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Abstract

In this paper, we study behavior of Wilson loops in the boost-invariant nonequilibrium anisotropic 
quark–gluon plasma produced in heavy-ion collisions within the holographic approach. We describe the 
thermalization studying the evolution of the Vaidya metric in the boost-invariant and spatially anisotropic 
background. To probe the system during this process we calculate rectangular Wilson loops oriented in dif-
ferent spatial directions. We find that anisotropic effects are more visible for the Wilson loops lying in the 
transversal plane unlike the Wilson loops with partially longitudinal orientation. In particular, we observe 
that the Wilson loops can thermalizes first unlike to the order of the isotropic model. We see that Wilson 
loops on transversal contours have the shortest thermalization time. We also calculate the string tension and 
the pseudopotential at different temperatures for the static quark–gluon plasma. We show that the pseudopo-
tential related to the configuration on the transversal plane has the screened Cornell form. We also show that 
the jet-quenching parameter related with the average of the light-like Wilson loop exhibits the dependence 
on orientations.
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* Corresponding author.
E-mail addresses: ageev @mi .ras .ru (D.S. Ageev), arefeva @mi .ras .ru (I.Ya. Aref’eva), golubtsova @theor.jinr.ru

(A.A. Golubtsova), eric .gourgoulhon @obspm .fr (E. Gourgoulhon).
https://doi.org/10.1016/j.nuclphysb.2018.04.016
0550-3213/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://www.sciencedirect.com
https://doi.org/10.1016/j.nuclphysb.2018.04.016
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:ageev@mi.ras.ru
mailto:arefeva@mi.ras.ru
mailto:golubtsova@theor.jinr.ru
mailto:eric.gourgoulhon@obspm.fr
https://doi.org/10.1016/j.nuclphysb.2018.04.016
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2018.04.016&domain=pdf


D.S. Ageev et al. / Nuclear Physics B 931 (2018) 506–536 507
1. Introduction

Wilson loops are known to play a key role as fundamental probes of gauge theories, in par-
ticular QCD. Owing to Wilson loops one can define many important quantities, for instance, we 
can derive the potential of a quark–antiquark interaction from the expectation value of the space–
time rectangular Wilson loop. In the lattice QCD the Wilson loops are the prime observables and 
their expectation values are defined non-perturbatively [1]. One can also determine expectation 
values of Wilson loops in the framework of perturbative QCD after suitable renormalization [2].

At the same time, expectation values of Wilson loops are used to characterize properties of the 
quark–gluon plasma produced in heavy ion collisions (HIC). With the help of Wilson loops one 
can perform the analysis of radiative parton energy loss, quarkonium suppression, jet quenching, 
etc. [3].

In this paper, we investigate the behavior of Wilson loops in the nonequilibrium spatially 
anisotropic quark–gluon plasma (QGP) produced in heavy-ion collisions in the framework of 
the holographic correspondence. It is widely appreciated that the holography, or the gauge/grav-
ity duality, provides a powerful tool for studying dynamics of the strong coupling system, in 
particular, the QGP formed in heavy-ion collisions [3–5]. Main idea of this approach is using 
natural prescriptions of the generalized AdS/CFT correspondence to recover non-perturbative 
QCD phenomena, particularly, non-perturbative vacuum phenomena, finite temperature, high-
dense and non-zero chemical potential phenomena. In this strategy, fitting parameters are ones 
specifying the form of the 5-dimensional metric. The 5-dimensional background is supposed to 
be a solution of Einstein equations with a suitable matter content, not necessary related with 
string theory.

According to the holographic approach, creation of the quark–gluon plasma in HIC can be 
represented here as a collision of shock waves in the 5-dimensional bulk, in which a black hole 
is formed [6–15]. After the collision the shocks slowly decay, leaving the plasma described by 
hydrodynamics. The formation of the black hole can be also described by an infalling shell [16]
propagating in the 5-dimensional bulk. A gravitational collapse of the thin shell to the black hole 
provides also a gravitational dual description of a more general class of thermalization processes 
[17–19]. Note, that the holographic approach is convenient to incorporate anisotropic properties 
of the QGP created in heavy-ion collisions [20,21].

The holographic approach has been widely used to study Wilson loops in different settings. 
Expectation values of Wilson loops within the gauge/gravity duality have been calculated for 
the strongly coupled N = 4 super Yang–Mills theory [22–25]. The string dual description of 
the real QCD is unknown in spite of a lot of performed effort to find it [26–28]. However, suit-
able “bottom-up” holographic QCD models matching with experimental and lattice results have 
been proposed in [29–37]. Various physical quantities, in particular, expectation values of Wil-
son loops, have been calculated holographically. Wilson loops in static anisotropic backgrounds, 
static non-relativistic background, Lifshitz backgrounds and backgrounds with hyperscaling vi-
olation have been examined in [21], [38–44] and references therein. As it is known following 
the holographic dictionary, gravity duals of light-like Wilson loops can be used for calculation of 
the jet quenching parameter [45,46] controlling the description of medium-induced energy loss 
for partons in QCD. Holographic evaluation of the jet-quenching parameter for anisotropic QGP 
was considered in [41,42,21].

The special feature of this paper is that we consider spatially anisotropic backgrounds, which 
have also boost invariance
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ds2 = R2

z2

(
−dt2 + dx2 + (

aR

z
)2/ν−2(dy2

1 + dy2
2) + dz2

)
. (1)

These backgrounds are characterized by the scale parameter R and anisotropic parameters a
and ν.

This spacetime is in accordance with the geometry of HIC, where one has a selected direction 
– the axis of ions collisions. As has been shown before [47], to fit the experimental form of the 
dependence of total multiplicity on energy, obtained at LHC, one can assume that the holographic 
model has boost invariance and a spatial anisotropy controlled by the so-called critical exponent. 
More precisely, it has been shown in [47] that the critical exponent should be taken ν = 4.45. 
The metrics of the form (1) are dual to models with so called Lifshitz-like fixed points [48,
49]. These metrics are also occurs as the IR limit for the anisotropic background suggested for 
studies of QGP in [50]. It’s also worth to be noted that the anizotropic background (1) differs 
from the Lifshitz metrics [51] by the anisotropic scaling of spatial coordinates. The Vaidya shell 
in the background (1) has been found in [53] and used to estimate the thermalization time of the 
2-point correlators and the holographic entanglement entropy in HIC [52,53]. The holographic 
model with the shell in (1) was used to explore the behavior of the quark–antiquark potential in 
[54] with the method developed previously for in the AdS-Vaidya background [55].

As already mentioned, the information about processes during HIC can be read off from the 
expectation values of Wilson loops. Thus, it is natural to study the behavior of Wilson loops 
during the HIC within the same holographic model we used to fit the energy dependence of total 
multiplicity. In particular, it is reasonable to investigate thermalization of Wilson loops and their 
behavior in the end of the thermalization process. By thermalization of Wilson loop we mean the 
thermalization of its expectation value.

In the present work we calculate holographically Wilson loops in the backgrounds (1) with 
the Vaidya shell and black brane. We consider spatial and light-like configurations, which rep-
resent rectangles with two infinitely long sides and two sides of finite lengths. By virtue of the 
metric (1) possessing a spatial anisotropy, the expectation values of Wilson loops depend on the 
orientation of the corresponding configuration. Further, we will study potentials and its evolution 
during the thermalization process. We show that the order of thermalization in our background 
is the following: first thermalizes two-point correlator, then Wilson loops and the last thermal-
ization occurs for the entanglement entropy. Our anisotropy reduces the thermalization time for 
non-local observables as compared to the isotropic case. We also find an analytical representation 
for the holographic light-like Wilson loops in the background (1) and derive the jet quenching 
parameter.

The paper is organized as the following. In Sec. 2 we briefly remind the holographic descrip-
tion of Wilson loops, gravitational backgrounds and the notations. In Sec. 3 we analyze the static 
Wilson loops as well as calculate pseudopotentials, string tensions for different orientations of 
Wilson loop and the jet quenching parameter. In Sec. 4 we study the nonequilibrium dynamics 
of the same oriented Wilson loops and present the results. In Sec. 5 the thermalization time of 
Wilson loops is estimated and we compare it with the thermalization times of the entanglement 
entropy and two-point correlation functions. We conclude with a discussion of our results and 
further directions.
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2. Set up

2.1. Wilson loops

In this work we consider rectangular Wilson loops. As already noticed, Wilson loops contain 
the information about the force between quarks. Following the holographic approach [22,23] the 
expectation value of the Wilson loop in the fundamental representation calculated on the gravity 
side reads as:

W [C] = 〈TrF ei
∮
C dxμAμ〉 = e−Sstring[C], (2)

where C in a contour on the boundary. More precisely, we mean that the contour is at the “reg-
ularized boundary” z = z0. On the gauge side we suppose to deal with the Wilson loop in the 
anisotropic gauge theory, i.e. theory on the 4-dimensional flat anisotropic background,

ds2
4 = −dt2 + dx2 + (

aR

z0
)2/ν−2(dy2

1 + dy2
2). (3)

The regularized version of this theory corresponds to the gauge theory on the anisotropic lattice 
[56], where spacing in the longitudinal and transversal directions, a‖ and a⊥, are different so that 
a‖/a⊥ = (aR/z0)

1−1/ν . One can develop renormalizations in this theory and also the renormal-
ization of the Wilson loops in the analogy with the isotropic theory. F means the fundamental 
representation (we will omit this symbol in what follows), Sstring is the minimal action of the 
string hanging from the contour C in the bulk. The Nambu–Goto action can be represented as

Sstring = 1

2πα′

∫
dσ 1dσ 2

√
−det(hαβ), (4)

with hαβ = gMN∂αXM∂βXN . In (4) σ 1, σ 2 parametrize the worldsheet, gMN is the background 
metric, M, N = 1, . . . , 5 and XM = XM(σ 1, σ 2) specify the string worldsheet.

The pseudopotential of the interquark interaction can be extracted from the rectangular spatial 
Wilson loop of size1 � × L, for large L

W(�,L) = 〈Tr ei
∮
�×L dxμAμ〉 = e−V(�)L, (5)

and its defines the so called pseudopotential V . We note, that for large L the behavior of W(�, L)

is different from the behavior of the time-like one. Then the pseudopotential can be straightfor-
wardly extracted from the string action (4) as follows

V(�) = Sstring

L
. (6)

As it is known from the QCD lattice calculations the spatial Wilson loops obey the area law at 
all temperature, i.e. the spatial string tension σs is given by

σs = lim
�→∞

V(�)

�
. (7)

The quantity σs differs from the usual string tension which is defined from time-like Wilson-
loops. By virtue to the non-Abelian Stokes formula equal time spatial Wilson loops [57] are 
related with the spatial components of the energy–momentum tensor and by this reason σs is 
also called the magnetic string tension. Spatial Wilson loops have been studied on the lattice 
[58,59], analytically [60], and also within the gauge/gravity duality [62,61].

1 Note that we take � < L for real calculations, where � is large, but not infinite.
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2.2. The boost invariant anisotropic metrics

We will study spatial Wilson loops in gravity backgrounds with spatial anisotropy, given by 
(1), where the critical exponent ν controls the deviation from isotropic case. In [53] we have 
called this metric as an Lifshitz-like metrics. In this paper to avoid a misleading with the Lifshitz 
metrics we mainly call the metric (1) as the boost invariant spatial anisotropic metric. Note, that 
in (1) we used the standard dimensional coordinates. In what follows we take R2 = 2πα′, a = 1
and use the dimensionless coordinates t̃ = t/(2πα′)1/2, z̃ = z/(2πα′)1/2 etc., and we remove 
tilde on the top of coordinates. So, the metric take the form

ds2 = 2πα′
(

−dt2 + dx2

z2 + dy2
1 + dy2

2

z2/ν
+ dz2

z2

)
. (8)

One can see that the background (8) with ν = 1 comes to be the 5-dimensional AdS space-
time. As already mentioned, the choice of this metric is motivated by the fact that holographic 
estimations of the total multiplicity performed in this background reproduce the experimental 
dependence of the multiplicity on the energy [47].

The non-zero temperature generalization of (1) was constructed in [53]2:

ds2 = 2πα′
(

−f (z)dt2 + dx2

z2 + dy2
1 + dy2

2

z2/ν
+ dz2

z2f (z)

)
, (9)

with the blackening function

f = 1 − mz2+2/ν . (10)

For ν = 1 the background (9) with (10) represents the metric of the AdS black brane.
This background (9)–(10) describes holographically the anisotropic media on the boundary 

with the temperature corresponding to the Hawking temperature of the black brane:

T = 1

π

(ν + 1)

2ν
m

ν
2ν+2 . (11)

To study the thermalization process, corresponding to the black brane formation in the dual 
language, we will use the Vaidya generalization of solution (1)

[53]:

ds2 = 2πα′
(

−f (v, z)dv2 + 2dvdz − dx2

z2 + dy2
1 + dy2

2

z2/ν

)
(12)

with

f = 1 − m(v)z2+2/ν . (13)

The metric (12) has been written in ingoing Eddington–Finkelstein coordinates (v, r). The func-
tion m(v) in (13) defines the thickness of the shell smoothly interpolating between the zero-
temperature (1) at v = −∞ and black brane backgrounds (9) at v = ∞.

2 The computations have been checked with SageManifolds, which is an extension of the free computer algebra system 
SageMath. The corresponding worksheets are publicly available at the following links:

https://cloud .sagemath .com /3edbca82 -97d6 -41b3 -9b6f -d83ea06fc1e9 /raw /Lifshitz _black _brane .html,
https://cloud .sagemath .com /3edbca82 -97d6 -41b3 -9b6f -d83ea06fc1e9 /raw /Vaidya -Lifshitz .html.

https://cloud.sagemath.com/3edbca82-97d6-41b3-9b6f-d83ea06fc1e9/raw/Lifshitz_black_brane.html
https://cloud.sagemath.com/3edbca82-97d6-41b3-9b6f-d83ea06fc1e9/raw/Vaidya-Lifshitz.html
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We choose the following form for the function f

f (z, v) = 1 − m

2

(
1 + tanh

v

α

)
z

2
ν
+2, (14)

where α is a parameter. For the calculations in this paper we keep α = 0.2.

3. Spatial Wilson loops in a time-independent background

In this work we consider rectangular Wilson loops in the static background (9) located in the 
spatial planes xy1 (or xy2) and y1y2. One can delineate the following possible configurations:

• a rectangular loop in the xy1 (or xy2) plane with a short side of the length �x in the longi-
tudinal x direction and a long side of the length Ly1 along the transversal y1 direction, so 
that

x ∈ [0, �x], y1 ∈ [0,Ly1 ], �x < Ly1; (15)

• a rectangular loop in the xy1 plane with a short side of the length �y1 in the transversal y1
direction and a long side of the length Lx along the longitudinal x direction,

x ∈ [0,Lx], y1 ∈ [0, �y1 ], �y1 < Lx; (16)

• a rectangular loop in the transversal y1y2 plane with a short side of the length �y1 in one of 
transversal directions (say y1) and a long side of the length Ly2 along the other transversal 
direction y2, namely

y1 ∈ [0, �y1 ], y1 ∈ [0,Ly2 ], �y1 < Ly2 . (17)

In this section we perform all calculations in the static spacetime (9) with (10) (using 
Eddington–Finkelstein coordinates).

3.1. Wilson loops on the xy1-plane

3.1.1. Rectangular strip infinite along the y1-direction
We start from the rectangular Wilson loop in the xy1-plane assuming that the large ex-

tent is oriented in the y1-direction (see (15)). We parametrize the world-sheet of the string in 
the following way σ 1 = x, σ 2 = y1, assuming v = v(x), z = z(x) and boundary conditions: 
z(±�x/2) = 0, z(0) = z∗, v(0) = v∗, z′(0) = 0, v′(0) = 0.

Taking into account (4) and (12) with the stationary f given by (10), the Nambu–Goto action 
can be presented as

Sx,y1(∞)
=

∫
dy1dx

1

z1/ν

√(
1

z2 − 1

z2 f v′ 2 − 2

z2 v′z′
)

, (18)

where it is supposed ′ ≡ d
dx

. The subscript x, y1(∞) in the LHS of (18) indicates the orientation 
of the loop contour.

The action (18) on the time-independent string configurations after division on the length of 
the Wilson loop in the y1-direction can be rewritten in the form

Sx,y1(∞) =
∫

dx

1+1/ν
√

√
f (z) + z′ 2. (19)
Ly1 z f
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The RHS of (19) defines a dynamical system that has the first integral

J = 1

z1+1/ν

√
f (z)√

f (z) + z′ 2
. (20)

Note, that the same is true for the action in the form (18). Indeed, it defines the dynamical system 
with two degrees of freedom, z = z(x) and v = v(x), that for the stationary case has two integral 
of motions and excluding v due to the conservation law one comes back to (20).

Since we have the symmetric boundary conditions, the top of the configuration z = z(x) is at 
x = 0, i.e. z∗ = z(0) and z′(0) = 0, and z∗ is related with the first integral,

1

z1+1/ν

√
f (z)√

f (z) + z′ 2
= 1

z
1+1/ν∗

(21)

Equation (21) and the boundary condition z(±�x/2) = 0 give us the relation between the top 
point z∗ and the length

�x = 2

z∗∫
z0

dz√
f (z)

((
z∗
z

)2+2/ν − 1

) . (22)

So the Nambu–Goto action (18) can be rewritten in the form

Sx,y1(∞)

Ly1

= 2

z∗∫
z0

dz

z1+1/ν
√

f (z)

1√
1 −

(
z
z∗

)2+2/ν
. (23)

Here we use the regularized boundary conditions z(±�x/2) = z0. The action (23) has a divergent 
when z0 → 0 and one can present it in the form

Sx,y1(∞)

2Ly1

= 1

z
1/ν∗

1∫
z0/z∗

dw

w1+1/ν

[ 1√
f (z∗w)

(
1 − w2+2/ν

) − 1
]
+ 1

z
1/ν∗

1∫
z0/z∗

dw

w1+1/ν
. (24)

Subtracting the divergent part ν

z
1/ν
0

one gets the renormalized Nambu–Goto action

Sx,y1(∞),ren

2Ly1

= 1

z
1/ν∗

1∫
0

dw

w1+1/ν

[ 1√
f (z∗w)

(
1 − w2+2/ν

) − 1
]
− ν

z
1/ν∗

. (25)

The length (22) between the ends of the string admits the removing of regularization z0 → 0
without renormalization

�x = 2z∗
1∫

0

w1+1/ν dw√
f (z∗w)(1 − w2+2/ν)

. (26)

Then pseudopotential Vx,y1(∞)
is given by:

Vx,y1(∞)
= Sx,y1(∞),ren

. (27)

Ly1



D.S. Ageev et al. / Nuclear Physics B 931 (2018) 506–536 513
Fig. 1. a) The pseudopotential Vx,y1(∞)
corresponding to the action Sx,y1(∞)

(25) as a function of �x (26) for ν = 4. We 
take the temperature T = 0.08, 0.2, 0.3, 0.5 (from down to top). b) The behavior of the pseudopotential corresponding to 
(25) for ν = 1, 2, 3, 4 (blue, gray, green and brown, respectively) at T = 0.1. The dashed lines show the asymptotics at 
large �x given be (34) with (35). The inset plot zooms the slops of dashed lines. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

In Fig. 1 we present the dependence of the pseudopotential Vx,y1(∞)
(27) on the length (26). 

We see that for small �x the pseudopotential has the Coulomb part deformed by the critical 
exponent, thus

Vx,y1(∞)
(�x, ν) ∼

�x∼0
−C1(ν)

�
1/ν
x

, (28)

where C1 is some constant dependent on ν. Putting m = 0 in (25) and (26), we get the leading 
term (28), while taking corrections on m one has for ν = 4

Vx,y1(∞)
(�x,4) = −7.80

�
1/4
x

(
1 − 0.012m�

5/2
x +O

(
m2 �5

x

))
. (29)

The asymptotics for arbitrary ν are presented in Appendix A. One should note that for small 
enough �x the behavior of Vx,y1(∞)

extracted from (25) for all ν has a form of the deformed 
Coulomb law with the power equal to 1/ν reproducing the Coulomb behavior of the pseudopo-
tential in the case ν = 1 (the AdS case).

For large distances �x the pseudopotential Vx,y1(∞)
behaves as a linearly increasing function

Vx,y1(∞)
(�x, ν) ∼

�x→∞σs,1(ν) �x. (30)

To see this behavior let us note that to get the large �x we have to take z∗ near zh, or z∗/zh =
w0 → 1, and in this case the denominator in the integrands in the RHS of (26) and (25) behaves 
as √

f (z∗w)(1 − w2+2/ν) ≈ 2(ν + 1)

ν
(1 − w), (31)

and we get the log-behavior for �x and Vx,y
1(∞)
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�x ∼ −2
νz∗

(ν + 1)
log(1 − w0), (32)

Vx,y1(∞)
∼ − 2

z
1/ν∗

ν

(ν + 1)
log(1 − w0), (33)

which lead us to the asymptotic

Vx,y1(∞)
∼

�x→∞ σs,1(ν) �x, (34)

where

σs,1(ν) = 1/z
1+1/ν
h = (

2πT

1 + 1/ν
)1+1/ν . (35)

From Fig. 1.b we see that the asymptotics of a Vx,y1(∞)
at large �x is linear with the slope given 

by formula (35). The formula (35) exhibits the dependence on ν shown in the zoomed inset of 
Fig. 1.b.

The string tension (35) can be also seen by dimensional analysis keeping the anisotropic 
parameter a in (1). Indeed, since we are working with metric (9) and we can assign a factor A
to t, x and z and factor A1/ν to y1 and y2. Since the action S is invariant under this rescaling we 
have that σ1,s ∼ S

�xLy1
∼ A−(1+1/ν) ∼ T 1+1/ν .

3.1.2. Rectangular strip infinite along the x-direction
Another possible configuration in the xy1 plane is the rectangular Wilson loop whose con-

tour is infinite along the x-direction and has a finite size along the y1-direction (see (16)). We 
specify this type of the configuration by the subscript y1, x(∞). For the parameterization we take 
v = v(y1), z = z(y1) with boundary conditions z(±�y1/2) = 0. By virtue to this assumption the 
Nambu–Goto action (4) reads

Sy1, x(∞)
=

∫
dy1dx

z

√(
1

z2/ν
− 1

z2 f (v′)2 − 2

z2 v′z′
)

, (36)

where it is supposed ′ ≡ d
dy1

. Similar to the previous case this action can be rewritten as

Sy1, x(∞)

Lx

=
∫

dy1

z2
√

f

√
f z2−2/ν + z′ 2, (37)

and the first integral is related with the top point as
√

f (z)z−2/ν√
f (z)z2− 2

ν + z′ 2

= 1

z
1+1/ν∗

. (38)

Due to this relation we get the expression for the action

Sy1, x(∞)

Lx

= 2

z∗

1∫
z0/z∗

dw

w2

1√
f (z∗w)

(
1 − w2+2/ν

) , (39)

and the length

�y1 = 2z
1/ν∗

1∫
w2/νdw√

f (z∗w)
(
1 − w2+2/ν

) , (40)
z0/z∗
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Fig. 2. a) The pseudopotential Vy1, x(∞)
extracted from action (41) as a function of �y1 for ν = 4. We take T =

0.08, 0.2, 0.3, 0.5 from down to top. (q.6.1)b) The behavior of Vy1, x(∞)
for ν = 1, 2, 3, 4 (blue, gray, green and brown, 

respectively) at T = 0.1. The solid thin lines show the asymptotic of Vy1, x(∞)
for large �y given by formula (45) for 

different ν. The inset plot zooms the slops of solid thin lines.

where z0 is the regularization. Similar to the previous case one can remove regularization in (39)
and in (40) after renormalization

Sy1, x(∞), ren

2Lx

= 1

z∗

1∫
0

dw

w2

⎡
⎢⎣ 1√

f (z∗w)
(
1 − w2+2/ν

) − 1

⎤
⎥⎦ − 1

z∗
. (41)

The pseudopotential Vy1,x(∞)
is related to (41) as

Vy1, x(∞)
= Sy1, x(∞), ren

Lx

. (42)

In Fig. 2 we show the dependence of the pseudopotential extracted from the action (41) on 
the length �y1 for different values of the temperature and the dynamical exponent. Now the 
pseudopotential has a power-law dependence on ν for small �y1 , so that

Vy1, x(∞)
∼

�y1→0
−C2(ν)

�ν
y1

, (43)

with some constant C2 dependent on ν. One gets asymptotics (43) with m = 0 in (41) and (40), 
and taking corrections on m we obtain for ν = 4

Vy1, x(∞)
= −13.5

�4
y1

(
1 − 0.00031m�10

y1
+O(m2�20

y1
)
)

. (44)

However, for large distances the pseudopotential represents a linear function of �y1 again

Vy1, x(∞)
(�y1 , ν) ∼

�y1 →∞σs,2(ν) �y1 (45)

and using estimation, similar to (32) and (33) we get
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σs,2(ν) = 1

z
1+1/ν
h

= (
2πT

1 + 1/ν
)1+1/ν, (46)

that is also in agreement with the dimensional analysis.
From Fig. 2.b we also see that the dependence of Vy1, x(∞)

(�y1 , ν) on �y1 at large length is 
linear for all the dynamical exponent ν with the slops slightly deviating from the AdS case 
(ν = 1).

3.2. Wilson loop on the y1y2-plane

Now we come to the spatial rectangular Wilson loop located on the y1y2-plane. Let us as-
sume that the loop contour is infinite along the y2-direction and has the finite extent of the 
length �y1 in the y1-direction (see (17)). We specify this type of the orientation by the sub-
script y1, y2(∞), choosing only transversal coordinates for the parameterization of the worldsheet 
σ 1 = y1, σ 2 = y2.

Taking into account, that z(y1) satisfying z(±�y1/2) = 0 one can represent the string action 
(4) in the following form

Sy1, y2(∞)
=

∫
dy1dy2

z
1
ν

√
1

z
2
ν

− f v′2
z2 − 2v′z′

z2 , (47)

where it is supposed ′ ≡ d
dy1

. Similar to the previous cases this action can be rewritten as

Sy1, y2(∞)

Ly2

=
∫

dy

z1+1/ν
√

f

√
f z2−2/ν + z′ 2, (48)

and the first integral is related with z∗ point as
√

f (z)z1− 3
ν√

f (z)z2− 2
ν + z′ 2

= 1

z
2/ν∗

. (49)

Due to this relation we get the expression for the action

Sy1, y2(∞)

2Ly2

=
z∗∫

z0

dz

z1+1/ν

1√
f (z)

(
1 −

(
z
z∗

)4/ν
) , (50)

and the length

�y1 = 2

z
2/ν∗

z∗∫
z0

dz

z1−3/ν

√
f (z)

(
1 −

(
z
z∗

)4/ν
) , (51)

where z0 is the regularization. Similar to the previous case one can remove regularization in (51)
directly and in (50) after renormalization. The renormalized action (50) in terms of the w-variable 
takes the form

Sy1, y2(∞),ren

2Ly2

= 1

z
1/ν∗

1∫
dw

w1+1/ν

[ 1√
f (z∗w)

(
1 − w4/ν

) − 1
]
− ν

z
1/ν∗

. (52)
z0/z∗
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Fig. 3. a) The pseudopotential Vy1, y2(∞)
extracted from action (41) as a function of �y1 for ν = 4. We take T =

0.08, 0.2, 0.3, 0.5 from down to top. The behavior of Vy1, x(∞)
corresponding to (41) for ν = 1, 2, 3, 4 (from left to 

right, respectively) at T = 0.1. The solid lines show the asymptotics given by formula (56) with (57). The inset plot 
zooms the slops of solid thin lines.

The relation for the length is given by

�y1 = 2z
1/ν∗

1∫
0

dw

w1−3/ν

√
f (z∗w)

(
1 − w4/ν

) . (53)

Finally, the pseudopotential Vy1, y2(∞)
extracted from (52) reads as:

Vy1, y2(∞)
= Sy1, y2(∞)

Ly2

. (54)

In Fig. 3 we display the behavior of the pseudopotential (54) on the length (53).
It is easy to see that the behavior of Vy1, y2(∞)

in Fig. 3 is rather different from two previous 
cases. From Fig. 3 (b) we observe, that now the dependence on ν is driven by some constant C3
relying on ν. It should be noted that the pseudopotentials strongly deviate from the AdS case 
(ν = 1) both in the UV and the IR regions of �y1 . Thus, one can write for small �y1

Vy1, y2(∞)
(�y1 , ν) ∼

�y1 →0
−C3(ν)

�y1

, (55)

where C3 is some constant dependent on ν. For ν = 4 one can write down (55) with the correc-
tions on m in the following form

Vy1, y2(∞)
(�y1 ,4) = −23.0

�y1

(
1 − 0.741 · 10−9ml10

y1
+O

(
m2�20

y1

))
.

For large �y1 we have

Vy1, y2(∞)
(�y1 , ν) ∼

� →∞σs,3(ν) �y1 . (56)

y1
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Fig. 4. The dependence of the spatial string tension √σs on orientation and temperature. The solid lines corresponds to 
the rectangular Wilson loop with a short extent in the x-direction, while the dashed lines correspond to a short extent in 
the y-direction. The dotted lines correspond to the rectangular Wilson loop in the transversal y1y2-plane. (a) Blue line 
corresponds to ν = 1, gray lines correspond to ν = 2, green lines correspond to ν = 3 and the brown ones correspond to 
ν = 4. (b) The spatial string tension √σs for different orientations for ν = 4.

As in the previous cases the large �y1 behavior is provided by the pole near to w ∼ 1 in (53) and 
we get, compare with (32) and (33),

σs,3(ν) = 1

z
2/ν
h

=
(

2πT

1 + 1/ν

)2/ν

. (57)

Looking at formulas (55)–(56) one can conclude that the pseudopotential corresponding to the 
configuration on the transversal plane reproduces the form of the Cornell potential.

3.3. Spatial string tension dependence on the orientation

It is interesting to analyze the behavior of the spatial string tension σs (7) for different orien-
tations of the Wilson loop, i.e. the behavior of σs,i , i = 1, 2, 3 given by (30), (45) and (56). The 
temperature dependences of the spatial string tension in the confining background, which repro-
duces the Cornell potential [31], and the deconfining one have been studied in [62] and [63], 
respectively. In [64] the universal behavior of the spatial string tension for multiquark configu-
rations was found. In the AdS/QCD model [31] the string tension dependence matching lattice 
data was found in [61].

In Fig. 4 (the left panel) we present the dependence of the spatial string tension 
√

σs as a func-
tion of T for all cases of the orientation and for ν = 1, 2, 3, 4. We see, that for the configurations 
located on the xy1-plane (partially longitudinal orientations shown by solid and dashed lines) the 
temperature dependence of the string tension for different ν are rather similar. The deviations 
of solid lines from dashed ones increase with increasing T . We also see that the string tension 
corresponding to the Wilson loop in the y1y2-plane (the totally transversal orientation shown by 
the dotted lines) differs from the behavior of the Wilson loop including the longitudinal direc-
tion, showing less dependence on the temperature with increasing ν. All these plots indicate that 
the structure of chromomagnetic fields in our holographic model has strong dependence on its 
orientation. In the right panel of Fig. 4 the spatial string tension 

√
σs for different orientations 

for ν = 4 is presented.
We note that the behavior of magnetic Wilson loops in heavy ion collisions was worked out in 

[65,66] and is put in the context of the color glass condensate model. The universal behavior of 
a large magnetic Wilson loop was found to have a nontrivial power-law dependence on the loop 
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area. They have also argued that in contrast to usual Coulomb phase behavior, magnetic flux does 
not propagates uniformly in the transverse plane, but instead, it is concentrated in small domains. 
In our work the Coulomb phases of pseudopotentials are modified for orientations different from 
the transversal one.

3.4. The holographic light-like Wilson loops and jet-quenching

One of the important characterizations of heavy-ions collisions is the jet quenching. The jet-
quenching parameter q̂ introduced in [67] is related with the average of the light-like Wilson 
loop in the adjoint representation [68]

WA(C) = e
− 1

4
√

2
q̂L−�2

y1 , (58)

where C is a rectangular contour with large extension L− in a light-like direction and small 
extension �y1 in a transversal one. In the holographic approach WA(C) is equal to the classical 
string action S of a string worldsheet configuration stretched on the contour C on the boundary 
of the holographic background [45]

WA(C) = e2iS . (59)

In this section we focus on holographic light-like Wilson loops in the black brane background 
(9). Choosing different light-like directions we obtain the dependence of the jet quenching pa-
rameter q̂ on orientations.

Let us calculate the holographic light-like Wilson loop for the light-like coordinates related 
with the longitudinal direction, x± = t±x√

2
. The metric (9) in these light-cone coordinates takes 

the form

ds2 = G−−(dx2+ + dx2−) + G−+dx−dx+ + Gy1y1dy2
1 + Gy2y2dy2

2 + Gzzdz2, (60)

where

G−− = 1 − f (z)

2z2 , G−+ = 1 + f (z)

2z2 , Gy1y1 = Gy2y2 = 1

z2/ν
,

Gzz = 1

z2f (z)
. (61)

After introducing the parametrization for the string worldsheet by coordinates τ and σ such that

τ = x−, σ = y1, z = z(y1), (62)

the string action takes the form

S = iL−
�y1/2∫

−�y1 /2

dy1

√
G−−(Gy1y1 + z′ 2Gzz), (63)

where i in front of the integral comes from the 
√−detγ , since we deal with the Lorentz signature 

(here γ is the induced metric on the string). Note, that G−− is positive definite function when 
z < zh. For small �y1 from this expression one gets [40]

q̂−1 = 1√
2

zh∫ √
Gzz√

G−−Gy1y1

dz. (64)
0
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Evaluating the integral in (64) explicitly we get

q̂ = −
2

2
ν
+2ν

ν+2
ν π

2
ν
− 1

2 �
(
− ν

2ν+2

)
(ν + 1)

2(ν+1)
ν �

(
1 + 1

2ν+2

) T
ν+2
ν . (65)

For ν = 1 formula (65) reproduces the T 3 dependence of the jet quenching parameter in the 
isotropic quark–gluon plasma [45], while in the case of ν > 1 the dependence on the temperature 
of the jet quenching parameter is caused by the anisotropic parameter.

Let us consider now the contour C with the light-like direction y±
1 = t±y1√

2
. The metric in these 

coordinates has the form (60) with slightly different coefficients as compare to (61)

G−− = 1

2

(
1

z2/ν
− f

z2

)
, G−+ = −

(
1

z2/ν + f

z2

)
, (66)

Gxx = 1

z2 , Gy2y2 = 1

z2/ν
, Gzz = 1

z2f (z)
.

The small side of the contour C can be oriented in x or y2 directions. In both cases the corre-
sponding string actions have the form (63) and contain the metric coefficient G−− as in (66). 
This G−− is non-positive definite below horizon zh, 0 < z < zh, for ν > 1. This makes the string 
action (63) complex that one can interpret as a suppression of the jet quenching parameter.

4. Spatial Wilson loops in a time-dependent background

Now we move to consider the thermalization of rectangular Wilson loops in the Vaidya back-
ground (12)–(14), which describes collapsing geometry in the special anizotropic spacetime (1). 
We proceed in a similar manner as in the static case studying three possible configurations of 
spatial Wilson loops.

4.1. Wilson loops on the xy1-plane

4.1.1. Rectangular strip infinite along the y1-direction
As in Sec. 3 we start from the spatial rectangular Wilson loop on the xy1-plane with the 

assumption that one side of the loop is infinite along the y1-direction and the other has finite 
size along the x-direction (see (15)). Here we suppose the dependence v = v(x), z = z(x). The 
Nambu–Goto action takes the form similar to (18)

Sx,y1(∞)
= Ly

∫
dx

z1+ 1
ν

√
1 − f (z, v)v′ 2 − 2v′z′, (67)

but with the time-dependent blackening function f = f (z, v). The corresponding equations of 
motion are

v′′ = 1

2

∂f

∂z
v′ 2 + (ν + 1)

νz
(1 − f v′ 2 − 2v′z′), (68)

z′′ = −ν + 1

ν

f

z
+ ν + 1

ν

f 2v′ 2

z
− 1

2

∂f

∂v
v′ 2 − 1

2
f v′ 2 ∂f

∂z
− v′z′ ∂f

∂z
+ 2

(ν + 1)

νz
f v′z′,

which for ν = 1 coincide with the Vaidya-AdS equations [17].



D.S. Ageev et al. / Nuclear Physics B 931 (2018) 506–536 521
Fig. 5. Profiles of the string z(x) (with the boundary condition z(2) = 0) at different moments of the boundary time ν = 1
(left) and ν = 4 (right). In (14) we take m = 1.

We have to consider eqs. (68) with the following boundary conditions z(±�x/2) = 0, 
v(±�x/2) = t , where �x is the length of the Wilson loop along the x-direction. To solve 
numerically the equations of motion (68), it is convenient to impose the initial conditions 
z(0) = z∗, v(0) = v∗, z′(0) = 0, v′(0) = 0.

Fig. 5 shows the typical behavior of the solutions to eqs. (68) which satisfy the boundary 
conditions for different values of the critical exponent ν. In these pictures we observe the evolu-
tion of string profiles during the formation of the black brane horizon by the infalling shell with 
m = 1.

For a given solution (v(x), z(x)) to eqs. (68) we can compute the functional for the Nambu–
Goto action (67). We note that the dynamical system governed by (67) has the following integral 
of motion

J = − 1

z1+1/ν
√
R

, (69)

where we denote

R = 1 − f v′ 2 − 2v′z′. (70)

Taking into account (69)–(70) one can represent (67) in the following form

Sx,y1(∞)
= Ly

lx∫
0

dx

z1+1/ν

(
z∗
z

)1+1/ν

, (71)

where z∗ is the turning point defined from the requirements z′ = v′ = 0 and related with J as 
z

1/ν+1∗ = J −1.
Coming to integration with respect to the z-variable the expression (71) can be represented as

Sx,y1(∞),ren = −Ly1

z∗∫
z0

b(z)

z1+1/ν
dz, (72)

where b is defined by

b(z) = 1
′

(
z∗

)1+ 1
ν

. (73)

z z
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Fig. 6. The pseudopotential Vx,y1(∞)
as a function of �x at fixed values of t for ν = 1, 2, 3, 4 ((a), (b), (c), (d), respec-

tively). Different curves correspond to time t = 0.1, 0.5, 0.9, 1.4, 2 (from down to top, respectively). In (14) we take 
m = 1.

One can observe that b(z) tends to be −1 for z → 0 and divergences at z = 0 are similar to 
the static configuration and by this reason we put the regularization z0. Making a substraction we 
come to the renormalized version of Sx,y1(∞)

, in which we can remove the regularization

Sx,y1(∞),ren = −Ly1

⎛
⎝ z∗∫

z0

[b(z) − b(z0)]
z1+1/ν

dz − ν
b(z0)

z
1/ν∗

⎞
⎠ . (74)

The pseudopotential is expressed as:

Vx,y1(∞)
= Sx,y1(∞),ren

Ly1

. (75)

In Fig. 6 we present the behavior of the renormalized pseudopotential Vx,y1(∞)
derived from the 

action (74) as a function of �x at fixed time moments for different values of ν. We see that for 
small distances the pseudopotential behaves similarly for different values of t . This dependence 
strengthens with increasing ν. For large times we see that the pseudopotential equilibrates to 
its thermal value. The pseudopotential reaches saturation for enough large size of the strip. The 
value of the thermalization time grows with increasing �x for all values of ν. At the same time, 
we observe that the saturation is reached faster for large ν.

4.1.2. Rectangular strip infinite along the x-direction
Now we consider the rectangular Wilson loop on the xy1-plane with the assumption that its 

contour is infinite along the x-direction while it has finite stretch along the y1-direction (see (16)). 
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As in the previous section, we specify this type of the strip by the subscript y1, x(∞). Thus, the 
corresponding Nambu–Goto action can be represented by

Sy1, x(∞)

Lx

=
∫

dy1

z2

√
1

z
2
ν
−2

− f (z, v)v′2 − 2v′z′, (76)

with the notation ′ ≡ d
dy1

. The time-independent analogue of (76) is given by (36).
The equations of motion following from (76) are

v′′ = 1

2

∂f

∂z
v′ 2 + ν + 1

νz

(
z2−2/ν − 2ν

(1 + ν)
f v′ 2 − 2v′z′

)
, (77)

z′′ = −ν + 1

ν
f z1−2/ν + 2(ν − 1)z′ 2

ν
+ 2

ν

f 2v′ 2

z
− 1

2ν

∂f

∂v
v′ 2

− 1

2ν
f

∂f

∂z
v′ 2 − z′v′ ∂f

∂z
+ 4

z
f z′v′.

It is worth to be noted that eqs. (77) match with (68) taken with ν = 1 and also reproduce those 
for the AdS-case.

The boundary conditions for eqs. (77) read z(±�y1/2) = 0, v(±�y1/2) = t , where �y1 is the 
length of the Wilson loop along the y1-direction.

As in the previous case the action (76) can be simplified on equations of motions. For this 
purpose we note that the dynamical system governed by action (76) has the integral of motion

J = − 1

z2/ν
√
R

, (78)

where

R = 1

z2/ν−2 − f v′ 2 − 2v′z′. (79)

Taking into account (78)–(79) the action (76) is represented in the form

Sy1, x(∞)
= Lx

ly1∫
0

dy1
z

1/ν+1∗
z2/ν+2 , (80)

with the turning point z∗ related with J as z1/ν+1∗ = J −1.
As in the previous case we present Sy1, x(∞)

as

Sy1, x(∞)
= −Lx

z∗∫
z0

b(z)

z2 dz, (81)

where b is defined by

b(z) = 1

z′

(
z

1+1/ν∗
z2/ν

)
. (82)

Performing renormalization we come to
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Fig. 7. The pseudopotential Vy1,x(∞)
as a function of �y1 at fixed values of t for ν = 2, 4 ((a), (b) respectively). The plot 

for ν = 1 is the same as in Fig. 6.a. Different curves correspond to t = 0.1, 0.5, 0.9, 1.4, 2 from down to top. In (14) we 
take m = 1.

Sy1, x(∞),ren = −Lx

z∗∫
0

b(z) − b(z0)

z2 dz − b(z0)

z∗
. (83)

The renormalized pseudopotential derived from the action (83) as a function of �y1 for dif-
ferent values of t and ν is demonstrated in Fig. 7. Here we again observe that for small �y1 the 
behavior of the pseudopotential is similar for different values of t . As in the previous case the 
behavior intensifies with the increasing value of the dynamical exponent. However, in contrast to 
the previous case there is no substantial dependence, on a given scale, of the thermalization time 
on the dynamical exponent. Comparing Fig. 6 and Fig. 7 one can see that for the same scale �y1

the thermalization of the Wilson loop occurs faster for the configuration with a long extent in the 
y1-direction. The dependence on the dynamical exponent ν is also stronger for the latter case of 
the orientation.

4.2. Wilson loop on the y1y2-plane

Finally, we come to the configuration located on the y1y2-plane. We assume that this infinite 
rectangular strip is invariant along the y2-direction, see (17). As in Sect. 3.2 we use y1, y2,(∞)

for the subscript of the action

Sy1, y2,(∞)

Ly2

=
∫

dy1

z1+ 1
ν

√
1

z
2
ν
−2

− f v′2 − 2v′z′, (84)

where we define ′ ≡ d
dy1

.
The equations of motion corresponding to (84) can be written down in the following form

v′′ = 1

2

∂f

∂z
v′ 2 + 2

zν

(
z2− 2

ν − ν + 1

2
f v′ 2 − 2v′z′

)
, (85)

z′′ = −2

ν
f z1−2/ν + 2

ν − 1

ν

z′ 2

z
+ ν + 1

νz
f 2v′ 2 − 1

2

∂f

∂v
v′ 2 − 1

2
f

∂f

∂z
v′ 2

−z′v′ ∂f
∂z

+ 2(ν + 1)

νz
f v′z′.

One can check that eqs. (85) coincide with (68) and (77) for ν = 1 as well as come to be the 
equations for the AdS case. The boundary conditions to be satisfied by eqs. (85) have the stan-



D.S. Ageev et al. / Nuclear Physics B 931 (2018) 506–536 525
dard form z(±�y1/2) = 0, v(±�y1/2) = t , where �y1 is the length of the Wilson loop along the 
y1-direction.

Following our strategy we compute the functional (84) on a given solution to (85). We note 
that the integral of motion for the configuration governed by the action (84) reads

J = − 1

z
3
ν
−1

√
R

, (86)

where we define

R = 1

z2/ν−2 − f (v′)2 − 2v′z′. (87)

Plugging (86) into (84) we come to the following form for the functional of the Nambu–Goto 
action

Sy1, y2,(∞)
= Ly2

ly1∫
0

dy1
z

2/ν∗
z4/ν

, (88)

where the turning point z∗ is related with J as z2/ν∗ = J −1. Changing the variable of integration 
from y1 to z we get

Sy1, y2,(∞)
= −Ly2

z∗∫
z0

b(z)

z1+1/ν
dz, (89)

where

b(z) = 1

z′

(
z

2/ν∗
z3/ν−1

)
. (90)

The renormalized action in terms of the z-variable reads

Sy1, y2,(∞),ren

Ly2

= −
z∗∫

z0

b(z) − b(z0)

z1+1/ν
dz + ν

b(z0)

z
1
ν∗

.

(91)

Here the pseudopotential is expressed from (91) as:

Vy1, y2(∞)
= Sy1, y2(∞),ren

Ly2

. (92)

The dependence of the pseudopotential Vy1, y2(∞)
on the length �y1 is shown in Fig. 8. As 

for the previous configurations of Wilson loop located on the xy1-plane, the pseudopotential 
Vy1, y2(∞)

tends to its thermal value for large t . We note that the influence of the critical expo-
nent on the rate of the thermalization process for Vy1, y2(∞)

is even higher than for Vx, y1(∞)
and 

Vy , x . In all these cases the saturation time increases with �y and ν.
1 (∞) 1
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Fig. 8. The pseudopotential Vy1, y2(∞)
as a function of the length �y1 at fixed values of t , ν = 2, 4 ((a), (b) respectively). 

(a): we take t = 0.1, 0.5, 0.9, 1.4, 2 from down to top, respectively; for plots (b): t = 0.4, 1.5, 2.5, 3.34, 4 from down to 
top, respectively. In (14) we take m = 1.

5. Thermalization times

5.1. Thermalization times of spatial Wilson loops

In this section, we compare the thermalization time for spatial Wilson loops with different 
orientations and its dependence on the value of the dynamical exponent ν. To simplify these 
estimations we consider the thin shell limit. We are interested in the value of the boundary time 
ttherm when the string profile is totally covered by the thin shell, i.e.:

ttherm(�) =
z∗(�)∫
0

dz

f (z)
, (93)

where � is the length between the string endpoints on the boundary given by (22),(40) or (51)
for different orientations. In Fig. 9 we plot the dependence on � of the thermalization time for 
two configurations in the xy1-plane. In Fig. 10(a) the behavior of the thermalization time as a 
function of � for the configuration in the transverse y1y2-plane is presented. One can see that the 
thermalization time decreases with increasing ν for all cases plotted in Fig. 9 and Fig. 10. The 
dependence on the length � for the loop in the xy1-plane with the short extent in the x-direction is 
linear. At the same time, the dependence for the loop in the same plane, but with the short extent 
in the y1-direction, as well as for the loop in y1y2-plane, is not linear for small � asymptoting 
to the linear dependence only for large �. It should be noted that the deviation from linearity 
strengthens with increasing ν. We also see that for the configuration in the transverse plane, 
the deviation of the thermalization time for the anisotropic cases from the isotropic one the 
thermalization time is much stronger than for the other orientations. In Fig. 10(b) the comparison 
of thermalization times for different orientations in the case ν = 4 is plotted. This plot shows that 
the dependence on the orientation is crucial, varying the orientation we change the order of 
thermalization time. This means that characteristic scale depends on the orientation. The similar 
behavior of the thermalization time on � was observed for the thermalization time of two-point 
correlators in [53].

5.2. Thermalization times of different observables

It is interesting to compare the thermalization times of different observables. In our work [53]
we have studied two-point correlation functions and the holographic entanglement entropy in the 
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Fig. 9. The thermalization time for the Wilson loop in the xy1-plane with a short extent in the x- and y-directions ((a) 
and (b), respectively). Different curves correspond to different values of ν = 1, 2, 3, 4 (from top to down for each plot).

Fig. 10. (a)The thermalization time as a function of � for the Wilson loop in the y1y2-plane, different curves correspond 
to different values of ν = 1, 2, 3, 4 (from left to right). (b) The thermalization time as a function of � for ν = 4, for Wilson 
loops with short extents in the x- and y-directions lying in the xy1-plane and for the Wilson loop in the y1y2-plane (from 
left to right).

Lifshitz-like backgrounds. By virtue of the spatial anisotropy of the metric we had two differ-
ent configurations of the correlators and entropy with respect to the longitudinal and transversal 
directions. We have observed that the entanglement entropy for a subsystem delineated in the 
transversal direction thermalizes faster then the two-point correlator and Wilson loop in the lon-
gitudinal one. In [53] we also have calculated thermalization times for two-point correlators. In 
Appendix B the additional computations for the thermalization time of the holographic entan-
glement entropy are given. In Fig. 11 we show the comparison of the thermalization times for 
two point correlation functions, holographic entanglement entropy and Wilson loops for different 
configurations.
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Fig. 11. The thermalization times of the two-point correlators, holographic entanglement entropy and Wilson loops for 
different configurations. (a) The solid lines (from left to right) correspond to the entropy(green), the Wilson loop (brown) 
and the two-point correlator (gray) with the dependences on the longitudinal direction x in the anisotropic background 
with ν = 4, while the dashed, dash-dotted and dotted lines represent the behavior of the two-point correlator, Wilson loop 
and entropy in the isotropic spacetime, respectively. (b) The solid curves correspond to the entropy(green), the Wilson 
loop (brown) on the xy1-plane and the two-point correlator (gray) with the dependences on the trasversal direction y1. 
The dashed curve corresponds to the Wilson loop on the y1y2-plane. All plots in (b) are for the anisotropic background 
with ν = 4.

We see that the order of the thermalization process in a certain direction is similar to the case in 
the isotropic and ordinary Lifshitz backgrounds [18]. The two-point correlator is the observable 
that thermalizes first, then we observe the thermalization of the Wilson loops, and the entangle-
ment entropy is the observable that thermalizes last. One should be noted that the thermalization 
process of the Wilson loop and the entanglement entropy in the anisotropic background is faster 
even in the longitudinal direction than thermalization of the same observables in the isotropic 
case. From Fig. 11 (a) it is also interesting to see that the curves for the two-point correlator in 
the x-direction in the anisotropic background and the correlator in the isotropic spacetime match.

6. Conclusions

In this paper, we have explored the holographic scenario of the formation of the quark–gluon 
plasma using the bulk backgrounds (12), which possess spatially anisotropy. To probe the forma-
tion of the quark–gluon plasma we have used the rectangular spatial Wilson loops located on the 
boundary of our background (12). We have considered three possible configurations of Wilson 
loops on the boundary: the infinite rectangular strip located on the plane including one longitu-
dinal and one transverse directions, the xy1-plane, with a short extent in the x- or y1-direction, 
and the infinite rectangular strip located on the transverse y1y2-plane.

We have analyzed Wilson loops both for static and time-dependent cases using the static black 
brane (9), and Vaidya solutions (12), respectively. The results obtained in this paper show how 
the expectations of Wilson loops are modified in the presence of anisotropy in the strong coupling 
limit.

We have found, that at small distances, the pseudopotential derived from the Wilson loop 
located in the xy1-plane has a nontrivial dependence on the parameter ν. Namely, for ν > 1 a 
breaking of the Coulomb phase has been observed. For Wilson loops lying in the transverse plane 
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the Coulomb phase is unbroken, and all dependence for small � is encoded in the ν dependent 
constant. At large � all pseudopotentials are linear growing functions. Also we have found that the 
magnetic string tension is also affected by the anisotropic parameter ν. For the contour located on 
the transverse directions, the dependence of the string tension on the temperature is suppressed 
by anisotropy, so the magnetic string tension becomes close to a constant value. This effect is 
clearly seen for large ν. We have also observed interesting results for Wilson loops in the Vaidya 
backgrounds (12). The effect of anisotropy parameter on the thermalization time for different 
orientations also has been investigated. In the x, y1(∞)-case of orientation the dependence of 
thermalization time on scale � is linearly growing function for all ν. For other orientation the 
dependence is not linear. In the transverse orientation this can be seen very clear. Until some 
critical value the dependence is slowly growing function, and after this critical value it shows the 
linear growth.

A common feature in the behavior of the pseudopotential is the tendency of achievement of 
the saturation for large values of the boundary time. The dynamical exponent also influences to 
the thermalization of Wilson loops, so that the value of ν increases this behavior strengthens. We 
have seen that the thermalization is much faster than in the AdS case. It is worth noticing that the 
approach to the saturation also depends on the orientation of the Wilson loop. The configuration 
on the transversal directions the system saturates quicker than for the contours on the xy1-plane.

Comparing to results for the evolution of the holographic entanglement entropy in the back-
grounds (12) in [53] we have found that the thermalization process both of the Wilson loops and 
the entanglement entropy is faster in the transverse direction. We have seen the similar behavior 
of the thermalization time as a function of � for the two-point correlators in [53].

We also calculated the dependence of the jet quenching parameter on the orientation and on 
the anisotropic parameter ν. We also noticed that for special orientations the string action defined 
the jet quenching parameter becomes complex that leads to a suppression of the jet quenching 
parameter. This phenomena requires more elaborations as well as the study of the time evolution 
of the jet quenching parameter modeling by the light-like Wilson loop in the time-depending 
background (12).

It would be interesting to generalize our results to the case of the modified backgrounds that 
describe confinement/deconfinement phase transition [69].
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Appendix A. Asymptotics for static pseudopotentials

Here we collect the expressions for asymptotics of static pseudopotentials.

A.1. Rectangular strip in xy1-plane infinite along the y1-direction

The integral in (26) can be evaluated approximately

�x ≈ −
√

πz∗�
(
− 1

2ν+2

)
(6ν + 4 + (2ν + 1)mz

2
ν
+2

∗ )

2(ν + 1)(3ν + 2)�
(

ν
) . (A.1)
2ν+2
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Fig. 12. a) The comparison of the pseudopotentials given by exact formula (25) (the brown line), massless approximation 
(the red bottom line) and the first massive correction (the cyan top line) (A.4). b) The comparison of the pseudopotentials 
given by exact formula (84) (the brown dashed line), massless approximation (the red bottom dashed line) and the first 
massive correction (the cyan top dashed line) (A.7). c) The comparison of the pseudopotentials given by exact formula 
(48) (the brown dotted line), massless approximation (the red bottom dotted line) and the first massive correction (the 
cyan top dotted line) (A.11). For all plots m = 0.2.

For ν = 4 we have

84�x ≈ 5.12z∗
(

28 + 9mz
5/2∗

)
and this gives

z∗ = �x

(
0.586 − 0.0495�

5/2
x m +O(�5

xm
2)

)
. (A.2)

Evaluating (25) for ν = 4 we get approximately

Vx,y1(∞)
= −

8
√

π�
(

9
10

)
�
(

2
5

) +
√

π�
(

9
10

)
�
(

2
5

) mz
5/2∗ +O

(
m2z5∗

)
z

1/4∗
. (A.3)

Substituting (A.2) in (A.3) we get

Vx,y1(∞)
= −7.80

l
1/4
x

(
1 − 0.012ml

5/2
x +O

(
m2 l5

x

))
(A.4)

In Fig. 12 we present the comparison of the pseudopotentials given by exact formula (25), 
(26) and the approximated formula (A.4).

Inverting (A.1) for arbitrary ν we obtain

z∗ = lx

⎛
⎝ �

(
ν

2ν+2

)
2
√

π�
(

1 − 1
2(ν+1)

) − Blx ml
2
ν
+2

x +O(�
4
ν
+4

x m2)

⎞
⎠ ,

where

Blx =
ν

(
�
(

ν
2ν+2

)
�
(

1− 1
2(ν+1)

)
) 2

ν
+4

�
(

2 − 1
2(ν+1)

)

(ν + 1)2
2
ν
+5π

1
ν
+ 3

2 �
(

5ν+4
) .
2ν+2
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The pseudopotential Vx,y1(∞)
can be evaluated approximately

Vx,y1(∞)
= l

− 1
ν

x

(
Alx + Flx m l

2
ν
+2

x +O(m2 l
4
ν
+4

x )

)
,

where

Alx =
ν2�

(
− 1

2(ν+1)

)
�

(
1 − 1

2(ν+1)

) 1
ν
(
�

(
ν

2ν+2

))
−1/ν

22− 1
ν π

ν+1
2ν

− 1
ν
−1(ν + 1)2�

(
3ν+2
2ν+2

) ,

Flx =
csc

(
π

2ν+2

)
�

( −1
2(ν+1)

)
�

(
2(ν+1)−1

2(ν+1)

)− 1+3ν
ν

�
(

ν
2ν+2

) 2ν+1
ν

2
1
ν
+3π

ν+1
2ν

−1(ν + 2)�
(

1
2ν+2

)
�

(
− ν+2

2ν+2

)

+
�

( −1
2(ν+1)

)
�

(
3ν+2
2ν+2

)
�

(
4(ν+1)−1

2(ν+1)

)
�

(
ν

2ν+2

) 1
ν
+2

(ν + 2)2
1
ν
+3π

ν+1
2ν �

(
− ν+2

2ν+2

)
�

(
5ν+4
2ν+2

)
�

(
2(ν+1)−1

2(ν+1)

) 1+3ν
ν

.

For large ν one can expand the coefficients and obtain

�
1/ν
x

2ν
(

1 − π2

24ν2

)Vx,y1(∞)
= −1 − + 1 + 3ν

3
(
24ν2 − π2

) m�
2
ν
+2

x +O(m2 �
4
ν
+4

x ).

A.2. Rectangular strip in the xy1-plane infinite along the x-direction

For ν = 4 the integral (40) can be evaluate approximately

�y1

z
1/4∗

=
22 · 24/5π�

(
6
5

)
5�

( 1
10

)
�

( 21
10

) +
6 · 24/5π�

(
6
5

)
5�

( 1
10

)
�

( 21
10

) z
5/2∗ +O

(
m2z5∗

)
and inverting we get

z∗ = �4
y1

[
0.0412 − 0.0000155m�10

y1
+O

(
m2l2

20
)]

. (A.5)

The pseudopotential for ν = 4 reads

Vy1, x(∞)
(z∗) =

−2
√

π�
(

3
5

)
�
(

1
10

) + 4
√

π�
(

3
5

)
�
(

1
10

) mz
5/2∗ +O(m2z5∗)

z∗
. (A.6)

Plugging (A.5) in (A.6) we get

Vy1, x(∞)
(�y1) = −13.5

�4
y1

(
1 − 0.00031m�10

y1
+O(m2�20

y1
)
)

. (A.7)

Performing the same for arbitrary ν we have

z∗
lνy

=
⎛
⎝2 π1/2�

(
1

2ν+2

)
ν�

(
ν+2

)
⎞
⎠

ν

−
ν(ν + 2)

(
�
(

1
2ν+2

)
ν�

(
ν+2
2ν+2

)
)3ν+2

8ν+1π
3ν
2 +1(2ν + 3)

m�2ν+2
y1

+ O(m2�4ν+4
y1

)

2ν+2
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and

Vy1, x(∞)
(�y1) = Qly + Cly m�2+2ν

y1
+O(m2�4+4ν

y1
)

�ν
y1

, (A.8)

where

Qly =
2νπ

ν+1
2 νν+1�

(
− ν

2ν+2

)
�

(
ν+2
2ν+2

)ν

(ν + 1)�
(

1
2ν+2

)ν+1 ,

Cly = −
�

(
1

2ν+2

)ν+1
�

(
− ν

2ν+2

)
�

(
ν+2
2ν+2

)−ν−2

2ν+3ννπ
ν
2 + 1

2 (2ν + 3)
.

For large ν we have the expansion for (A.8)

�ν
y1
Vy1, x(∞)

(�y1) = −2π1/2+ν + (2ν − 1)e
24ν−π2+12

24ν

4πν+1ν
m�2+2ν

y1
+O(m2�4+4ν

y1
).

A.3. Rectangular strip in y1y2-plane infinite along the y2-direction

For ν = 4 the integral (53) can be evaluated approximately

�y1

z
1/4∗

= 2
√

π�
( 3

4

)
�

(
5
4

) +
√

π�
( 13

4

)
�

(
15
4

) mz
5/2∗ +O(m2z10∗ )

and this gives

z∗ = �4
y1

(
0.00190 − 2.52 10−10m�10

y1
+O

(
m2�20

y1

))
. (A.9)

The pseudopotential for ν = 4

Vy1, y2(∞)
(z∗) =

2
√

π�
(
− 1

4

)
�
(

1
4

) +
√

π�
(

9
4

)
mz

5/2∗
�
(

11
4

) +O(m2z5∗)

z
1/4∗

. (A.10)

Substituting (A.9) in (A.10) we get

Vy1, y2(∞)
= −

23.0
(

1 − 0.741 · 10−9m�10
y1

+O
(
m2�20

y1

))
�y1

. (A.11)

For an arbitrary value of ν from (53) we have

z∗ = �ν
y1

[
C1 + C2m�2ν+2

y1
+O(m2�4+4ν

y1
)
]
, (A.12)

where

C1 = 2−νν−νπ−ν/2

(
�

( 1
4

)
�

( 3
4

)
)ν

C2 = −
2−3ν−5ν−3ν−1π− 3ν

2 −1�
( 1

4

)3ν+3
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(
ν
2 + 5

4

)
�

(
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The pseudopotential for general ν can expressed as

4Vy1, y2(∞)
(z∗)√

πνz
−1/ν∗

= 2�
(− 1

4

)
�

( 1
4

) + m�
(

ν
2 + 1

4

)
z

2
ν
+2

∗
�

( 1
4 (2ν + 3)

) +O(m2z
4+4/ν∗ ). (A.13)

Plugging (A.12) in (A.13) we get the following formula for the pseudopotential for large ν

�y1Vy1, y2(∞)
(�y1) = −4πν2�

( 3
4

)2

�
( 1

4

)2 + �
( 1

4

)2ν+1
�

( 3
4

)−2ν−1

22ν+ 5
2 ν2ν+ 3

2 πν
m�2ν+2

y1
+ O(m2�4+4ν

y1
).

Appendix B. Thermalization times of holographic two-point correlators and 
entanglement entropy

B.1. Thermalization time of two-point correlators

Under the holographic approach one can find the thermalization time ttherm of the two-point 
correlator at the scale � using the Vaidya background. For this, one should consider a geodesic 
of a bulk particle with equal time endpoints located at the distance � and find the time when the 
geodesic covered by the shell. In the Vaidya–Lifshitz background (12)–(13) we should study the 
thermalization in both longitudinal and transversal directions.

For the thermalization in the longitudinal direction we have the following relation for the 
length

�x = 2z∗
1∫

0

wdw√
f (z∗w)(1 − w2)

,

where w = z/z∗ and the turning point is assumed to lie above the horizon, i.e. zh > z∗.
The distance in the transversal direction is given by

�y1 = 2z
1/ν∗

1∫
0

w−1+2/νdw√
f (wz∗)(1 − w2/ν)

.

The thermalization time of the two-point correlator in both directions is defined by

ttherm = z∗
1∫

0

dw

f (z∗w)
. (B.1)

B.2. Thermalization time of entanglement entropy

To study the thermalization of the entanglement entropy we should also consider configura-
tions in the longitudinal and transversal directions.

The longitudinal length scale is given by

�x = 2

1∫
z∗w1+2/ν dw√

f (z∗w)(1 − w2(1+2/ν))
. (B.2)
0
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The length for a subsystem delineated in the transversal direction is

�y1 = 2z
1/ν∗

1∫
0

w3/νdw√
f (w, z∗)(1 − w2(1+2/ν))

.

Here we are also interested in the value of the boundary time when the surface is covered by the 
shell, i.e. the thermalization time of the entanglement entropy has the same expression as for the 
two-point correlator (B.1).
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