − a2)

Hence κ = 0 ⇐⇒ a = m (extremal Kerr black hole)

Is it possibe to reach a = m by accretion of matter onto a Kerr black hole
with a < m ? The answer is no:

Third law (Israel 1986)

No continuous process in which the energy-momentum tensor of accreted
matter remains bounded and satisfies the weak energy condition in a
neighbourhood of the apparent horizon can reduce the surface gravity κ of
a black hole to zero within a finite advanced time v (or equivalently Kerr
time t̃).

Éric Gourgoulhon (LUTH) Basics of black hole physics 4 CSGC, Chennai, 19 Jan 2022 33 / 41



Black hole thermodynamics

The four laws of black hole thermodynamics

Zeroth law
The surface gravity κ of a black hole in equilibrium is constant

First law
Two nearby black hole equilibrium configurations are related by

dM =
κ

8π
dA+ ΩH dJ

Second law
The area A of cross-sections of a black hole event horizon can only increase
towards the future:

dA

dt
≥ 0

Third law
A nonzero surface gravity κ of a black hole in equilibrium cannot be
reduced to zero by accretion of matter.
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Black hole thermodynamics

Set of four laws first formulated in Les Houches in 1972

[Commun. Math. Phys., 31, 161 (1973)]

NB: zeroth, first and second law demonstrated in the above article; third law only
demonstrated in 1986 by Israel [PRL 57, 397]

Éric Gourgoulhon (LUTH) Basics of black hole physics 4 CSGC, Chennai, 19 Jan 2022 35 / 41

https://doi.org/10.1103/PhysRevLett.57.397


Black hole thermodynamics

Hawking radiation enters the game...

Hawking radiation:

black-body radiation at T =
~

2πk
κ (Hawking temperature)

with k = Boltzmann constant

κ

8π
dA = TdS =⇒ S =

k

4

A

`2P
(Bekenstein-Hawking entropy)

with `P =

√
~G
c3

= Planck length ' 1.6 10−35 m

For a Schwarzschild black hole of mass M : κ = (4M)−1 and A = 16πM2

=⇒ T = 6 10−8

(
M�
M

)
K and S = 1.1 1077

(
M

M�

)2

k !!!
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Applications of the second law

Outline
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Applications of the second law

Upper bound on energy extracted via Penrose process

Consider some Penrose process (cf. Lecture 3) extracting energy from a
Kerr black hole of initial mass mi and specific angular momentum ai, the
extraction taking place until the black hole angular momentum has decayed
to zero (=⇒ no longer any ergoregion outside the event horizon).
The final state is then a Schwarzschild black hole of mass mf and the total
amount of extracted energy is

∆E = mi −mf

Second law =⇒ Af ≥ Ai, i.e. 2m2
f ≥ mi

(
mi +

√
m2

i − a2
i

)
∆E is maximal if mf is minimal; given the above inequality, this is
achieved for ai = mi =⇒ 2m2

f ≥ m2
i =⇒ mf ≥ 2−1/2mi

=⇒ ∆E ≤
(

1− 2−1/2
)
mi ' 0.29mi
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Applications of the second law

Upper bound on gravitational radiation from a BH merger
(Hawking, 1971)

Consider a binary black hole merger:
initial stage: two far apart Kerr BH: (m1, a1) and (m2, a2)

final stage: a single Kerr BH: (m3, a3)

The total amount of energy radiated via gravitational waves is
∆E = m1 +m2 −m3

=⇒ efficiency of gravitational radiation: ε :=
m1 +m2 −m3

m1 +m2

Second law =⇒ A3 ≥ A1 +A2, i.e.

m3

(
m3 +

√
m2

3 − a23
)
≥ m1

(
m1 +

√
m2

1 − a21
)

+m2

(
m2 +

√
m2

2 − a22
)
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Applications of the second law

Upper bound on gravitational radiation from a BH merger
(Hawking, 1971)

m3

(
m3 +

√
m2

3 − a23
)
≥ m1

(
m1 +

√
m2

1 − a21
)

+m2

(
m2 +

√
m2

2 − a22
)

ε is maximal if m3 is minimal; given the above inequality, this is achieved
for a1 = m1, a2 = m2 and a3 = 0

=⇒ 2m2
3 ≥ m2

1 +m2
2 =⇒ m3 ≥

√
(m2

1 +m2
2)/2

=⇒ ε ≤ 1−
√
m2

1 +m2
2√

2(m1 +m2)

The maximum of the r.h.s. is achieved for m1 = m2 and is 1/2, hence the
upper bound:

ε ≤ 1

2
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Applications of the second law

Upper bound on gravitational radiation from a BH merger
Case of initially non-spinning equal-mass BH (Hawking, 1971)

Initially non-spinning equal-mass BH: a1 = a2 = 0 and m1 = m2

The second law yields

m3

(
m3 +

√
m2

3 − a2
3

)
≥ 4m2

1

Again, ε is maximal if m3 is minimal; given the above inequality, this is
achieved for a3 = 0 =⇒ 2m2

3 ≥ 4m2
1 =⇒ m3 ≥

√
2m1

Hence the upper bound:

ε ≤ 1− 2−1/2 ' 0.29

The GW efficiency for inspiralling binaries is actually much lower
Inspiralling binary BH merger with m1 = m2 and a1 = a2 = 0:
numerical relativity =⇒ a3 = 0.68m3 and ε = 0.048
[Scheel et al., PRD 79, 024003 (2009)]
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