An introduction to polynomial interpolation

Eric Gourgoulhon

Laboratoire de l’Univers et de ses Théories (LUTH)
CNRS / Observatoire de Paris
F-92195 Meudon, France
eric.gourgoulhon@obspm.fr

School on spectral methods:
Application to General Relativity and Field Theory
Meudon, 14-18 November 2005
http://www.lorene.obspm.fr/school/
Plan

1. Introduction
2. Interpolation on an arbitrary grid
3. Expansions onto orthogonal polynomials
4. Convergence of the spectral expansions
5. References
Outline

1. Introduction
2. Interpolation on an arbitrary grid
3. Expansions onto orthogonal polynomials
4. Convergence of the spectral expansions
5. References
Basic idea: approximate functions $\mathbb{R} \rightarrow \mathbb{R}$ by polynomials

Polynomials are the only functions that a computer can evaluate exactly.

Two types of numerical methods based on polynomial approximations:

- **spectral methods**: high order polynomials on a single domain (or a few domains)
- **finite elements**: low order polynomials on many domains
Basic idea: approximate functions $\mathbb{R} \to \mathbb{R}$ by polynomials

Polynomials are the only functions that a computer can evaluate exactly.

Two types of numerical methods based on polynomial approximations:

- **spectral methods:** high order polynomials on a single domain (or a few domains)
- **finite elements:** low order polynomials on many domains
We consider real-valued functions on the compact interval $[-1,1]$:

$$f : [-1,1] \rightarrow \mathbb{R}$$

We denote

- by \mathbb{P} the set all real-valued polynomials on $[-1,1]$:

$$\forall p \in \mathbb{P}, \forall x \in [-1,1], \ p(x) = \sum_{i=0}^{n} a_i \ x^i$$

- by \mathbb{P}_N (where N is a positive integer), the subset of polynomials of degree at most N.
Is it a good idea to approximate functions by polynomials?

For continuous functions, the answer is yes:

Theorem (Weierstrass, 1885)

\[\mathbb{P} \text{ is a dense subspace of the space } C^0([−1, 1]) \text{ of all continuous functions on } [−1, 1], \text{ equiped with the uniform norm } \| \cdot \|_\infty. \]

\[^a \text{This is a particular case of the Stone-Weierstrass theorem} \]

The uniform norm or maximum norm is defined by \[\| f \|_\infty = \max_{x \in [−1, 1]} |f(x)| \]

Other phrasings:

For any continuous function on \([-1, 1], f\), and any \(\epsilon > 0\), there exists a polynomial \(p \in \mathbb{P}\) such that \(\| f - p \|_\infty < \epsilon\).

For any continuous function on \([-1, 1], f\), there exists a sequence of polynomials \((p_n)_{n \in \mathbb{N}}\) which converges uniformly towards \(f\): \[\lim_{n \to \infty} \| f - p_n \|_\infty = 0. \]
Best approximation polynomial

For a given continuous function: \(f \in C^0([-1, 1]) \), a best approximation polynomial of degree \(N \) is a polynomial \(p_N^*(f) \in \mathbb{P}_N \) such that

\[
\|f - p_N^*(f)\|_\infty = \min \{\|f - p\|_\infty, \ p \in \mathbb{P}_N\}
\]

Chebyshev's alternant theorem (or equioscillation theorem)

For any \(f \in C^0([-1, 1]) \) and \(N \geq 0 \), the best approximation polynomial \(p_N^*(f) \) exists and is unique. Moreover, there exists \(N + 2 \) points \(x_0, x_1, \ldots, x_{N+1} \) in \([-1,1]\) such that

\[
f(x_i) - p_N^*(f)(x_i) = (-1)^i \|f - p_N^*(f)\|_\infty, \quad 0 \leq i \leq N + 1
\]

or

\[
f(x_i) - p_N^*(f)(x_i) = (-1)^{i+1} \|f - p_N^*(f)\|_\infty, \quad 0 \leq i \leq N + 1
\]

Corollary: \(p_N^*(f) \) interpolates \(f \) in \(N + 1 \) points.
Illustration of Chebyshev’s alternant theorem

\[N = 1 \]

\[\| f - p_1^*(f) \|_\infty = \int_0^1 | f(x) - p_1^*(f)(x) | \, dx \]
Illustration of Chebyshev’s alternant theorem

\[N = 1 \]

\[\| f - p_1^*(f) \|_\infty = \| f - p_1^*(f) \|_\infty \]
Outline

1 Introduction

2 Interpolation on an arbitrary grid

3 Expansions onto orthogonal polynomials

4 Convergence of the spectral expansions

5 References
Interpolation on an arbitrary grid

Definition: given an integer $N \geq 1$, a grid is a set of $N + 1$ points $X = (x_i)_{0 \leq i \leq N}$ in $[-1,1]$ such that $-1 \leq x_0 < x_1 < \cdots < x_N \leq 1$. The $N + 1$ points $(x_i)_{0 \leq i \leq N}$ are called the nodes of the grid.

Theorem

Given a function $f \in C^0([-1,1])$ and a grid of $N + 1$ nodes, $X = (x_i)_{0 \leq i \leq N}$, there exist a unique polynomial of degree N, $I_N^X f$, such that

$$I_N^X f(x_i) = f(x_i), \quad 0 \leq i \leq N$$

$I_N^X f$ is called the interpolant (or the interpolating polynomial) of f through the grid X.
The interpolant $I_N^X f$ can be expressed in the \textit{Lagrange form}:

$$I_N^X f(x) = \sum_{i=0}^{N} f(x_i) \ell_i^X(x),$$

where $\ell_i^X(x)$ is the i-th \textbf{Lagrange cardinal polynomial} associated with the grid X:

$$\ell_i^X(x) := \prod_{j=0, j\neq i}^{N} \frac{x - x_j}{x_i - x_j}, \quad 0 \leq i \leq N$$

The Lagrange cardinal polynomials are such that

$$\ell_i^X(x_j) = \delta_{ij}, \quad 0 \leq i, j \leq N$$
Interpolation on an arbitrary grid

Examples of Lagrange polynomials

Uniform grid $N = 8$ \(\ell_0^X(x) \)

Lagrange polynomials
Examples of Lagrange polynomials

Uniform grid $N = 8$ \(\ell^X_1(x) \)

Lagrange polynomials
Examples of Lagrange polynomials

Uniform grid $N = 8 \quad \ell_2^X(x)$
Examples of Lagrange polynomials

Uniform grid $N = 8$ \quad $\ell_3^X(x)$

Lagrange polynomials

![Graph of Lagrange polynomials

$\ell_3^X(x)$]
Examples of Lagrange polynomials

Uniform grid \(N = 8 \) \(\ell_4^X(x) \)

Lagrange polynomials
Examples of Lagrange polynomials

Uniform grid $N = 8$ \quad $\ell_5^X(x)$
Examples of Lagrange polynomials

Uniform grid $N = 8$ \quad $\ell_6^X(x)$
Examples of Lagrange polynomials

Uniform grid $N = 8$ \[\ell_7^X(x) \]

Lagrange polynomials
Examples of Lagrange polynomials

Uniform grid \(N = 8 \) \(\ell_8^X(x) \)
Examples of Lagrange polynomials

Uniform grid $N = 8$

Lagrange polynomials
Let \(N \in \mathbb{N} \), \(X = (x_i)_{0 \leq i \leq N} \) a grid of \(N + 1 \) nodes and \(f \in C^0([−1, 1]) \).

Let us consider the interpolant \(I_X^N f \) of \(f \) through the grid \(X \).

The best approximation polynomial \(p_N^*(f) \) is also an interpolant of \(f \) at \(N + 1 \) nodes (in general different from \(X \)).

How does the error \(\| f - I_X^N f \|_\infty \) behave with respect to the smallest possible error \(\| f - p_N^*(f) \|_\infty \) ?

The answer is given by the formula:

\[
\| f - I_X^N f \|_\infty \leq (1 + \Lambda_N(X)) \| f - p_N^*(f) \|_\infty
\]

where \(\Lambda_N(X) \) is the **Lebesgue constant** relative to the grid \(X \):

\[
\Lambda_N(X) := \max_{x \in [-1,1]} \sum_{i=0}^{N} \left| \ell_i^X(x) \right|
\]
Interpolation on an arbitrary grid

Lebesgue constant

The Lebesgue constant contains all the information on the effects of the choice of \(X\) on \(\|f - I_N^X f\|_\infty\).

Theorem (Erdős, 1961)

For any choice of the grid \(X\), there exists a constant \(C > 0\) such that

\[
\Lambda_N(X) > \frac{2}{\pi} \ln(N + 1) - C
\]

Corollary: \(\Lambda_N(X) \to \infty\) as \(N \to \infty\)

In particular, for a uniform grid, \(\Lambda_N(X) \sim \frac{2^{N+1}}{eN \ln N}\) as \(N \to \infty\)!

This means that for any choice of type of sampling of \([-1, 1]\), there exists a continuous function \(f \in C^0([-1, 1])\) such that \(I_N^X f\) does not convergence uniformly towards \(f\).
Example: uniform interpolation of a “gentle” function

\[f(x) = \cos(2 \exp(x)) \] uniform grid \(N = 4 \):

\[\| f - I_4^X f \|_\infty \simeq 1.40 \]
Interpolation on an arbitrary grid

Example: uniform interpolation of a “gentle” function \(f(x) = \cos(2 \exp(x)) \) uniform grid \(N = 6 \): \(\| f - I_6^X f \|_\infty \simeq 1.05 \)

Interpolation of \(\cos(2 \exp(x)) \)
Example: uniform interpolation of a “gentle” function

\[f(x) = \cos(2 \exp(x)) \text{ uniform grid } N = 8 : \| f - I_8^x f \|_\infty \simeq 0.13 \]
Example: uniform interpolation of a "gentle" function

\[f(x) = \cos(2 \exp(x)) \] uniform grid \(N = 12 \) : \(\| f - I_{12}^X f \|_\infty \approx 0.13 \)
Example: uniform interpolation of a “gentle” function

\[f(x) = \cos(2 \exp(x)) \] uniform grid \(N = 16 : \| f - I_{16}^X f \|_\infty \approx 0.025 \]
Example: uniform interpolation of a “gentle” function

\[f(x) = \cos(2 \exp(x)) \] uniform grid \(N = 24 \) : \(\| f - I_{24}^X f \|_\infty \approx 4.6 \times 10^{-4} \)
$f(x) = \frac{1}{1 + 16x^2}$

uniform grid $N = 4$: $\| f - I^X_4 f \|_\infty \simeq 0.39$
$f(x) = \frac{1}{1 + 16x^2}$

uniform grid $N = 6$: $\| f - I_X^6 f \|_\infty \simeq 0.49$
Runge phenomenon

\[f(x) = \frac{1}{1 + 16x^2} \quad \text{uniform grid } N = 8 : \| f - I_8^X f \|_\infty \simeq 0.73 \]
Interpolation on an arbitrary grid

Runge phenomenon

\[f(x) = \frac{1}{1 + 16x^2} \quad \text{uniform grid } N = 12 : \|f - I_{12}^X f\|_{\infty} \approx 1.97 \]
Runge phenomenon

\[f(x) = \frac{1}{1 + 16x^2} \quad \text{uniform grid } N = 16 : \|f - I_{16}^X f\|_\infty \simeq 5.9 \]
Interpolation on an arbitrary grid

Runge phenomenon

\[f(x) = \frac{1}{1 + 16x^2} \quad \text{uniform grid } N = 24 : \| f - I_{24}^x f \|_\infty \simeq 62 \]
Evaluation of the interpolation error

Let us assume that the function f is sufficiently smooth to have derivatives at least up to the order $N + 1$, with $f^{(N+1)}$ continuous, i.e. $f \in C^{N+1}([-1, 1])$.

Theorem (Cauchy)

If $f \in C^{N+1}([-1, 1])$, then for any grid X of $N + 1$ nodes, and for any $x \in [-1, 1]$, the interpolation error at x is

$$ f(x) - I_X^N(x) = \frac{f^{(N+1)}(\xi)}{(N+1)!} \omega_{N+1}^X(x) $$

where $\xi = \xi(x) \in [-1, 1]$ and $\omega_{N+1}^X(x)$ is the nodal polynomial associated with the grid X.

Definition: The nodal polynomial associated with the grid X is the unique polynomial of degree $N + 1$ and leading coefficient 1 whose zeros are the $N + 1$ nodes of X:

$$ \omega_{N+1}^X(x) := \prod_{i=0}^{N} (x - x_i) $$
Example of nodal polynomial

Uniform grid \(N = 8 \)
In Eq. (1), we have no control on $f^{(N+1)}$, which can be large.
For example, for $f(x) = 1/(1 + \alpha^2 x^2)$, $\|f^{(N+1)}\|_{\infty} = (N + 1)! \alpha^{N+1}$.

Idea: choose the grid X so that $\omega_{N+1}^X(x)$ is small, i.e. $\|\omega_{N+1}^X\|_{\infty}$ is small.

Notice: $\omega_{N+1}^X(x)$ has leading coefficient 1: $\omega_{N+1}^X(x) = x^{N+1} + \sum_{i=0}^{N} a_i x^i$.

Theorem (Chebyshev)

Among all the polynomials of degree $N + 1$ and leading coefficient 1, the unique polynomial which has the smallest uniform norm on $[-1, 1]$ is the $(N + 1)$-th Chebyshev polynomial divided by 2^N: $T_{N+1}(x)/2^N$.

Since $\|T_{N+1}\|_{\infty} = 1$, we conclude that if we choose the grid nodes $(x_i)_{0 \leq i \leq N}$ to be the $N + 1$ zeros of the Chebyshev polynomial T_{N+1}, we have

$$\|\omega_{N+1}^X\|_{\infty} = \frac{1}{2^N}$$

and this is the smallest possible value.
The grid $X = (x_i)_{0 \leq i \leq N}$ such that the x_i's are the $N + 1$ zeros of the Chebyshev polynomial of degree $N + 1$ is called the Chebyshev-Gauss (CG) grid. It has much better interpolation properties than the uniform grid considered so far. In particular, from Eq. (1), for any function $f \in C^{N+1}([-1, 1])$,

$$
\| f - I_{CG}f \|_\infty \leq \frac{1}{2^N(N+1)!} \| f^{(N+1)} \|_\infty
$$

If $f^{(N+1)}$ is uniformly bounded, the convergence of the interpolant I_{CG}^nf towards f when $N \to \infty$ is then extremely fast. Also the Lebesgue constant associated with the Chebyshev-Gauss grid is small:

$$
\Lambda_N(CG) \sim \frac{2}{\pi} \ln(N+1) \quad \text{as} \quad N \to \infty
$$

This is much better than uniform grids and close to the optimal value.
Example: Chebyshev-Gauss interpolation of $f(x) = \frac{1}{1+16x^2}$

$\| f - I_4^{CG} f \|_\infty \approx 0.31$
Example: Chebyshev-Gauss interpolation of \(f(x) = \frac{1}{1 + 16x^2} \)

\[f(x) = \frac{1}{1 + 16x^2} \quad \text{CG grid } N = 6 : \| f - I_{6}^{CG} f \|_{\infty} \approx 0.18 \]
Interpolation on an arbitrary grid

Example: Chebyshev-Gauss interpolation of \(f(x) = \frac{1}{1 + 16x^2} \)

\(f(x) = \frac{1}{1 + 16x^2} \) \quad \text{CG grid } N = 8 : \| f - I^\text{CG}_8 f \|_\infty \approx 0.10
Example: Chebyshev-Gauss interpolation of \(f(x) = \frac{1}{1 + 16x^2} \)

CG grid \(N = 12 \): \(\| f - I_{12}^{CG} f \|_\infty \simeq 3.8 \times 10^{-2} \)
Example: Chebyshev-Gauss interpolation of \(f(x) = \frac{1}{1+16x^2} \)

CG grid \(N = 16 \) : \(\| f - I_{16}^{CG} f \|_\infty \simeq 1.5 \times 10^{-2} \)
Interpolation on an arbitrary grid

Example: Chebyshev-Gauss interpolation of \(f(x) = \frac{1}{1+16x^2} \)

\[f(x) = \frac{1}{1+16x^2} \]

CG grid \(N = 24 \): \(\| f - I_{24}^{CG} f \|_\infty \approx 2.0 \times 10^{-3} \)

no Runge phenomenon!
Interpolation on an arbitrary grid

Example: Chebyshev-Gauss interpolation of $f(x) = \frac{1}{1+16x^2}$

Variation of the interpolation error as N increases
The Chebyshev polynomials, the zeros of which provide the Chebyshev-Gauss nodes, constitute a family of orthogonal polynomials, and the Chebyshev-Gauss nodes are associated to Gauss quadratures.
Outline

1. Introduction
2. Interpolation on an arbitrary grid
3. Expansions onto orthogonal polynomials
4. Convergence of the spectral expansions
5. References
Hilbert space $L^2_w(-1, 1)$

Framework: Let us consider the functional space

$$L^2_w(-1, 1) = \left\{ f : (-1, 1) \to \mathbb{R}, \quad \int_{-1}^{1} f(x)^2 w(x) \, dx < \infty \right\}$$

where $w : (-1, 1) \to (0, \infty)$ is an integrable function, called the weight function.

$L^2_w(-1, 1)$ is a Hilbert space for the scalar product

$$(f|g)_w := \int_{-1}^{1} f(x) g(x) w(x) \, dx$$

with the associated norm

$$\|f\|_w := (f|f)_w^{1/2}$$
Orthogonal polynomials

The set \mathbb{P} of polynomials on $[-1, 1]$ is a subspace of $L^2_w(-1, 1)$. A family of orthogonal polynomials is a set $(p_i)_{i \in \mathbb{N}}$ such that

- $p_i \in \mathbb{P}$
- $\deg p_i = i$
- $i \neq j \Rightarrow (p_i | p_j)_w = 0$

$(p_i)_{i \in \mathbb{N}}$ is then a basis of the vector space \mathbb{P}: $\mathbb{P} = \text{span} \{ p_i, i \in \mathbb{N} \}$

Theorem

A family of orthogonal polynomial $(p_i)_{i \in \mathbb{N}}$ is a Hilbert basis of $L^2_w(-1, 1)$:

$$\forall f \in L^2_w(-1, 1), \quad f = \sum_{i=0}^{\infty} \tilde{f}_i p_i$$

with $\tilde{f}_i := \frac{(f | p_i)_w}{\|p_i\|_w^2}$.

The above infinite sum means

$$\lim_{N \to \infty} \left\| f - \sum_{i=0}^{N} \tilde{f}_i p_i \right\|_w = 0$$
Jacobi polynomials

Jacobi polynomials are orthogonal polynomials with respect to the weight

\[w(x) = (1 - x)^\alpha (1 + x)^\beta \]

Subcases:

- **Legendre polynomials** \(P_n(x) \): \(\alpha = \beta = 0 \), i.e. \(w(x) = 1 \)
- **Chebyshev polynomials** \(T_n(x) \): \(\alpha = \beta = -\frac{1}{2} \), i.e. \(w(x) = \frac{1}{\sqrt{1 - x^2}} \)

Jacobi polynomials are eigenfunctions of the singular\(^1\) **Sturm-Liouville problem**

\[-\frac{d}{dx} \left[(1 - x^2) w(x) \frac{du}{dx} \right] = \lambda w(x) u, \quad x \in (-1, 1) \]

\(^1\) *singular* means that the coefficient in front of \(du/dx \) vanishes at the extremities of the interval \([-1, 1]\)
Legendre polynomials

Expansions onto orthogonal polynomials

Legendre polynomials

\[w(x) = 1: \quad \int_{-1}^{1} P_i(x)P_j(x) \, dx = \frac{2}{2i + 1} \delta_{ij} \]

\[P_0(x) = 1 \]
\[P_1(x) = x \]
\[P_2(x) = \frac{1}{2} (3x^2 - 1) \]
\[P_3(x) = \frac{1}{2} (5x^3 - 3x) \]
\[P_4(x) = \frac{1}{8} (35x^4 - 30x^2 + 3) \]
\[P_{i+1}(x) = \frac{2i+1}{i+1} x P_i(x) - \frac{i}{i+1} P_{i-1}(x) \]

Legendre polynomials up to N=8
Expansions onto orthogonal polynomials

Chebyshev polynomials

\[w(x) = \frac{1}{\sqrt{1 - x^2}}: \quad \int_{-1}^{1} T_i(x)T_j(x) \frac{dx}{\sqrt{1 - x^2}} = \frac{\pi}{2} (1 + \delta_{0i}) \delta_{ij} \]

\[T_0(x) = 1 \]
\[T_1(x) = x \]
\[T_2(x) = 2x^2 - 1 \]
\[T_3(x) = 4x^3 - 3x \]
\[T_4(x) = 8x^4 - 8x^2 + 1 \]

\[\cos(n\theta) = T_n(\cos \theta) \]

\[T_{i+1}(x) = 2xT_i(x) - T_{i-1}(x) \]
Legendre and Chebyshev compared

[from Fornberg (1998)]
Let us consider \(f \in L^2_w(-1, 1) \) and a family \((p_i)_{i \in \mathbb{N}} \) of orthogonal polynomials with respect to the weight \(w \).

Since \((p_i)_{i \in \mathbb{N}} \) is a Hilbert basis of \(L^2_w(-1, 1) \), we have \(f(x) = \sum_{i=0}^{\infty} \tilde{f}_i \, p_i(x) \) with \(\tilde{f}_i := \frac{(f|p_i)_w}{\|p_i\|_w^2} \).

The truncated sum

\[
\Pi_N^w f(x) := \sum_{i=0}^{N} \tilde{f}_i \, p_i(x)
\]

is a polynomial of degree \(N \): it is the orthogonal projection of \(f \) onto the finite dimensional subspace \(\mathbb{P}_N \) with respect to the scalar product \((\cdot|\cdot)_w \).

We have

\[
\lim_{N \to \infty} \|f - \Pi_N^w f\|_w = 0
\]

Hence \(\Pi_N^w f \) can be considered as a polynomial approximation of the function \(f \).
Example: Chebyshev projection of $f(x) = \cos(2 \exp(x))$

$$f(x) = \cos(2 \exp(x)) \quad w(x) = (1 - x^2)^{-1/2} \quad N = 4 : \|f - \Pi_4^w f\|_\infty \approx 0.66$$
Example: Chebyshev projection of $f(x) = \cos(2 \exp(x))$

\[f(x) = \cos(2 \exp(x)) \quad w(x) = (1 - x^2)^{-1/2} \quad N = 6 : \| f - \Pi_6^w f \|_\infty \approx 0.30 \]
Example: Chebyshev projection of $f(x) = \cos(2 \exp(x))$

$f(x) = \cos(2 \exp(x)) \quad w(x) = (1 - x^2)^{-1/2} \quad N = 8 : \| f - \Pi_8^w f \|_\infty \approx 4.9 \times 10^{-2}$
Example: Chebyshev projection of $f(x) = \cos(2 \exp(x))$

\[
f(x) = \cos(2 \exp(x)) \quad w(x) = (1 - x^2)^{-1/2} \quad N = 12 : \|f - \Pi_{12}^w f\|_\infty \simeq 6.1 \times 10^{-3}
\]
Example: Chebyshev projection of $f(x) = \cos(2 \exp(x))$

Variation of the projection error $\|f - \Pi_N^w f\|_\infty$ as N increases.
The coefficients \tilde{f}_i of the orthogonal projection of f are given by

$$
\tilde{f}_i := \frac{(f|p_i)_w}{\|p_i\|^2_w} = \frac{1}{\|p_i\|^2_w} \int_{-1}^{1} f(x) p_i(x) w(x) \, dx
$$

(2)

Problem: the above integral cannot be computed exactly; we must seek a numerical approximation.

Solution: Gaussian quadrature
Theorem (Gauss, Jacobi)

Let \((p_i)_{i \in \mathbb{N}}\) be a family of orthogonal polynomials with respect to some weight \(w\). For \(N > 0\), let \(X = (x_i)_{0 \leq i \leq N}\) be the grid formed by the \(N + 1\) zeros of the polynomial \(p_{N+1}\) and

\[
w_i := \int_{-1}^{1} \ell^X_i(x) w(x) \, dx
\]

where \(\ell^X_i\) is the \(i\)-th Lagrange cardinal polynomial of the grid \(X\).

Then

\[
\forall f \in \mathbb{P}_{2N+1}, \quad \int_{-1}^{1} f(x) w(x) \, dx = \sum_{i=0}^{N} w_i f(x_i)
\]

If \(f \not\in \mathbb{P}_{2N+1}\), the above formula provides a good approximation of the integral.
The nodes of the Gauss quadrature, being the zeros of p_{N+1}, do not encompass the boundaries -1 and 1 of the interval $[-1,1]$. For numerical purpose, it is desirable to include these points in the boundaries.

This possible at the price of reducing by 2 units the degree of exactness of the Gauss quadrature.
Theorem (Gauss-Lobatto quadrature)

Let \((p_i)_{i \in \mathbb{N}}\) be a family of orthogonal polynomials with respect to some weight \(w\). For \(N > 0\), let \(X = (x_i)_{0 \leq i \leq N}\) be the grid formed by the \(N + 1\) zeros of the polynomial

\[q_{N+1} = p_{N+1} + \alpha p_N + \beta p_{N-1}\]

where the coefficients \(\alpha\) and \(\beta\) are such that \(x_0 = -1\) and \(x_N = 1\).

Let

\[w_i := \int_{-1}^{1} \ell_i^X(x) w(x) \, dx\]

where \(\ell_i^X\) is the \(i\)-th Lagrange cardinal polynomial of the grid \(X\).

Then

\[\forall f \in \mathbb{P}_{2N-1}, \quad \int_{-1}^{1} f(x) w(x) \, dx = \sum_{i=0}^{N} w_i f(x_i)\]

Notice: \(f \in \mathbb{P}_{2N-1}\) instead of \(f \in \mathbb{P}_{2N+1}\) for Gauss quadrature.
Remark: if the \((p_i)\) are Jacobi polynomials, i.e. if \(w(x) = (1 - x)^{\alpha}(1 + x)^{\beta}\), then the Gauss-Lobatto nodes which are strictly inside \((-1, 1)\), i.e. \(x_1, \ldots, x_{N-1}\), are the \(N - 1\) zeros of the polynomial \(p'_N\), or equivalently the points where the polynomial \(p_N\) is extremal.

This of course holds for Legendre and Chebyshev polynomials. For Chebyshev polynomials, the Gauss-Lobatto nodes and weights have simple expressions:

\[
x_i = -\cos\left(\frac{\pi i}{N}\right), \quad 0 \leq i \leq N
\]

\[
w_0 = w_N = \frac{\pi}{2N}, \quad w_i = \frac{\pi}{N}, \quad 1 \leq i \leq N - 1
\]

Note: in the following, we consider only Gauss-Lobatto quadratures
The Gauss-Lobatto quadrature motivates the introduction of the following scalar product:

$$\langle f|g \rangle_N = \sum_{i=0}^{N} w_i f(x_i)g(x_i)$$

It is called the discrete scalar product associated with the Gauss-Lobatto nodes $X = (x_i)_{0 \leq i \leq N}$.

Setting $\gamma_i := \langle p_i|p_i \rangle_N$, the discrete coefficients associated with a function f are given by

$$\hat{f}_i := \frac{1}{\gamma_i} \langle f|p_i \rangle_N, \quad 0 \leq i \leq N$$

which can be seen as approximate values of the coefficients \tilde{f}_i provided by the Gauss-Lobatto quadrature [cf. Eq. (2)]
Let $I_{N}^{\text{GL}} f$ be the interpolant of f at the Gauss-Lobatto nodes $X = (x_i)_{0 \leq i \leq N}$. Being a polynomial of degree N, it is expandable as

$$I_{N}^{\text{GL}} f(x) = \sum_{i=0}^{N} a_i p_i(x)$$

Then, since $I_{N}^{\text{GL}} f(x_j) = f(x_j)$,

$$\hat{f}_i = \frac{1}{\gamma_i} \langle f | p_i \rangle_N = \frac{1}{\gamma_i} \langle I_{N}^{\text{GL}} f | p_i \rangle_N = \frac{1}{\gamma_i} \sum_{j=0}^{N} a_j \langle p_j | p_i \rangle_N$$

Now, if $j = i$, $\langle p_j | p_i \rangle_N = \gamma_i$ by definition. If $j \neq i$, $p_j p_i \in \mathbb{P}_{2N-1}$ so that the Gauss-Lobatto formula holds and gives $\langle p_j | p_i \rangle_N = (p_j | p_i)_w = 0$. Thus we conclude that $\langle p_j | p_i \rangle_N = \gamma_i \delta_{ij}$ so that the above equation yields $\hat{f}_i = a_i$, i.e. the discrete coefficients are nothing but the coefficients of the expansion of the interpolant at the Gauss-Lobatto nodes.
In a spectral method, the numerical representation of a function f is through its interpolant at the Gauss-Lobatto nodes:

$$I_{GL}^N f(x) = \sum_{i=0}^{N} \hat{f}_i p_i(x)$$

The discrete coefficients \hat{f}_i are computed as

$$\hat{f}_i = \frac{1}{\gamma_i} \sum_{j=0}^{N} w_j f(x_j) p_i(x_j)$$

$I_{GL}^N f(x)$ is an approximation of the truncated series $\Pi_{N}^w f(x) = \sum_{i=0}^{N} \tilde{f}_i p_i(x)$, which is the orthogonal projection of f onto the polynomial space \mathbb{P}_N. $\Pi_{N}^w f$ should be the true spectral representation of f, but in general it is not computable exactly.

The difference between $I_{GL}^N f$ and $\Pi_{N}^w f$ is called the aliasing error.
Example: aliasing error for \(f(x) = \cos(2 \exp(x)) \)

\[
f(x) = \cos(2 \exp(x)) \quad w(x) = (1 - x^2)^{-1/2} \quad N = 4
\]

red: \(f \); blue: \(\Pi_N^w f \); green: \(I^G_L N f \)
Example: aliasing error for $f(x) = \cos(2 \exp(x))$

$$f(x) = \cos(2 \exp(x)) \quad w(x) = (1 - x^2)^{-1/2} \quad N = 6$$

red: f; blue: $\Pi_N^w f$; green: $I_N^{GL} f$
Expansions onto orthogonal polynomials

Example: aliasing error for $f(x) = \cos(2 \exp(x))$

\[
f(x) = \cos(2 \exp(x)) \quad w(x) = (1 - x^2)^{-1/2} \quad N = 8
\]

red: f; blue: $\Pi_N^w f$; green: $I_N^{\text{GL}} f$
Example: aliasing error for $f(x) = \cos(2 \exp(x))$

\[f(x) = \cos(2 \exp(x)) \quad w(x) = (1 - x^2)^{-1/2} \quad N = 12 \]
Aliasing error = contamination by high frequencies

Aliasing of a $\sin(x)$ wave by a $\sin(5x)$ wave on a 4-points grid
Outline

1. Introduction
2. Interpolation on an arbitrary grid
3. Expansions onto orthogonal polynomials
4. Convergence of the spectral expansions
5. References
Let us consider a function \(f \in C^m([-1, 1]) \), with \(m \geq 0 \).

The **Sobolev norm** of \(f \) with respect to some weight function \(w \) is

\[
\| f \|_{H^m_w} := \left(\sum_{k=0}^{m} \| f^{(k)} \|_w^2 \right)^{1/2}
\]
Convergence of the spectral expansions

Convergence rates for \(f \in C^m([-1, 1]) \)

Chebyshev expansions:
- Truncation error:
 \[
 \|f - \Pi_N^w f\|_w \leq \frac{C_1}{N^m} \|f\|_{H_w^m} \quad \text{and} \quad \|f - \Pi_N^w f\|_\infty \leq \frac{C_2 (1 + \ln N)}{N^m} \sum_{k=0}^m \|f^{(k)}\|_\infty
 \]
- Interpolation error:
 \[
 \|f - I_N^{GL} f\|_w \leq \frac{C_3}{N^m} \|f\|_{H_w^m} \quad \text{and} \quad \|f - I_N^{GL} f\|_\infty \leq \frac{C_4}{N^{m-1/2}} \|f\|_{H_w^m}
 \]

Legendre expansions:
- Truncation error:
 \[
 \|f - \Pi_N^w f\|_w \leq \frac{C_1}{N^m} \|f\|_{H_w^m} \quad \text{and} \quad \|f - \Pi_N^w f\|_\infty \leq \frac{C_2}{N^{m-1/2}} V(f^{(m)})
 \]
- Interpolation error:
 \[
 \|f - I_N^{GL} f\|_w \leq \frac{C_3}{N^{m-1/2}} \|f\|_{H_w^m}
 \]
If \(f \in C^\infty([-1, 1]) \), the error of the spectral expansions \(\Pi_N^w f \) or \(I_N^{GL} f \) decays more rapidly than any power of \(N \).

In practice: **exponential decay**

This error is called **evanescent**.
Convergence of the spectral expansions

For non-smooth functions: Gibbs phenomenon

Extreme case: f discontinuous
References