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Zero cosmological constant case

Self-gravitating massive real scalar field can form spherically
symmetric star-like objects – named oscillatons

core

tail tail

extremely long living and stable, but the mass decreases
very slowly because of a tiny scalar field radiation
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Small amplitude oscillatons
G. Fodor, P. Forgács and M. Mezei, Phys. Rev. D, 81, 064029 (2010)

amplitude ∼ ε2

size ∼ 1
mε

mass M = 1
m

[
1.753 ε− 2.117 ε3

]
mass loss rate

dM

dt
= −30.0

ε2
exp

(
−22.4993

ε

)
extension of the mode equations to the complex plane, study
the behavior near the pole, Borel summation

For large amplitude oscillatons the radiative tail can be calculated
numerically by spectral methods
P. Grandclément, G. Fodor and P. Forgács, Phys. Rev. D, 84, 065037 (2011)
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Negative cosmological constant
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Λ < 0 provides an effective attractive force
– formation of localized solutions is easier

Anti-de Sitter spacetime

ds2 =
1

k2 cos2 x

(
−dτ 2 + dx2 + sin2 x dΩ2

)
A light ray can travel to infinity and back
in a finite time

This is related to the instability of AdS
– a wave packet can bounce back many

times to the center, and finally collapse
to a black hole

(What about the boundary conditions?)
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Λ < 0 : asymptotically anti-de Sitter case

Negative cosmological constant acts as an effective attractive force

Exactly periodic solutions exist for real scalar fields

– oscillatons without radiative tail

– we call them AdS breathers
there is no energy loss, similarly to the sine-Gordon breather

There are breather solutions even for massless free scalar fields

– their size is determined by the cosmological constant ∼ 1/
√
−Λ

– for massive fields the size is given by the scalar field mass

Rest of the talk: massless Klein-Gordon field, U(φ) = 0, minimally
coupled to Einstein’s gravity
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AdS breathers – massless minimally coupled real scalar

G.Fodor, P. Forgács and P. Grandclément,
Phys. Rev. D 92, 025036 (2015), arXiv:1503.07746 [gr-qc]

We apply three methods:

Spectral code for constructing time-periodic solutions

Time-evolution code to study stability

High-order small-amplitude expansion to get analytical results

Extension of the results of M. Maliborski and A. Rostworowski,
Phys. Rev. Lett. 111, 051102 (2013)

– methods that work well for 2n + 1 spacetime dimensions
– results presented only for 4 + 1 dimensions

We give 3 + 1 and 4 + 1 results, can reach higher amplitudes,
find maximal mass state, higher amplitude unstable states,
and some resonance-like structures
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d + 1 dimensional Einstein’s equations

Gµν + Λgµν = 8πGTµν , Tµν = φ,µφ,ν −
1

2
gµνφ,αφ

,α

the contracted Bianchi identity gives the wave equation

∇µ∇µφ = 0

usually φ is rescaled to make 8πG = d − 1

We look for spherically symmetric solutions with metric

ds2 =
L2

cos2 x

(
−Ae−2δdt 2 +

1

A
dx2 + sin2 x dΩ2

d−1

)
where L2 = −d(d−1)

2Λ , A and δ are functions of t and x

– anti-de Sitter corresponds to A = 1 and δ = 0
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Introducing the variables Φ = ∂φ
∂x and Π = eδ

A
∂φ
∂t

– there are evolution equations for the scalar field

∂Π

∂t
=

1

tand−1 x

∂

∂x

(
A tand−1 x

eδ
Φ

)
∂Φ

∂t
=

∂

∂x

(
A

eδ
Π

)
– and constraints for the metric variables

∂δ

∂x
= − 8πG

d − 1
sin x cos x

(
Φ2 + Π2

)
∂A

∂x
= A

∂δ

∂x
+ [d tan x + (d − 2) cot x ] (1− A)

fourth order method of lines code for time-evolution
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General asymptotic behavior

ds2 =
L2

cos2 x

(
−Ae−2δdt 2 +

1

A
dx2 + sin2 x dΩ2

d−1

)
coordinate distance from infinity y = π/2− x
the leading order behavior of φ for 3 + 1 dimensions is y 0 or y 3

φ(t, y) = φ0(t)− 1

2
φ̈0(t)y 2 + φ3(t)y 3 + . . .

A(t, y) = 1−
(
φ̇0(t)

)2
y 2 + A3(t)y 3 + . . .

δ(t, y) =
1

2

(
φ̇0(t)

)2
y 2 + . . .

Schwarzschild-AdS : A = 1 + my 3 + . . .
The mass is finite only if φ0(t) is constant
– can be shifted to zero
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Asymptotically AdS case

From φ0(t) = 0 it follows that A3(t) ≡ m constant

φ(t, y) = φ3(t)y 3 + φ5(t)y 5 − m

2
φ3(t)y 6 + φ7(t)y 7 + . . .

A(t, y) = 1 + my 3 + 3 (φ3(t))2 y 6 + . . .

δ(t, y) =
3

2
(φ3(t))2 y 6 + . . .

φ2k+1 and their first time derivatives can be freely specified on the
initial time slice t = 0
however, φ2k are determined
– corner conditions on the initial data

Any single mode initial data have only odd coefficients
– corresponds to small amplitude zero mass configuration
– what happens when you numerically evolve such initial data?
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Small-amplitude expansion

The scalar field and the metric functions are expanded in powers of
a small parameter ε

φ =
∞∑
n=1
odd

φ(n)εn , A = 1 +
∞∑
n=2
even

A(n)εn , δ =
∞∑
n=2
even

δ(n)εn

ε is chosen as the central amplitude of φ at the moment of
t → −t time reversal symmetry

for general d spatial dimensions we can give analytic
expressions for A(2) and δ(2)

for d = 3 we can also give φ(3)

for even d it is possible to go up to ε20 order by some
algebraic manipulation program
– then all coefficients can be given as a sum of finite number

of eigenfunctions of the linearized problem
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Linear order

To first order in ε the metric remains AdS, and there are periodic
solutions for the scalar field

φ(1) = pn cos(ωnt) , n ≥ 0 integer

pn =
n!

(d/2)n
cosd x P

(d/2−1,d/2)
n (cos(2x))

P
(α,β)
n is the Jacobi polynomial,

(α)n = α(α + 1) . . . (α + n − 1) is the Pochhammer symbol

frequency: ωn = d + 2n

where d is the number of spatial dimensions
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ωn = d + 2n
all frequencies are integers, so it is a fully resonant spectrum
 turbulent instability  black hole formation

For d = 3 spatial dimensions the pn functions are
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p0 = cos3 x
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cos3 x
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[4 cos(2x)− 1]

p2 =
cos3 x

3
[3 cos(4x)− 2 cos(2x) + 2]

p3 =
cos3 x

15
[12 cos(6x)− 9 cos(4x) + 18 cos(2x)− 5]

n gives the number of nodes
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Combination with arbitrary amplitudes and phases is a valid
periodic solution of the linearized problem

φ(1) =
∞∑
n=0

an cos(ωnt + bn)pn , ωn = d + 2n

but to ε3 order, there are t sin(ωt) secular terms in φ(3) if more
then one an is nonzero

There is a one-parameter family of solutions emerging from each
pn linearized mode
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We investigate the family emerging from the nodeless solution

Initial guess for numerical iteration: linearized solution p0 cos(3t)

KADATH library developed by Philippe Grandclément at
Observatoire de Paris - Meudon

– multidomain spectral method

– radial direction: Chebyshev polynomials

– time direction: Fourier decomposition

φ =
∞∑
k=1
odd

φk cos(kωt) , A =
∞∑
k=0
even

Ak cos(kωt) , δ =
∞∑
k=0
even

δk cos(kωt)
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Central value of the Fourier modes as function of oscillation
frequency

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2  2.2  2.4  2.6  2.8  3

φ
n

ω

unstable stable

2
.2

5
3

φ1

10·φ3

100·φ5

Using the solution as initial data for a time-evolution code:
AdS breathers with frequency ω < 2.253 are unstable
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Energy density as function of time for an unstable configuration
– at the center
– at a radius larger than the one where horizon appears

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  5  10  15  20  25  30

E
 (

x
=

0
.2

7
4
)

t

 0

 20

 40

 60

 80

 100

 120

 140

 0  5  10  15  20  25  30

E
 (

x
=

0
)

t

energy density starts to
increase, but time
coordinate stalls before
horizon

scalar field falls into the
black hole

G. Fodor: scalar breathers 17/22



Radial profile for the first three modes of the scalar field for the
largest mass stable AdS breather
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– more compact than the linear solution, but similar shape
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Mass as function of the oscillation frequency
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First two orders of the small-amplitude expansion is also plotted
– in order to get ε4 order results one has to calculate to ε6 order

G. Fodor: scalar breathers 19/22



Central frequency Ω as function of asymptotic frequency ω
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There are narrow resonance-like structures appearing in higher
Fourier modes
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– the increase is most apparent in one of the modes
– for d = 4 a similar peak was found in φ5

– they are in the unstable domain
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Concluding remarks

Periodic solutions, up to a certain amplitude, are on
”stability islands”
– general configurations collapse into black holes

AdS/CFT correspondence
– periodic solutions correspond to states that never thermalize

There are other asymptotically AdS localized regular configurations

static axially symmetric electromagnetic states
Herdeiro and Radu, Phys. Lett. B 749, 393 (2015)

vacuum gravitational wave geons
Dias, Horowitz and Santos, CQG 29, 194002 (2012)
– helical symmetry
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