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Symmetries of the extreme Reissner-Nordstrdm black hole

The extreme Reissner-Nordstrom (ERN) black hole

ERN = static and spherically symmetric solution (.#, g, F) to the electrovacuum

Einstein-Maxwell equations
In a patch R x (0, +-00) x S? spanned by Schwarzschild-like coordinates (¢,7,0, p):

M\? M\
g=— <1 - > de* + (1 - > dr® + r? (d6” + sin® 0dy?)
T T

F=— %dt/\dr—FPsinQdO/\dgo
r

where the electric charge Q and the magnetic charge P obey /Q? + P2 = M.

= describes a black hole with the event horizon located at r = M.
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Carter-Penrose diagram of ERN maximal analytic extension

Compactified diagram of the maximal analytic extension of the ERN
spacetime [Carter, Phys. Lett. 21, 423 (1966)]

Eddington-Finkelstein-type (EF) coordinates:

: r(r—2M) r
- out uc=1— 1y, o= ———=+2M1 ‘——1‘
outgoing: u T T i + n i
- ingoing: v :=1t 4 r,

o . u v
Compactified coordinates: U := arctan (W) V = arctan (W)

i%: spatial infinity
il: internal infinity (infinitely long throat along any ¢ = const
hypersuface)

’
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Symmetries of the extreme Reissner-Nordstrdm black hole

The degenerate event horizon

The black hole event horizon #" is the hypersurface r = M in a ingoing patch (v,r,6, ¢).
1 is a degenerate Killing horizon with respect to the Killing vector £ = 8; = 9, J

an
degenerate Killing horizon <= surface gravity x, defined by V¢£ - k&, is vanishing:

k=20

. . . At
— & is a geodesic vector field on J#1: V£ 7= 0
= v is an affine parameter along the null geodesic generators of %"

— the null geodesic generators of " are complete geodesics (no bifurcation surface);
internal infinity ' = limit v — —oo along the null geodesic generators of .77+

& is null on J#ZT and is timelike both in the black hole exterior and in the black hole interior
(contrary to Schwarzschild)
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Near-horizon geometry

“Near-horizon magnifying” coordinates (¢ # 0): =

™

r=: M(1+¢eR)

e—0

At fixed (T, R), lim t = 400 and limr = M
e—0

R? dRr?
_ 2 2 2 2 2 : 2 2
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https://doi.org/10.1007/s10714-009-0888-5

Near-horizon geometry

t
T:= ‘U t=: ]\4I
“Near-horizon magnifying” coordinates (¢ # 0): M — €
R:= :M r=:M(l +¢R)

e—0
— g=M> —Lde + (14 €R)? Llin + (1 +eR)? (d6? + sin? 0dy?)
(14+eR)? R2

At fixed (T, R), lim t = 400 and hH(l)T =M

Near-horizon (NHERN) metric: h = lirr(l)g = product metric of AdSy x S? [Carter 1973]:
E—

d 2
h— M2<—R2dT2 R +d92 + sin? fd )
—_———

VT 2
AdS2 S

also known as Bertotti-Robinson metric — another solution (1959) to the electrovacuum
Einstein-Maxwell equations.
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Symmetries of the extreme Reissner-Nordstrém black hole

Near-horizon region mapped to AdS,

E. Gourgoulhon (LUX)

Symmetries and peeling in ERN

(T, R) are Poincaré coordinates in a Poincaré
patch JVSE of AdS,, bounded by the Poincaré
horizon J# at R = 0.

Global AdS; coordinates: (7,x) € Rx (—5,%)

sin 7
T = f
cos T + sin
such that . X
Ro— COST + sin x

cos X

Both the ERN horizon and the Poincaré horizon
are degenerate Killing horizons.
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Near-horizon enhanced symmetries

2
NHERN metric: h = M? <—R2dT2 + dr”

7z +d0” + sin® (9dg02>

Killing vectors of the AdSs sector:
@ & = Or < inherited from ENR stationarity

R
@ £, =T0r — ROp < generates the isometries (T, R) — (aT, ) a>0
(6

@ &3 = % (T2 + %) Or — RTOr < from the global stationarity of AdSs: &3 = 8, — %51
One has
(§2,&1] = —&1, [§2,&3] =83, [61,&] =& = sl(2,R) algebra

E. Gourgoulhon (LUX) Symmetries and peeling in ERN Tours, 2 July 2025 9/27



Near-horizon enhanced symmetries

d 2
NHERN metric: h = M? <—R2dT2 + dr

7z +d0” + sin® (9dg02>

Killing vectors of the AdSs sector:
@ & = Or < inherited from ENR stationarity

@ £, =T0r — ROp < generates the isometries (T, R) — <aT, R), a>0
(6

@ &3 = % (T2 + %) Or — RTOr < from the global stationarity of AdSs: &3 = 8, — %51
One has
(§2,&1] = —&1, [§2,&3] =83, [61,&] =& = sl(2,R) algebra

Isometry groups

GERN =R x 80(3) GNHERN = SL(Q,R) X SO(3)

dim GERN =1 dim GNHERN =6
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A peculiar feature of ERN: the Couch-Torrence inversion

The map @ : Ext — Ext defined by

rM
O(t,r, 0 =t ——.0
(7"”’ ’(p) <’T‘_M7 7(70>

or equivalently by

q)(t7 D) 07 QD) = (tu —Tx, 07 90)
;0 is an involution that fixes the photon sphere {r = 2M}
and interchanges 7 and .# T, as well as .77~ and ./ .
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A peculiar feature of ERN: the Couch-Torrence inversion

The map @ : Ext — Ext defined by

rM
O(t,r, 0 =t ——.0
(7"”’ ’(p) <’T‘_M7 7(70>

or equivalently by

q)(t7 D) 07 QD) = (tu —Tx, 07 90)
;0 is an involution that fixes the photon sphere {r = 2M}
and interchanges 7 and .# T, as well as .77~ and ./ .

® is a conformal isometry of the exterior region:

M2
(=) ?
[Couch & Torrence, Gen. Relat. Gravit. 16, 789 (1984)]

d*g =
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© The peeling property and its variants
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Peeling in Minkowski spacetime

Peeling of massless fields (Sachs, 1961)

An outgoing massless field ¥ of spin s, along a null geodesic .Z to .# T, can be expanded as
2s—1 1
¥= Y 40 ()

where r is an affine parameter along £ and Wy, has 2s — k principal null directions (PND)
that coincide with the null tangent to .Z.

N I 1
0 s5=1U=F £PND < (“F,uly =0, F=+2+O<3>
T T T

N III o I 1
°5=2 W=CLPND < (U Cppaly =0, C=""+"5+ 5+ +O<>
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Extending the peeling to asymptotically flat spacetimes

Penrose conformal completion

Physical spacetime manifold (.7, g) admits a conformal completion at infinity iff 3 a
Lorentzian manifold (.7, §) with boundary .# and a smooth function Q : .# — R™ such that

o ./ is the interior of .4 M = .M .7
e on.Z,>0and g =0%
eon.?, Q=0and d2#0

Penrose reformulation of peeling (1965)

The peeling property of W is equivalent to the conformally rescaled ¥ extending to a
continuous field at .#.

This works well for Minkowski, which has a fully regular conformal compactification in the
Einstein cylinder R x S3, including at spatial infinity i°.
But, for a curved spacetime, i° is in general a singular point and it is not clear whether the

peeling of massless fields holds for a sufficiently generic class of initial data...
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The peeling a la Mason-Nicolas

Penrose peeling involves an expansion in powers of 1/r inherited from a Taylor expansion of the
field that is assumed to be C* at .#*. Now, the initial value problem of hyperbolic equations is
ill-posed in C* spaces, so it is difficult to characterize the class of initial data that give rise to
such a peeling.

In 2009, L. Mason & J.-P. Nicolas [J. Inst. Math. Jussieu 8, 179] have reformulated the peeling in
Schwarzschild spacetime by characterizing the regularity at .# ™ in terms of Sobolev-type
spaces, via energy fluxes with respect to the Morawetz vector field.

Sobolev norms are adapted to the initial value problem for hyperbolic equations and Mason &
Nicolas could provide a complete description of the class of initial data on a Cauchy
hypersurface that give rise to a peeling at any order at .# .

We are going to consider Mason-Nicolas peeling in ERN spacetime )
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Peeling for the wave equation in ERN spacetime
Outline

© Peeling for the wave equation in ERN spacetime
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Peeling for the wave equation in ERN spacetime

The conformal wave equation

Massless field equations are conformally invariant. Here we focus on the spin s = 0 case, i.e. a

scalar field.

On spacetime (.#,g), the conformal wave equation for a scalar field ¢ is
R
where (g := V,V# and R is the Ricci scalar of g.

(1) is conformally invariant: if § = Q?g,

(1) < Og6 -

%é:()foré::grl(p
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Conformal completion of ERN

M 2
ERN in outgoing EF (u:=t—17,): g = — (1 — ) du® — 2dudr + r* (d6? + sin® 0dp?)
T

Choice of conformal factor: Q) = 1/r
— same as for conformal completion of Schwarzschild introduced by Penrose (1965)
— different from the standard one for Minkowski: © = 2[(1 + (t — 7)2)(1 + (t 4+ 7)?)] /2

In terms of the coordinates (u, R, 0, p) where R := 1/r, Q@ = R and the conformal metric is
§=R?’9 = —R*(1 - MR)?du? + 2dudR + d#?* + sin? Adp?

— 7 is the hypersurface R = 0 and is spanned by the coordinates (u, 6, ©)
NB: i® remains at infinity, at w — —oo on each slice t = const.
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Peeling for the wave equation in ERN spacetime

The conformal wave equation on ERN

For ERN (as for any electrovacuum solution in 4-dim GR), R =0

—> conformal wave equation (1) reduces to g¢ =0
But R = 12MR(MR — 1) # 0 and the conformal wave equation becomes

Og¢+2MR(1 - MR)¢=0, ¢:=R 1o, (2)
with R
. o2 d R
Og ¢ =2 - 5§%+@ (RQ(I—MR)2£> + Ag2¢)

Characterize the regularity at .#* of the solution ¢ in terms of the regularity and decay of the
initial data on a Cauchy hypersurface X.

Tours, 2 July 2025 18 /27
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Focusing on a neighborhood of °

In order to control the regularity of ¢ at .# ™, it suffices to control it in a neighborhood of °:
provided the initial data have the correct regularity away from i, the regularity of ¢ can be
seen to extend to the whole of /.

Choose the Cauchy hypersurface 3¢ = {t = 0}

For ug < —M, define the neighborhood of i° in the future of ¥ by

Quy = {u < g, t > 0}
The boundary of €, is made of 3 parts:

Eo,uozzomguoy j1jg:'j+mgu0? SuO:{u:’U,O}mQuo
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The Morawetz vector field and the associated energy current

Consider the vector field
K := 4?9, — 2(1 + uR)dp

In terms of (u, R) coordinates, K has the same expression as the conformal Killing vector
u?d, + v, of Minkowski spacetime introduced by C. Morawetz (1962) to establish decay
properties of solutions to the wave equation in flat space.

One cas show that K is future-directed timelike in a neighborhood of 7°.
Moreover, K is transverse to . 1.
For Minkowski, K is a Killing vector of g = R?g. Not here, except at .#* and 7°.
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The Morawetz-based field energy through a hypersurface

Consider the energy-momentum tensor of the free wave equation ngﬁ =0, namely
. NEDSUEOE I
Tab(d’) = vad’ Vb¢ - ivc(b Vcd) Gab

and define the current

J () is not conserved since V%.J,(¢) = T, V@ K®) —
but one can control the r.h.s. in a neighborhood of 7°.

Given an oriented hypersurface .7 of .#, define the “energy” Sy(gzg) = / *J ()
52
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The peeling property at .# "

[Borthwick, EG, Nicolas, J. Hyper. Diff. Eq. 22, 29 (2025)]

Let k € N and ¢ a solution to the conformal wave equation (2). Then

o (8;1%V§2q3) + 53%(8}1%V§2§5) < +oo for all p,q €N, p+ q < k if and only if the initial data
uQ

(¢,8:8) = (¢o, d1) on g is chosen in the completion of
C§° ([—uo, +00[r, xS?) x C§°([—uo, +00lr, xS?) in the norm:

G-

where L is the operator defined by L =

o
> s | LVE | :

p+q<k ¢1

r2
_mar*
— 02 — Age — 2 (1

In this case we say that ¢ peels at order & at infinity.

T

M) _FTQ O
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@ Peeling at the ERN horizon
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The Couch-Torrence inversion as an isometry of g

The Couch-Torrence inversion

P Ext — Ext
(t7R797Q0) — (t7 ﬁ 7 R79atp)

is an isometry of the ERN conformal metric § = R2g:

~

o*g =g,

which obeys
(AT)= 7T
[Borthwick, EG, Nicolas, J. Hyper. Diff. Eq. 22, 29 (2025)]

— allows one to establish a peeling property at the
ERN horizon, from that already obtained at .# ™
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Towards the peeling at S#*: a neighborhood of !

Consider ingoing EF coordinates (v, R, 0, ¢) on Ext

The Couch-Torrence inversion maps ¥ to the internal infinity i!

il is the limit v — —o0 along J#+

Choose the Cauchy hypersurface 3¢ = {t = 0}

For vg < —M, define the neighborhood of i! in the future of ¥ by

Qy, = {v < g, t >0}
The boundary of €, is made of 3 parts:

EO,UO = E0 N QU(); %;r = %+ N Qvoa 5‘~’UO = {U = UO} N Q’UO
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The peeling property at "

[Borthwick, EG, Nicolas, J. Hyper. Diff. Eq. 22, 29 (2025)]

Let k € N and ¢ a solution to the conformal wave equation (2). Then

gﬁﬁﬁ (8}7%V§2q3) +8~5U0(8}2V§2§5) < +oo forall p,qg €N, p+q < k if and only if the initial data

(¢, 8:8) = (¢o, d1) on g is chosen in the completion of

Cs°(] — 00, vo)r, X S?) x C§°(] — 00, vg)r, x S?) in the norm:

- o
Z 520,1)0 qu§2 A ’
p+q<k ®1
7ﬁ2
[i - i ~ 7y O
where L is the operator defined by L =
Fy0r + B + 2L (14

In this case we say that ¢ peels at order k at the event horizon J#+.
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__________________________Peclingatthe ERN horizon |
Perspectives

e Extend peeling at horizon to extreme Kerr black hole, but no Couch-Torrence (conformal)
isometry in that casel
NB: Peeling at .Zt of Kerr has been obtained in [Nicolas & Xuan Pham, Ann. H. Poincaré 20, 3419
(2019)]

E. Gourgoulhon (LUX) Symmetries and peeling in ERN Tours, 2 July 2025 27 /27


https://doi.org/10.1007/s00023-019-00832-0
https://doi.org/10.1007/s00023-019-00832-0

	Symmetries of the extreme Reissner-Nordström black hole
	The peeling property and its variants
	Peeling for the wave equation in ERN spacetime
	Peeling at the ERN horizon

