Black hole horizons

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris Diderot 92190 Meudon, France

eric.gourgoulhon@obspm.fr

http://luth.obspm.fr/~luthier/gourgoulhon/

SN2NS Workshop

Palais de la Découverte Paris, France 4 February 2014

・ロト ・回ト ・ ヨト

1 Concept of black hole and event horizon

- Quasi-local horizons
- 3 Astrophysical black holes
 - The near-future observations of black holes

Outline

1 Concept of black hole and event horizon

2 Quasi-local horizons

3 Astrophysical black holes

The near-future observations of black holes

A D F A A F F

Concept of black hole and event horizon

What is a black hole ?

... for the layman:

< □ > < ^[] >

A **black hole** is a region of spacetime from which nothing, not even light, can escape.

The (immaterial) boundary between the black hole interior and the rest of the Universe is called the **event horizon**.

[Alain Riazuelo, 2007]

What is a black hole ?

... for the mathematical physicist:

black hole: $\mathcal{B} := \mathcal{M} - J^{-}(\mathscr{I}^{+})$

i.e. the region of spacetime where light rays cannot escape to infinity

- $(\mathcal{M}, \boldsymbol{g}) = \text{asymptotically flat}$ manifold
- $\mathscr{I}^+ = future null infinity$

•
$$J^-(\mathscr{I}^+) = \mathsf{causal} \ \mathsf{past} \ \mathsf{of} \ \mathscr{I}^+$$

event horizon: $\mathcal{H} := \partial J^{-}(\mathscr{I}^{+})$ (boundary of $J^{-}(\mathscr{I}^{+})$)

 $\mathcal{H} \text{ smooth} \Longrightarrow \mathcal{H} \text{ null hypersurface}$

イロト イヨト イヨト イ

What is a black hole ?

... for the mathematical physicist:

black hole: $\mathcal{B} := \mathcal{M} - J^{-}(\mathcal{I}^{+})$

i.e. the region of spacetime where light rays cannot escape to infinity

- $(\mathcal{M}, \boldsymbol{g}) = \text{asymptotically flat}$ manifold
- $\mathscr{I}^+ = future null infinity$

•
$$J^-(\mathscr{I}^+) = \mathsf{causal} \ \mathsf{past} \ \mathsf{of} \ \mathscr{I}^+$$

event horizon: $\mathcal{H} := \partial J^{-}(\mathscr{I}^{+})$ (boundary of $J^{-}(\mathscr{I}^{+})$)

 $\mathcal H \text{ smooth} \Longrightarrow \mathcal H \text{ null hypersurface}$

Image: A math a math

Concept of black hole and event horizon

What is a black hole ?

... for the astrophysicist: a very deep gravitational potential well

Release of potential gravitational energy by **accretion** on a black hole: up to 42% of the mass-energy mc^2 of accreted matter !

NB: thermonuclear reactions release less than 1% mc^2

Matter falling in a black hole forms an **accretion disk** [Lynden-Bell (1969), Shakura & Sunayev (1973)]

[J.-A. Marck (1996)]

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• In general relativity, a black hole contains a region where the spacetime curvature diverges: the singularity (*NB: this is not the primary definition of a black hole*). The singularity is inaccessible to observations, being hidden by the event horizon.

Image: A math a math

- In general relativity, a black hole contains a region where the spacetime curvature diverges: the singularity (*NB: this is not the primary definition of a black hole*). The singularity is inaccessible to observations, being hidden by the event horizon.
- The singularity marks the limit of validity of general relativity: to describe it, a quantum theory of gravitation would be required.

Image: A math a math

- In general relativity, a black hole contains a region where the spacetime curvature diverges: the singularity (*NB: this is not the primary definition of a black hole*). The singularity is inaccessible to observations, being hidden by the event horizon.
- The singularity marks the limit of validity of general relativity: to describe it, a quantum theory of gravitation would be required.
- The event horizon \mathcal{H} is a global structure of spacetime: no physical experiment whatsoever can detect the crossing of \mathcal{H} .

Image: A match a ma

- In general relativity, a black hole contains a region where the spacetime curvature diverges: the singularity (*NB: this is not the primary definition of a black hole*). The singularity is inaccessible to observations, being hidden by the event horizon.
- The singularity marks the limit of validity of general relativity: to describe it, a quantum theory of gravitation would be required.
- The event horizon \mathcal{H} is a global structure of spacetime: no physical experiment whatsoever can detect the crossing of \mathcal{H} .
- Viewed by a distant observer, the horizon approach is perceived with an infinite redshift, or equivalently, by an infinite time dilation

- In general relativity, a black hole contains a region where the spacetime curvature diverges: the singularity (*NB: this is not the primary definition of a black hole*). The singularity is inaccessible to observations, being hidden by the event horizon.
- The singularity marks the limit of validity of general relativity: to describe it, a quantum theory of gravitation would be required.
- The event horizon \mathcal{H} is a global structure of spacetime: no physical experiment whatsoever can detect the crossing of \mathcal{H} .
- Viewed by a distant observer, the horizon approach is perceived with an infinite redshift, or equivalently, by an infinite time dilation
- A black hole is not an infinitely dense object: on the contrary it is made of vacuum (except maybe at the singularity); black holes can form in spacetimes empty of any matter, by collapse of gravitational wave packets.

イロト イヨト イヨト イ

Uniqueness theorem

(Dorochkevitch, Novikov & Zeldovitch 1965, Israel 1967, Carter 1971, Hawking 1972) :

A black hole in equilibrium is necessarily a Kerr-Newmann black hole, which is a vacuum solution of Einstein described by only three parameters:

- ullet the total mass M
- ullet the total angular momentum J
- the total electric charge Q
- \implies "a black hole has no hair" (John A. Wheeler)
 - Q = 0 and J = 0: Schwarzschild solution (1916)
 - Q = 0 : Kerr solution (1963)

A D F A A F F

Concept of black hole and event horizon

Main properties of black holes (3/3)

• The mass *M* is not a measure of the "matter amount" inside the black hole, but rather a parameter characterizing the external gravitational field; it is measurable from the orbital period of a test particle in circular orbit around the black hole and far from it *(Kepler's third law)*.

Image: A math a math

Concept of black hole and event horizon

Main properties of black holes (3/3)

- The mass *M* is not a measure of the "matter amount" inside the black hole, but rather a parameter characterizing the external gravitational field; it is measurable from the orbital period of a test particle in circular orbit around the black hole and far from it *(Kepler's third law)*.
- Similarly, the angular momentum J is a parameter characterizing the external gravitational field, more precisely the so-called *gravito-magnetic* part of it. It is measurable from the precession of a gyroscope orbiting the black hole (*Lense-Thirring effect*).

Image: A math a math

- The mass M is not a measure of the "matter amount" inside the black hole, but rather a parameter characterizing the external gravitational field; it is measurable from the orbital period of a test particle in circular orbit around the black hole and far from it (Kepler's third law).
- Similarly, the angular momentum J is a parameter characterizing the external gravitational field, more precisely the so-called *gravito-magnetic* part of it. It is measurable from the precession of a gyroscope orbiting the black hole (*Lense-Thirring effect*).
- The radius of a black hole is not a well defined concept: it *does not* correspond to some distance between the black hole "centre" (the singularity) and the event horizon. A well defined quantity is the area of the event horizon, *A*.

The radius can be then defined from it: for a Schwarzschild black hole:

$$R := \sqrt{\frac{A}{4\pi}} = \frac{2GM}{c^2} \simeq 3\left(\frac{M}{M_{\odot}}\right) \, \mathrm{km}$$

Image: A match a ma

Other theoretical aspects

- The four laws of black hole dynamics
- Quantum properties (Bekenstein entropy, Hawking radiation)
- Black holes in higher dimensions

A D F A A F F

Outline

1 Concept of black hole and event horizon

Quasi-local horizons

3 Astrophysical black holes

The near-future observations of black holes

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $\bullet\,$ not applicable in ${\bf cosmology},$ for in general $(\mathscr{M}, {\boldsymbol g})$ is not asymptotically flat

・ロト ・回ト ・ ヨト

not applicable in cosmology, for in general (*M*, *g*) is not asymptotically flat
even when applicable, this definition is highly non-local:

Éric Gourgoulhon (LUTH)

Black hole horizons

・ロト ・回ト ・ ヨト

not applicable in cosmology, for in general (*M*, *g*) is not asymptotically flat
 even when applicable, this definition is highly non-local:

Determination of $\dot{J}^-(\mathscr{I}^+)$ requires the knowledge of the entire future null infinity. Moreover this is not locally linked with the notion of strong gravitational field:

Example of event horizon in a **flat** region of spacetime:

Vaidya metric, describing incoming radiation from infinity:

$$ds^2 = -\left(1 - \frac{2m(v)}{r}\right)dv^2 + 2dv \, dr$$
$$+r^2(d\theta^2 + \sin^2\theta d\varphi^2)$$

 $\begin{array}{ll} \mbox{with} & m(v)=0 & \mbox{ for } v<0 \\ & dm/dv>0 & \mbox{ for } 0\leq v\leq v_0 \\ & m(v)=M_0 & \mbox{ for } v>v_0 \end{array}$

[Ashtekar & Krishnan, LRR 7, 10 (2004)]

not applicable in cosmology, for in general (*M*, *g*) is not asymptotically flat
 even when applicable, this definition is highly non-local:

Determination of $\dot{J}^-(\mathscr{I}^+)$ requires the knowledge of the entire future null infinity. Moreover this is not locally linked with the notion of strong gravitational field:

Example of event horizon in a **flat** region of spacetime:

Vaidya metric, describing incoming radiation from infinity:

$$ds^2 = -\left(1 - \frac{2m(v)}{r}\right)dv^2 + 2dv \, dr$$
$$+r^2(d\theta^2 + \sin^2\theta d\varphi^2)$$

 $\begin{array}{ll} \mbox{with} & m(v)=0 & \mbox{ for } v<0 \\ & dm/dv>0 & \mbox{ for } 0\leq v\leq v_0 \\ & m(v)=M_0 & \mbox{ for } v>v_0 \end{array}$

 \Rightarrow no local physical experiment whatsoever can locate the event horizon

Black hole horizons

Another non-local feature: teleological nature of event horizons

The classical black hole boundary, i.e. the event horizon, responds in advance to what will happen in the future.

A D F A A F F

Another non-local feature: teleological nature of event horizons

[Booth, Can. J. Phys. 83, 1073 (2005)]

The classical black hole boundary, i.e. the event horizon, responds in advance to what will happen in the future.

To deal with black holes as ordinary physical objects, a **local** definition would be desirable

 \rightarrow quantum gravity, numerical relativity

Image: A match a ma

Local characterizations of black holes

New paradigm for the theoretical approach to black holes: instead of *event horizons*, black holes are described by

- trapping horizons (Hayward 1994)
- isolated horizons (Ashtekar et al. 1999)
- dynamical horizons (Ashtekar and Krishnan 2002)
- slowly evolving horizons (Booth and Fairhurst 2004)

All these concepts are **local** and are based on the notion of trapped surfaces

Image: A matrix and a matrix

What is a trapped surface ? 1/ Expansion of a surface along a normal vector field

 Consider a spacelike 2-surface S (induced metric: q)

A ID > A ID > A

What is a trapped surface ? 1/ Expansion of a surface along a normal vector field

- Consider a spacelike 2-surface S (induced metric: q)
- Take a vector field v defined on S and normal to S at each point

Image: A mathematic states and a mathematic states

What is a trapped surface ? 1/ Expansion of a surface along a normal vector field

- Consider a spacelike 2-surface S (induced metric: q)
- Take a vector field v defined on S and normal to S at each point
- ε being a small parameter, displace the point p by the vector εv to the point p'

< □ > < ^[] >

What is a trapped surface ? 1/ Expansion of a surface along a normal vector field

- Consider a spacelike 2-surface S (induced metric: q)
- Take a vector field v defined on S and normal to S at each point
- ε being a small parameter, displace the point p by the vector εv to the point p'

A D > A A

• Do the same for each point in S, keeping the value of ε fixed

What is a trapped surface ? 1/ Expansion of a surface along a normal vector field

- Consider a spacelike 2-surface S (induced metric: q)
- Take a vector field v defined on S and normal to S at each point
- ε being a small parameter, displace the point p by the vector εv to the point p'
- Do the same for each point in *S*, keeping the value of ε fixed
- This defines a new surface S' (Lie dragging)

A D > A A

What is a trapped surface ? 1/ Expansion of a surface along a normal vector field

- Consider a spacelike 2-surface S (induced metric: q)
- 2 Take a vector field v defined on \mathcal{S} and normal to \mathcal{S} at each point
- $\odot \varepsilon$ being a small parameter, displace the point p by the vector εv to the point p'
- O the same for each point in \mathcal{S} , keeping the value of ε fixed
- This defines a new surface S'(Lie dragging)

At each point, the expansion of S along v is defined from the relative change in $\theta^{(\boldsymbol{v})} := \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \frac{\delta A' - \delta A}{\delta A} = \mathcal{L}_{\boldsymbol{v}} \ln \sqrt{q} = q^{\mu \nu} \nabla_{\mu} v_{\nu}$

the area element δA :

What is a trapped surface ? ²/ The definition</sup>

 \mathscr{S} : closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime (\mathscr{M},g)

< □ > < 🗗 > < 🖹

What is a trapped surface ? ²/ The definition</sup>

 $\mathscr{S}:$ closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime (\mathscr{M},g)

Being spacelike, ${\mathscr S}$ lies outside the light cone

• • • • • • • •

What is a trapped surface ? ²/ The definition</sup>

 $\mathscr{S}:$ closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime (\mathscr{M},g)

Being spacelike, ${\mathscr S}$ lies outside the light cone

 \exists two future-directed null directions orthogonal to \mathscr{S} :

 ℓ = outgoing, expansion $\theta^{(\ell)}$

$$m{k}=$$
 ingoing, expansion $heta^{(m{k})}$

In flat space, $\theta^{({\boldsymbol k})} < 0$ and $\theta^{({\boldsymbol \ell})} > 0$

Image: A math a math

What is a trapped surface ? 2/ The definition

 \mathscr{S} : closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime (\mathscr{M},g)

Image: A math a math

What is a trapped surface ? 2/ The definition

 \mathscr{S} : closed (i.e. compact without boundary) spacelike 2-dimensional surface embedded in spacetime (\mathscr{M},g)

 $\label{eq:concept_characterizing} \textit{trapped surface} = \textbf{quasi-local} \text{ concept characterizing very strong gravitational} \\ \textit{fields}$

Éric Gourgoulhon (LUTH)
Link with apparent horizons

A closed spacelike 2-surface \mathscr{S} is said to be outer trapped (resp. marginally outer trapped (MOTS)) iff [Hawking & Ellis 1973]

- the notions of *interior* and *exterior* of *S* can be defined (for instance spacetime asymptotically flat) ⇒ *l* is chosen to be the *outgoing* null normal and *k* to be the *ingoing* one
- $\theta^{(\ell)} < 0$ (resp. $\theta^{(\ell)} = 0$)

Link with apparent horizons

A closed spacelike 2-surface \mathscr{S} is said to be outer trapped (resp. marginally outer trapped (MOTS)) iff [Hawking & Ellis 1973]

the notions of *interior* and *exterior* of *S* can be defined (for instance spacetime asymptotically flat) ⇒ *l* is chosen to be the *outgoing* null normal and *k* to be the *ingoing* one

•
$$\theta^{(\ell)} < 0$$
 (resp. $\theta^{(\ell)} = 0$)

outer trapped region of Σ : Ω = set of points $p \in \Sigma$ through which there is a outer trapped surface \mathscr{S} lying in Σ

apparent horizon in Σ : \mathcal{A} = connected component of the boundary of Ω

Proposition [Hawking & Ellis 1973]: \mathcal{A} smooth $\Longrightarrow \mathcal{A}$ is a MOTS

Connection with singularities and black holes

Proposition [Penrose (1965)]:

provided that the weak energy condition holds, \exists a trapped surface $\mathscr{S} \Longrightarrow \exists$ a singularity in (\mathscr{M}, g) (in the form of a future inextendible null geodesic)

Proposition [Hawking & Ellis (1973)]: provided that the cosmic censorship conjecture holds, \exists a trapped surface $\mathscr{S} \Longrightarrow \exists$ a black hole \mathscr{B} and $\mathscr{S} \subset \mathscr{B}$

Local definitions of "black holes"

A hypersurface $\mathcal H$ of $(\mathscr M, \boldsymbol{g})$ is said to be

• a future outer trapping horizon (FOTH) iff

(i) \mathcal{H} foliated by marginally trapped 2-surfaces ($\theta^{(k)} < 0$ and $\theta^{(\ell)} = 0$) (ii) $\mathcal{L}_k \theta^{(\ell)} < 0$ (locally outermost trapped surf.)

< □ > < ^[] >

[Hayward, PRD 49, 6467 (1994)]

Local definitions of "black holes"

A hypersurface $\mathcal H$ of $(\mathscr M, \boldsymbol{g})$ is said to be

- a future outer trapping horizon (FOTH) iff (i) \mathcal{H} foliated by marginally trapped 2-surfaces $(\theta^{(k)} < 0 \text{ and } \theta^{(\ell)} = 0)$ (ii) $\mathcal{L}_k \theta^{(\ell)} < 0$ (locally outermost trapped surf.) [Hayward, PRD 49, 6467 (1994)]
- a dynamical horizon (DH) iff
 - (i) ${\cal H}$ foliated by marginally trapped 2-surfaces (ii) ${\cal H}$ spacelike

Image: A mathematical states and a mathem

[Ashtekar & Krishnan, PRL 89 261101 (2002)]

Local definitions of "black holes"

A hypersurface \mathcal{H} of $(\mathcal{M}, \boldsymbol{g})$ is said to be

- a future outer trapping horizon (FOTH) iff (i) \mathcal{H} foliated by marginally trapped 2-surfaces $(\theta^{(k)} < 0 \text{ and } \theta^{(\ell)} = 0)$ (ii) $\mathcal{L}_k \theta^{(\ell)} < 0$ (locally outermost trapped surf.) [Hayward, PRD 49, 6467 (1994)]
- a dynamical horizon (DH) iff
 - (i) ${\cal H}$ foliated by marginally trapped 2-surfaces (ii) ${\cal H}$ spacelike

Image: A math a math

[Ashtekar & Krishnan, PRL 89 261101 (2002)]

- a non-expanding horizon (NEH) iff
 - (i) \mathcal{H} is null (null normal ℓ) (ii) $\theta^{(\ell)} = 0$ [Hájíček (1973)]

Local definitions of "black holes"

A hypersurface $\mathcal H$ of $(\mathscr M, \boldsymbol{g})$ is said to be

a future outer trapping horizon (FOTH) iff

 (i) H foliated by marginally trapped 2-surfaces
 (θ^(k) < 0 and θ^(ℓ) = 0)
 (ii) L_k θ^(ℓ) < 0 (locally outermost trapped surf.)

 [Hayward, PRD 49, 6467 (1994)]

• a dynamical horizon (DH) iff

(i) ${\cal H}$ foliated by marginally trapped 2-surfaces (ii) ${\cal H}$ spacelike

[Ashtekar & Krishnan, PRL 89 261101 (2002)]

- a non-expanding horizon (NEH) iff
 - (i) \mathcal{H} is null (null normal ℓ) (ii) $\theta^{(\ell)} = 0$ [Háíiček (1973)]
- an isolated horizon (IH) iff
 - (i) \mathcal{H} is a non-expanding horizon

(ii) \mathcal{H} 's full geometry is not evolving along the null generators: $[\mathcal{L}_{\ell}, \hat{\nabla}] = 0$

[Ashtekar, Beetle & Fairhurst, ℃QG 16, L1 (1999)] 🛌 🛎 🗠 🗠

Local definitions of "black holes"

A hypersurface $\mathcal H$ of $(\mathscr M, \boldsymbol{g})$ is said to be

BH in equilibrium = IH (e.g. Kerr) BH out of equilibrium = DH generic BH = FOTH a future outer trapping horizon (FOTH) iff

 (i) *H* foliated by marginally trapped 2-surfaces
 (θ^(k) < 0 and θ^(ℓ) = 0)
 (ii) *L_k* θ^(ℓ) < 0 (locally outermost trapped surf.)

 [Hayward, PRD 49, 6467 (1994)]

• a dynamical horizon (DH) iff

(i) ${\cal H}$ foliated by marginally trapped 2-surfaces (ii) ${\cal H}$ spacelike

[Ashtekar & Krishnan, PRL 89 261101 (2002)]

- a non-expanding horizon (NEH) iff
 - (i) \mathcal{H} is null (null normal ℓ) (ii) $\theta^{(\ell)} = 0$ [Háíiček (1973)]
- an isolated horizon (IH) iff
 - (i) ${\mathcal H}$ is a non-expanding horizon
 - (ii) ${\cal H}'s$ full geometry is not evolving along the null generators: $[{\cal L}_\ell\,,\hat{\bf \nabla}]=0$

[Ashtekar, Beetle & Fairhurst, CQG 16, L1 (1999)]

Example: Vaidya spacetime

[Ashtekar & Krishnan, LRR 7, 10 (2004)]

- The event horizon crosses the flat region
- The dynamical horizon lies entirely outside the flat region

< □ > < ^[] >

Dynamics of the quasi-local horizons

The *trapping horizons* and *dynamical horizons* have their **own dynamics**, ruled by Einstein equations.

In particular, one can establish for them

 existence and (partial) uniqueness theorems [Andersson, Mars & Simon, PRL 95, 111102 (2005)].

[Ashtekar & Galloway, Adv. Theor. Math. Phys. 9, 1 (2005)]

- first and second laws of black hole mechanics
 [Ashtekar & Krishnan, PRD 68, 104030 (2003)], [Hayward, PRD 70, 104027 (2004)]
- a viscous fluid bubble analogy ("membrane paradigm", as for the event horizon)

[EG, PRD **72**, 104007 (2005)], [EG & Jaramillo, PRD **74**, 087502 (2006)], [Jaramillo, arXiv:1309.6593 (2013)],

For a review see [Jaramillo, arXiv:1108.2408 (2011)]

Outline

1 Concept of black hole and event horizon

- 2 Quasi-local horizons
- 3 Astrophysical black holes
 - The near-future observations of black holes

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Known black holes

Three kinds of black holes are known in the Universe:

• Stellar black holes: supernova remnants: $M \sim 10 - 30 \ M_{\odot}$ and $R \sim 30 - 90 \ \text{km}$ example: Cyg X-1 : $M = 15 \ M_{\odot}$ and $R = 45 \ \text{km}$

Image: A match a ma

Known black holes

Three kinds of black holes are known in the Universe:

- Stellar black holes: supernova remnants: $M \sim 10 - 30 \ M_{\odot}$ and $R \sim 30 - 90 \ \text{km}$ example: Cyg X-1 : $M = 15 \ M_{\odot}$ and $R = 45 \ \text{km}$
- Supermassive black holes, in galactic nuclei: $M \sim 10^5 - 10^{10} M_{\odot}$ and $R \sim 3 \times 10^5 \text{ km} - 200 \text{ UA}$ example: Sgr A* : $M = 4.3 \times 10^6 M_{\odot}$ and $R = 13 \times 10^6 \text{ km} = 18 R_{\odot} = 0.09 \text{ UA} = \frac{1}{4} \times \text{radius of Mercury's orbit}$

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Known black holes

Three kinds of black holes are known in the Universe:

- Stellar black holes: supernova remnants: $M \sim 10 - 30 M_{\odot}$ and $R \sim 30 - 90 \text{ km}$ example: Cyg X-1 : $M = 15 M_{\odot}$ and R = 45 km
- Supermassive black holes, in galactic nuclei: $M \sim 10^5 - 10^{10} M_{\odot}$ and $R \sim 3 \times 10^5 \text{ km} - 200 \text{ UA}$ example: Sgr A* : $M = 4.3 \times 10^6 M_{\odot}$ and $R = 13 \times 10^6 \text{ km} = 18 R_{\odot} = 0.09 \text{ UA} = \frac{1}{4} \times \text{radius of Mercury's orbit}$
- Intermediate mass black holes, as ultra-luminous X-ray sources (?): $M \sim 10^2 10^4 M_{\odot}$ and $R \sim 300 \text{ km} 3 \times 10^4 \text{ km}$

example: ESO 243-49 HLX-1 : $M > 500~M_{\odot}$ and $R > 1500~{
m km}$

Astrophysical black holes

Stellar black holes in X-ray binaries

\sim 20 identified stellar black holes in our galaxy

< □ > < ^[] >

Astrophysical black holes

Stellar black holes in X-ray binaries

Éric Gourgoulhon (LUTH)

Astrophysical black holes

Supermassive black holes in active galactic nuclei (AGN)

Jet emitted by the nucleus of the giant elliptic galaxy M87, at the centre of Virgo cluster [HST] $M_{\rm BH}=3 imes10^9~M_{\odot}$ $V_{\rm jet}\simeq0.99\,c$

Éric Gourgoulhon (LUTH)

Black hole horizons

SN2NS, Paris, 4 Feb 2014 26 / 37

The black hole at the centre of our galaxy: Sgr A*

[ESO (2009)]

Determination of the mass of Sgr A* black hole by stellar dynamics:

 $M_{\rm BH} = 4.3 \times 10^6 \, M_\odot$

 $\begin{array}{l} \leftarrow \mbox{ Orbit of the star S2 around Sgr A*} \\ P = 16 \mbox{ yr}, \quad r_{\rm per} = 120 \mbox{ UA} = 1400 \mbox{ } R_{\rm S}, \\ V_{\rm per} = 0.02 \mbox{ } c \\ \mbox{ [Genzel, Einsenhauer & Gillessen,} \\ \mbox{ RMP 82, 3121 (2010)]} \\ \end{array}$

Outline

1 Concept of black hole and event horizon

- 2 Quasi-local horizons
- 3 Astrophysical black holes
- 4 The near-future observations of black holes

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Can we see a black hole from the Earth ?

Angular diameter of the event horizon of a Schwarzschild BH of mass *M* seen from a distance *d*:

$$\Theta = 6\sqrt{3}\,\frac{GM}{c^2d} \simeq 2.60\frac{2R_{\rm S}}{d}$$

Image of a thin accretion disk around a Schwarzschild BH

[Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)]

< □ > < 🗗 > < 🖹

Can we see a black hole from the Earth ?

Image of a thin accretion disk around a Schwarzschild BH [Vincent, Paumard, Gourgoulhon & Perrin, CQG 28, 225011 (2011)] Angular diameter of the event horizon of a Schwarzschild BH of mass M seen from a distance d:

$$\Theta = 6\sqrt{3}\,\frac{GM}{c^2 d} \simeq 2.60\frac{2R_{\rm S}}{d}$$

Largest black holes in the Earth's sky:

Sgr A* : $\Theta = 53 \ \mu as$ **M87** : $\Theta = 21 \ \mu as$ **M31** : $\Theta = 20 \ \mu as$

Image: A match a ma

Remark: black holes in X-ray binaries are $\sim 10^5$ times smaller, for $\Theta \propto M/d$

The solution to reach the μas regime: interferometry !

Existing American VLBI network [Doeleman et al. 2011]

Very Large Baseline Interferometry (VLBI) in (sub)millimeter waves

Éric Gourgoulhon (LUTH)

The solution to reach the μas regime: interferometry !

Very Large Baseline Interferometry (VLBI) in (sub)millimeter waves

The best result so far: VLBI observations at 1.3 mm have shown that the size of the emitting region in Sgr A* is only $37 \ \mu as$ [Doeleman et al., Nature

[Doeleman et al., Nature **455**, 78 (2008)]

Existing American VLBI network [Doeleman et al. 2011]

The near future: the Event Horizon Telescope

To go further:

- \bullet shorten the wavelength: $1.3\;mm \rightarrow 0.8\;mm$
- increase the number of stations; in particular add ALMA

Atacama Large Millimeter Array (ALMA) part of the Event Horizon Telescope (EHT) to be completed by 2020

< 17 ▶

The near future: the Event Horizon Telescope

Simulations of VLBI observations of Sgr A* at $\lambda = 0.8 \text{ mm}$ left: perfect image, centre: 7 stations (~ 2015), right: 13 stations (~ 2020) $a = 0, i = 30^{\circ}$

[Fish & Doeleman, Proc. IAU Symp 261 (2010)]

Near-infrared optical interferometry: GRAVITY

[Gillessen et al. 2010]

GRAVITY instrument at VLTI (2015)

Beam combiner (the four 8 m telescopes + four auxiliary telescopes) \implies astrometric precision of 10 μ as

• • • • • • • •

X-ray observations (Athena)

The accretion disk as a spacetime probe

 $\mathbf{K}\alpha$ line: X fluorescence line of Fe atoms in the accretion disk (the Fe atoms are excited by the X-ray emitted from the plasma corona surrounding the disk)

 $\mathsf{Redshift} \Rightarrow \mathsf{time\ dilatation}$

Athena scientific theme selected for ESA L2 mission

< □ > < ^[] >

 $K\alpha$ line in the nucleus of the galaxy MCG-6-30-15 observed by XMM-Newton (red) and Suzaku (black) (adapted from [Miller (2007)])

Another way to "see" BHs: gravitational waves

Link between black holes and gravitational waves: Black holes and gravitational waves are both spacetime distortions:

- extreme distortions (black holes)
- small distortions (gravitational waves)

Image: A math a math

In particular, black holes and gravitational waves are both vacuum solutions of general relativity equations (Einstein equations)

Advanced VIRGO

Advanced VIRGO: dual recycled (power + signal) interferometer with laser power \sim 125 W

[[]CNRS/INFN/NIKHEF]

- VIRGO+ decommissioned in Nov. 2011
- Construction of Advanced VIRGO underway
- First lock in 2015

< □ > < 🗗 > < 🖹

- $\bullet~{\rm Sensitivity} \sim$ 10 $\times~{\rm VIRGO}$
- \implies explored Universe volume 10^3 times larger !

eLISA

Gravitational wave detector in space \implies low frequency range: $[10^{-3}, 10^{-1}]$ Hz

[http://www.elisascience.org/]

- eLISA scientific theme selected in Nov. 2013 for ESA L3 mission \implies launch in 2028
- LISA Pathfinder to be launched in 2015

Éric Gourgoulhon (LUTH)