Symmetries and peeling in the extreme Reissner-Nordström spacetime

Éric Gourgoulhon

Laboratoire d'étude de l'Univers et des phénomènes eXtrêmes (LUX) Observatoire de Paris - PSL, CNRS, Sorbonne Université, Meudon, France

and

Laboratoire de Mathématiques de Bretagne Atlantique CNRS, Université de Bretagne Occidentale, Brest, France

based on a collaboration with Jack Borthwick (Montreal) and Jean-Philippe Nicolas (Brest)

Black holes and their symmetries Institut Denis Poisson, Tours 2 - 4 July 2025

Symmetries and peeling in ERN

- 2 The peeling property and its variants
- 8 Peeling for the wave equation in ERN spacetime
- Peeling at the ERN horizon

Outline

Symmetries of the extreme Reissner-Nordström black hole

2 The peeling property and its variants

8 Peeling for the wave equation in ERN spacetime

Peeling at the ERN horizon

The extreme Reissner-Nordström (ERN) black hole

 $\mathsf{ERN} = \mathsf{static}$ and spherically symmetric solution (\mathscr{M}, g, F) to the electrovacuum Einstein-Maxwell equations

In a patch $\mathbb{R} \times (0, +\infty) \times \mathbb{S}^2$ spanned by Schwarzschild-like coordinates (t, r, θ, φ) :

$$\boldsymbol{g} = -\left(1 - \frac{M}{r}\right)^2 \, \mathbf{d}t^2 + \left(1 - \frac{M}{r}\right)^{-2} \, \mathbf{d}r^2 + r^2 \left(\mathbf{d}\theta^2 + \sin^2\theta \mathbf{d}\varphi^2\right)$$

$$oldsymbol{F} = - rac{Q}{r^2} \, \mathbf{d} t \wedge \mathbf{d} r + P \sin heta \, \mathbf{d} heta \wedge \mathbf{d} arphi$$

where the electric charge Q and the magnetic charge P obey $\sqrt{Q^2 + P^2} = M$.

 \implies describes a black hole with the event horizon located at r = M.

Carter-Penrose diagram of ERN maximal analytic extension

Compactified diagram of the maximal analytic extension of the ERN spacetime [Carter, Phys. Lett. **21**, 423 (1966)]

Eddington-Finkelstein-type (EF) coordinates:

- outgoing: $u := t - r_*$, $r_* := \frac{r(r - 2M)}{r - M} + 2M \ln \left| \frac{r}{M} - 1 \right|$

- ingoing:
$$v := t + r_*$$

Compactified coordinates: $U := \arctan\left(\frac{u}{2M}\right)$, $V = \arctan\left(\frac{v}{2M}\right)$

 i^0 : spatial infinity

 $i^1:$ internal infinity (infinitely long throat along any $t={\rm const}$ hypersuface)

Ext

Ext

Int

 i^1

 i^{0}

;0

The degenerate event horizon

The black hole event horizon \mathscr{H}^+ is the hypersurface r = M in a ingoing patch (v, r, θ, φ) . \mathscr{H}^+ is a degenerate Killing horizon with respect to the Killing vector $\boldsymbol{\xi} = \boldsymbol{\partial}_t = \boldsymbol{\partial}_v$

degenerate Killing horizon \iff surface gravity κ , defined by $\nabla_{\boldsymbol{\xi}} \boldsymbol{\xi} \stackrel{\mathscr{H}^+}{=} \kappa \boldsymbol{\xi}$, is vanishing:

$$\kappa = 0$$

$$\implies$$
 $\boldsymbol{\xi}$ is a geodesic vector field on \mathscr{H}^+ : $\nabla_{\boldsymbol{\xi}} \boldsymbol{\xi} \stackrel{\mathscr{H}^+}{=} 0$

- $\implies v$ is an affine parameter along the null geodesic generators of \mathscr{H}^+
- \implies the null geodesic generators of \mathscr{H}^+ are complete geodesics (no bifurcation surface); internal infinity $i^1 = \text{limit } v \to -\infty$ along the null geodesic generators of \mathscr{H}^+

 $\boldsymbol{\xi}$ is null on \mathscr{H}^+ and is timelike both in the black hole exterior and in the black hole interior (contrary to Schwarzschild)

Near-horizon geometry

"Near-horizon magnifying" coordinates ($\varepsilon \neq 0$):

$$: \begin{cases} T := \varepsilon \frac{t}{M} \\ R := \frac{r - M}{\varepsilon M} \end{cases} \iff \begin{cases} t =: M \frac{T}{\varepsilon} \\ r =: M(1 + \varepsilon R) \end{cases}$$

At fixed
$$(T, R)$$
, $\lim_{\varepsilon \to 0} t = +\infty$ and $\lim_{\varepsilon \to 0} r = M$

$$\implies \mathbf{g} = M^2 \left[-\frac{R^2}{(1+\varepsilon R)^2} \mathbf{d}T^2 + (1+\varepsilon R)^2 \frac{\mathbf{d}R^2}{R^2} + (1+\varepsilon R)^2 \left(\mathbf{d}\theta^2 + \sin^2\theta \mathbf{d}\varphi^2 \right) \right]$$

Near-horizon geometry

"Near-horizon magnifying" coordinates ($\varepsilon \neq 0$):

$$\begin{cases} T := \varepsilon \frac{t}{M} \\ R := \frac{r - M}{\varepsilon M} \end{cases} \iff \begin{cases} t =: M \frac{T}{\varepsilon} \\ r =: M(1 + \varepsilon R) \end{cases}$$

At fixed
$$(T, R)$$
, $\lim_{\varepsilon \to 0} t = +\infty$ and $\lim_{\varepsilon \to 0} r = M$

$$\implies \mathbf{g} = M^2 \left[-\frac{R^2}{(1+\varepsilon R)^2} \mathbf{d}T^2 + (1+\varepsilon R)^2 \frac{\mathbf{d}R^2}{R^2} + (1+\varepsilon R)^2 \left(\mathbf{d}\theta^2 + \sin^2\theta \mathbf{d}\varphi^2 \right) \right]$$

Near-horizon (NHERN) metric: $h = \lim_{\varepsilon \to 0} g \Longrightarrow$ product metric of $AdS_2 \times S^2$ [Carter 1973]:

$$\boldsymbol{h} = M^2 \Big(\underbrace{-R^2 \mathbf{d}T^2 + \frac{\mathbf{d}R^2}{R^2}}_{\text{AdS}_2} + \underbrace{\mathbf{d}\theta^2 + \sin^2\theta \mathbf{d}\varphi^2}_{\mathbb{S}^2}\Big)$$

also known as Bertotti-Robinson metric — another solution (1959) to the electrovacuum Einstein-Maxwell equations.

E. Gourgoulhon (LUX)

Near-horizon region mapped to AdS_2

(T, R) are Poincaré coordinates in a Poincaré patch $\mathscr{N}_{\mathrm{P}}^{\pm}$ of AdS_2 , bounded by the Poincaré horizon \mathscr{H}_{P} at R = 0.

Global AdS₂ coordinates: $(\tau, \chi) \in \mathbb{R} \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\begin{cases} T := \frac{\sin \tau}{\cos \tau + \sin \chi} \\ R := \frac{\cos \tau + \sin \chi}{\cos \chi} \end{cases}$

Both the ERN horizon and the Poincaré horizon are degenerate Killing horizons.

Near-horizon enhanced symmetries

NHERN metric:
$$\boldsymbol{h} = M^2 \left(-R^2 \mathbf{d}T^2 + \frac{\mathbf{d}R^2}{R^2} + \mathbf{d}\theta^2 + \sin^2\theta \mathbf{d}\varphi^2 \right)$$

Killing vectors of the AdS₂ sector:

•
$$\boldsymbol{\xi}_1 = \boldsymbol{\partial}_T \quad \leftarrow$$
 inherited from ENR stationarity

• $\boldsymbol{\xi}_2 = T \boldsymbol{\partial}_T - R \boldsymbol{\partial}_R \quad \leftarrow \text{generates the isometries } (T, R) \mapsto \left(\alpha T, \frac{R}{\alpha} \right), \ \alpha > 0$

•
$$\boldsymbol{\xi}_3 = \frac{1}{2} \left(T^2 + \frac{1}{R^2} \right) \boldsymbol{\partial}_T - RT \boldsymbol{\partial}_R \quad \leftarrow \text{ from the global stationarity of AdS}_2: \, \boldsymbol{\xi}_3 = \boldsymbol{\partial}_\tau - \frac{1}{2} \boldsymbol{\xi}_1$$

$$[\boldsymbol{\xi}_2,\boldsymbol{\xi}_1] = -\boldsymbol{\xi}_1, \quad [\boldsymbol{\xi}_2,\boldsymbol{\xi}_3] = \boldsymbol{\xi}_3, \quad [\boldsymbol{\xi}_1,\boldsymbol{\xi}_3] = \boldsymbol{\xi}_2 \quad \Longrightarrow \quad \mathfrak{sl}(2,\mathbb{R}) \text{ algebra}$$

Near-horizon enhanced symmetries

NHERN metric:
$$\boldsymbol{h} = M^2 \left(-R^2 \mathbf{d}T^2 + \frac{\mathbf{d}R^2}{R^2} + \mathbf{d}\theta^2 + \sin^2\theta \mathbf{d}\varphi^2 \right)$$

Killing vectors of the AdS₂ sector:

•
$$\boldsymbol{\xi}_1 = \boldsymbol{\partial}_T \quad \leftarrow$$
 inherited from ENR stationarity

• $\boldsymbol{\xi}_2 = T \boldsymbol{\partial}_T - R \boldsymbol{\partial}_R \quad \leftarrow \text{generates the isometries } (T, R) \mapsto \left(\alpha T, \frac{R}{\alpha} \right), \ \alpha > 0$

• $\boldsymbol{\xi}_3 = \frac{1}{2} \left(T^2 + \frac{1}{R^2} \right) \boldsymbol{\partial}_T - RT \boldsymbol{\partial}_R \quad \leftarrow \text{ from the global stationarity of AdS}_2: \ \boldsymbol{\xi}_3 = \boldsymbol{\partial}_\tau - \frac{1}{2} \boldsymbol{\xi}_1$ One has

$$[\boldsymbol{\xi}_2,\boldsymbol{\xi}_1] = -\boldsymbol{\xi}_1, \quad [\boldsymbol{\xi}_2,\boldsymbol{\xi}_3] = \boldsymbol{\xi}_3, \quad [\boldsymbol{\xi}_1,\boldsymbol{\xi}_3] = \boldsymbol{\xi}_2 \quad \Longrightarrow \quad \mathfrak{sl}(2,\mathbb{R}) \text{ algebra}$$

Isometry groups

$$G_{\text{ERN}} = \mathbb{R} \times \text{SO}(3) \quad G_{\text{NHERN}} = \text{SL}(2, \mathbb{R}) \times \text{SO}(3)$$
$$\dim G_{\text{ERN}} = 4 \qquad \dim G_{\text{NHERN}} = 6$$

E. Gourgoulhon (LUX)

Symmetries and peeling in ERN

A peculiar feature of ERN: the Couch-Torrence inversion

The map $\Phi : Ext \to Ext$ defined by

$$\Phi(t,r,\theta,\varphi) = \left(t,\frac{rM}{r-M},\theta,\varphi\right)$$

or equivalently by

$$\Phi(t, r_*, \theta, \varphi) = (t, -r_*, \theta, \varphi)$$

is an involution that fixes the photon sphere $\{r = 2M\}$ and interchanges \mathscr{H}^+ and \mathscr{I}^+ , as well as \mathscr{H}^- and \mathscr{I}^- .

A peculiar feature of ERN: the Couch-Torrence inversion

The map $\Phi : Ext \to Ext$ defined by

$$\Phi(t,r,\theta,\varphi) = \left(t,\frac{rM}{r-M},\theta,\varphi\right)$$

or equivalently by

$$\Phi(t, r_*, \theta, \varphi) = (t, -r_*, \theta, \varphi)$$

is an involution that fixes the photon sphere $\{r=2M\}$ and interchanges \mathscr{H}^+ and \mathscr{I}^+ , as well as \mathscr{H}^- and \mathscr{I}^- .

 Φ is a conformal isometry of the exterior region:

$$\tilde{\boldsymbol{\varphi}}^* \boldsymbol{g} = \frac{M^2}{(r-M)^2} \boldsymbol{g}$$

[Couch & Torrence, Gen. Relat. Gravit. 16, 789 (1984)]

2 The peeling property and its variants

8 Peeling for the wave equation in ERN spacetime

Peeling at the ERN horizon

Peeling in Minkowski spacetime

Peeling of massless fields (Sachs, 1961)

An outgoing massless field Ψ of spin s, along a null geodesic \mathscr{L} to \mathscr{I}^+ , can be expanded as

$$\Psi = \sum_{k=0}^{2s-1} \frac{\Psi_k}{r^{k+1}} + O\left(\frac{1}{r^{2s+1}}\right),$$

where r is an affine parameter along \mathscr{L} and Ψ_k has 2s - k principal null directions (PND) that coincide with the null tangent to \mathscr{L} .

•
$$s = 1$$
: $\Psi = F$, ℓ PND $\iff \ell^a F_{a[b}\ell_{c]} = 0$, $F = \frac{N}{r} + \frac{I}{r^2} + O\left(\frac{1}{r^3}\right)$
• $s = 2$: $\Psi = C$, ℓ PND $\iff \ell^b \ell^c \ell_{[e}C_{a]bc[d}\ell_{f]} = 0$, $C = \frac{N}{r} + \frac{III}{r^2} + \frac{I}{r^3} + \frac{I}{r^4} + O\left(\frac{1}{r^5}\right)$

The peeling property and its variants

Extending the peeling to asymptotically flat spacetimes

Penrose conformal completion

Physical spacetime manifold $(\mathcal{M}, \boldsymbol{g})$ admits a *conformal completion at infinity* iff \exists a Lorentzian manifold $(\hat{\mathcal{M}}, \hat{\boldsymbol{g}})$ with boundary \mathscr{I} and a smooth function $\Omega : \hat{\mathcal{M}} \to \mathbb{R}^+$ such that

- \mathscr{M} is the interior of $\hat{\mathscr{M}} \colon \hat{\mathscr{M}} = \mathscr{M} \sqcup \mathscr{I}$
- on ${\mathscr M}$, $\Omega>0$ and $\hat{{m g}}=\Omega^2{m g}$
- $\bullet \mbox{ on } \mathscr{I}, \ \Omega = 0 \mbox{ and } \mathbf{d}\Omega \neq 0$

Penrose reformulation of peeling (1965)

The peeling property of Ψ is equivalent to the conformally rescaled Ψ extending to a continuous field at $\mathscr{I}.$

This works well for Minkowski, which has a fully regular conformal compactification in the Einstein cylinder $\mathbb{R} \times \mathbb{S}^3$, including at spatial infinity i^0 .

But, for a curved spacetime, i^0 is in general a singular point and it is not clear whether the peeling of massless fields holds for a sufficiently generic class of initial data...

E. Gourgoulhon (LUX)

Symmetries and peeling in ERN

Tours, 2 July 2025

The peeling à la Mason-Nicolas

Penrose peeling involves an expansion in powers of 1/r inherited from a Taylor expansion of the field that is assumed to be C^k at \mathscr{I}^+ . Now, the initial value problem of hyperbolic equations is ill-posed in C^k spaces, so it is difficult to characterize the class of initial data that give rise to such a peeling.

In 2009, L. Mason & J.-P. Nicolas [J. Inst. Math. Jussieu 8, 179] have reformulated the peeling in Schwarzschild spacetime by characterizing the regularity at \mathscr{I}^+ in terms of Sobolev-type spaces, via energy fluxes with respect to the Morawetz vector field. Sobolev norms are adapted to the initial value problem for hyperbolic equations and Mason & Nicolas could provide a complete description of the class of initial data on a Cauchy hypersurface that give rise to a peeling at any order at \mathscr{I}^+ .

We are going to consider Mason-Nicolas peeling in ERN spacetime

2 The peeling property and its variants

8 Peeling for the wave equation in ERN spacetime

4 Peeling at the ERN horizon

The conformal wave equation

Massless field equations are conformally invariant. Here we focus on the spin s = 0 case, i.e. a scalar field.

On spacetime $(\mathscr{M}, \boldsymbol{g}),$ the conformal wave equation for a scalar field ϕ is

$$\Box_{\boldsymbol{g}}\phi - \frac{\mathcal{R}}{6}\phi = 0, \tag{1}$$

where $\Box_{\boldsymbol{g}} := \nabla_{\mu} \nabla^{\mu}$ and \mathcal{R} is the Ricci scalar of \boldsymbol{g} . (1) is conformally invariant: if $\hat{\boldsymbol{g}} = \Omega^2 \boldsymbol{g}$, (1) $\iff \Box_{\hat{\boldsymbol{g}}} \hat{\phi} - \frac{\hat{\mathcal{R}}}{\epsilon} \hat{\phi} = 0$ for $\hat{\phi} := \Omega^{-1} \phi$

Conformal completion of ERN

ERN in outgoing EF $(u := t - r_*)$: $g = -\left(1 - \frac{M}{r}\right)^2 \mathbf{d}u^2 - 2\mathbf{d}u\mathbf{d}r + r^2\left(\mathbf{d}\theta^2 + \sin^2\theta\mathbf{d}\varphi^2\right)$ Choice of conformal factor: $\Omega = 1/r$

 \rightarrow same as for conformal completion of Schwarzschild introduced by Penrose (1965) \rightarrow different from the standard one for Minkowski: $\Omega = 2[(1 + (t - r)^2)(1 + (t + r)^2)]^{-1/2}$

In terms of the coordinates (u, R, θ, φ) where R := 1/r, $\Omega = R$ and the conformal metric is

$$\hat{\boldsymbol{g}} = R^2 \boldsymbol{g} = -R^2 (1 - MR)^2 \mathbf{d}u^2 + 2\mathbf{d}u\mathbf{d}R + \mathbf{d}\theta^2 + \sin^2\theta\mathbf{d}\varphi^2$$

 $\implies \mathscr{I}^+$ is the hypersurface R = 0 and is spanned by the coordinates (u, θ, φ) NB: i^0 remains at infinity, at $u \to -\infty$ on each slice t = const.

Peeling for the wave equation in ERN spacetime

The conformal wave equation on ERN

For ERN (as for any electrovacuum solution in 4-dim GR), $\mathcal{R} = 0$ \implies conformal wave equation (1) reduces to $\Box_{g}\phi = 0$ But $\hat{R} = 12MR(MR - 1) \neq 0$ and the conformal wave equation becomes

$$\Box_{\hat{g}}\hat{\phi} + 2MR(1 - MR)\hat{\phi} = 0, \qquad \hat{\phi} := R^{-1}\phi, \tag{2}$$

with

$$\Box_{\hat{\boldsymbol{g}}} \, \hat{\phi} = 2 \frac{\partial^2 \hat{\phi}}{\partial u \partial R} + \frac{\partial}{\partial R} \left(R^2 (1 - MR)^2 \frac{\partial \hat{\phi}}{\partial R} \right) + \Delta_{\mathbb{S}^2} \hat{\phi}$$

Goal

Characterize the regularity at \mathscr{I}^+ of the solution ϕ in terms of the regularity and decay of the initial data on a Cauchy hypersurface Σ_0 .

18 / 27

Focusing on a neighborhood of i^0

In order to control the regularity of $\hat{\phi}$ at \mathscr{I}^+ , it suffices to control it in a neighborhood of i^0 : provided the initial data have the correct regularity away from i^0 , the regularity of $\hat{\phi}$ can be seen to extend to the whole of \mathscr{I}^+ .

Choose the Cauchy hypersurface $\Sigma_0 = \{t = 0\}$ For $u_0 \ll -M$, define the neighborhood of i^0 in the future of Σ_0 by

$$\Omega_{u_0} = \{ u \le u_0, t \ge 0 \}$$

The boundary of Ω_{u_0} is made of 3 parts:

$$\Sigma_{0,u_0} = \Sigma_0 \cap \Omega_{u_0}, \quad \mathscr{I}_{u_0}^+ = \mathscr{I}^+ \cap \Omega_{u_0}, \quad \mathcal{S}_{u_0} = \{u = u_0\} \cap \Omega_{u_0}$$

The Morawetz vector field and the associated energy current

Consider the vector field

$$\boldsymbol{K} := u^2 \boldsymbol{\partial}_u - 2(1+uR) \boldsymbol{\partial}_R$$

In terms of (u, R) coordinates, K has the same expression as the conformal Killing vector $u^2 \partial_u + v^2 \partial_v$ of Minkowski spacetime introduced by C. Morawetz (1962) to establish decay properties of solutions to the wave equation in flat space.

One cas show that K is future-directed timelike in a neighborhood of i^0 . Moreover, K is transverse to \mathscr{I}^+ . For Minkowski, K is a Killing vector of $\hat{g} = R^2 g$. Not here, except at \mathscr{I}^+ and i^0 .

The Morawetz-based field energy through a hypersurface

Consider the energy-momentum tensor of the free wave equation $\Box_{\hat{g}}\hat{\phi}=0$, namely

$$T_{ab}(\hat{\phi}) = \hat{\nabla}_a \hat{\phi} \, \hat{\nabla}_b \hat{\phi} - \frac{1}{2} \hat{\nabla}_c \hat{\phi} \, \hat{\nabla}^c \hat{\phi} \, \hat{g}_{ab}$$

and define the current

$$J_a(\hat{\phi}) := T_{ab}(\hat{\phi}) K^b$$

 $J(\hat{\phi})$ is not conserved since $\hat{\nabla}^a J_a(\hat{\phi}) = T_{ab}\hat{\nabla}^{(a}K^{b)} - \frac{\hat{\mathcal{R}}}{6}\hat{\phi}K^a\hat{\nabla}_a\phi$ but one can control the r.h.s. in a neighborhood of i^0 .

Given an oriented hypersurface \mathscr{S} of $\hat{\mathscr{M}}$, define the "energy" $\mathcal{E}_{\mathscr{S}}(\hat{\phi}) := \int_{\mathscr{S}} \star J(\hat{\phi})$

The peeling property at \mathscr{I}^+

[Borthwick, EG, Nicolas, J. Hyper, Diff, Eq. 22, 29 (2025)]

Let $k \in \mathbb{N}$ and $\hat{\phi}$ a solution to the conformal wave equation (2). Then $\mathcal{E}_{\mathscr{I}_{u_0}^+}(\partial_R^q \nabla_{\mathbb{S}^2}^p \hat{\phi}) + \mathcal{E}_{\mathcal{S}_{u_0}}(\partial_R^q \nabla_{\mathbb{S}^2}^p \hat{\phi}) < +\infty \text{ for all } p,q \in \mathbb{N}, \ p+q \leq k \text{ if and only if the initial data}$ $(\hat{\phi}, \partial_t \hat{\phi}) = (\hat{\phi}_0, \hat{\phi}_1)$ on Σ_0 is chosen in the completion of $C_0^{\infty}([-u_0, +\infty[r, \times \mathbb{S}^2) \times C_0^{\infty}([-u_0, +\infty[r, \times \mathbb{S}^2)])$ in the norm:

$$\left\| \begin{pmatrix} \hat{\phi}_0 \\ \hat{\phi}_1 \end{pmatrix} \right\|_k^2 = \sum_{p+q \le k} \mathcal{E}_{\Sigma_{0,u_0}} \left(L^q \nabla_{\mathbb{S}^2}^p \begin{pmatrix} \hat{\phi}_0 \\ \hat{\phi}_1 \end{pmatrix} \right),$$

where *L* is the operator defined by $L = \begin{pmatrix} -\frac{r^2}{F(r)}\partial_{r_*} & -\frac{r^2}{F(r)} \\ -\frac{r^2}{F(r)}\partial_{r_*}^2 & -\Delta_{\mathbb{S}^2} - \frac{2M}{r}\left(1 - \frac{M}{r}\right) & -\frac{r^2}{F(r)}\partial_{r_*} \end{pmatrix}$

In this case we say that $\hat{\phi}$ peels at order k at infinity.

- 2 The peeling property and its variants
- 8 Peeling for the wave equation in ERN spacetime

Peeling at the ERN horizon

Peeling at the ERN horizon

The Couch-Torrence inversion as an isometry of \hat{g}

 \Longrightarrow allows one to establish a peeling property at the ERN horizon, from that already obtained at \mathscr{I}^+

Symmetries and peeling in ERN

Towards the peeling at \mathscr{H}^+ : a neighborhood of i^1

Consider ingoing EF coordinates (v, R, θ, φ) on $\widehat{\operatorname{Ext}}$ The Couch-Torrence inversion maps i^0 to the internal infinity i^1 i^1 is the limit $v \to -\infty$ along \mathscr{H}^+ Choose the Cauchy hypersurface $\Sigma_0 = \{t = 0\}$ For $v_0 \ll -M$, define the neighborhood of i^1 in the future of Σ_0 by

$$\Omega_{v_0} = \{ v \le v_0, t \ge 0 \}$$

The boundary of Ω_{v_0} is made of 3 parts:

$$\Sigma_{0,v_0} = \Sigma_0 \cap \Omega_{v_0}, \quad \mathscr{H}_{v_0}^+ = \mathscr{H}^+ \cap \Omega_{v_0}, \quad \tilde{\mathcal{S}}_{v_0} = \{v = v_0\} \cap \Omega_{v_0}$$

The peeling property at \mathscr{H}^+

[Borthwick, EG, Nicolas, J. Hyper. Diff. Eq. 22, 29 (2025)]

Let $k \in \mathbb{N}$ and $\hat{\phi}$ a solution to the conformal wave equation (2). Then $\tilde{\mathcal{E}}_{\mathscr{H}_{v_0}^+}(\partial_R^q \nabla_{\mathbb{S}^2}^p \hat{\phi}) + \tilde{\mathcal{E}}_{\tilde{\mathcal{S}}_{v_0}}(\partial_R^q \nabla_{\mathbb{S}^2}^p \hat{\phi}) < +\infty$ for all $p, q \in \mathbb{N}$, $p + q \leq k$ if and only if the initial data $(\hat{\phi}, \partial_t \hat{\phi}) = (\hat{\phi}_0, \hat{\phi}_1)$ on Σ_0 is chosen in the completion of $C_0^\infty(] - \infty, v_0]_{r_*} \times \mathbb{S}^2) \times C_0^\infty(] - \infty, v_0]_{r_*} \times \mathbb{S}^2)$ in the norm:

$$\left\| \begin{pmatrix} \hat{\phi}_0 \\ \hat{\phi}_1 \end{pmatrix} \right\|_k^2 = \sum_{p+q \le k} \mathcal{E}_{\Sigma_{0,v_0}} \left(\tilde{L}^q \nabla_{\mathbb{S}^2}^p \begin{pmatrix} \hat{\phi}_0 \\ \hat{\phi}_1 \end{pmatrix} \right),$$

where \tilde{L} is the operator defined by $\tilde{L} = \begin{pmatrix} -\frac{r^2}{F(r)}\partial_{r_*} & \frac{r^2}{F(r)}\\ \frac{r^2}{F(r)}\partial_{r_*}^2 + \Delta_{\mathbb{S}^2} + \frac{2M}{r}\left(1 - \frac{M}{r}\right) & -\frac{r^2}{F(r)}\partial_{r_*} \end{pmatrix}$

In this case we say that $\hat{\phi}$ peels at order k at the event horizon \mathscr{H}^+ .

Extend peeling at horizon to extreme Kerr black hole, but no Couch-Torrence (conformal) isometry in that case!
 NB: Peeling at *I*⁺ of Kerr has been obtained in [Nicolas & Xuan Pham, Ann. H. Poincaré 20, 3419 (2019)]