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1 Introduction

The gravity/gauge duality provide an alternative tool for understanding dynamics of the

strong coupling system, where standard methods lacks. One such system is the quark-gluon

plasma (QGP), which can be produced in heavy-ion collisions and represents a strongly

coupled fluid with a small viscosity [1]. The QGP goes through several stages of evolution.

It is believed that the QGP is created after a very short time after the collision τtherm ≈
few 0.1 fm/c and the holographic approach, in particular, is aimed to describe this and a

short nearest period of evolution [2, 3]. There are indications that in this time the QGP

is anisotropic. Since at time scales of τ ≈ few 0.1 fm/c it is in thermal equilibrium, one

can try to apply anisotropic holographic hydrodynamics to describe its isotropization. The
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anisotropic stage of the QGP takes place for 0.1 fm/c . τ . 0.3 − 2 fm/c [4] and can be

studied also holographically [5, 6].

Through the gauge/gravity duality, the thermalization of the field theory in the bound-

ary corresponds to the process of black hole formation in the bulk. According to the

holographic dictionary, the scenario of a heavy-ion collision can be represented as a shock

wave collision in which trapped surface is formed [7]–[16]. After the collision the shocks

slowly decay, leaving the plasma described by hydrodynamics in the middle. The creation

of the black hole is also described by the Vaidya metric of an infalling shell with a horizon

corresponding to the location of the trapped surface [17]–[21].

By now both standard existing models and the holographic approach with AdS back-

grounds, as well as its conformally equivalent deformations for bulk geometries, have failed

to reproduce the particle multiplicity at high energies. However, if one performs the holo-

graphic estimations of multiplicities in Lifshitz-like spacetimes [22, 23, 25], one can fit

the experimental data for certain values of the critical exponents [24]. In this paper, we

consider following the 5-dimensional Lifshitz-like metric:

ds2 = L2

[(
−dt2 + dx2

)
z2

+

(
dy21 + dy22

)
z2/ν

+
dz2

z2

]
. (1.1)

The choice of the geometry (1.1) is motivated by studies of the anisotropic phase of the

QGP. As it is known, the QGP in the 4d gauge theory can be characterized by the energy-

momentum tensor 〈Tµν〉 = diag(ε, pL, pT , pT ), with the particle momenta 〈p2L〉 < 〈p2T 〉 at

early times of the QGP formation. To reproduce this anisotropy from the gravity side, one

of the possible backgrounds is the Lifshitz-like metric (1.1). It has been shown in [24] that

for the wall-on-wall collision in the 5d Lifshitz-like background with the critical exponent

ν = 4, the dependence of multiplicity on the energy is desirable, i.e. behaves as E1/3.

Another possible implementation of the 5d Lifshitz-like spacetime is

ds2 = L2

[
−dt2

z2
+
dx2

z2/ν
+

(
dy21 + dy22

)
z2

+
dz2

z2

]
, (1.2)

which differs from (1.1) by the anisotropic scaling taking place only for one spatial direction.

The embedding of this background and its non-zero temperature generalization into super-

gravity IIB was done in [25] for ν = 3/2. Solutions interpolating between Lifshitz-like (1.2)

and AdS geometries were intensively studied in [26]–[32] within the context of applica-

tions to the anisotropic QGP. However, the results for multiplicities calculated using the

background (1.2) in [24] do not fit the experimental data unlike the case of the metric (1.1).

Since after the shock wave collision the trapped surface argument supports black hole

formation, it is natural to construct the corresponding Vaidya-type solution. In the present

paper we start from the generalization of (1.1) to the non-zero temperature case for an

arbitrary critical exponent. Further, we construct a Vaidya-type geometry asymptoting to

the Lifshitz-like solution to model a gravitation collapse in order to study the holographic

thermalization. The Vaidya metric with Lifshitz scaling was used for the examination of

the holographic thermalization in [33, 34]. There, it has been shown that for the metric
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with anisotropy between time and spatial directions the propagation of thermalization

represents a similar “horizon” behavior as that seen in the AdS case. The Vaidya metric

was also generalized to the Lifshitz spacetimes with a hyperscaling violating factor [35–37].

As another application of our solutions, we consider the time evolution of the holo-

graphic entanglement entropy during the process of thermalization. The behavior of the

entanglement entropy modeling the thermalization and “quench” processes is a subject of

intensive studies during last years, see [36, 38–42] and refs. therein. For Lifshitz metrics the

time evolution of the entanglement entropy turns out to have a linear regime [33]. In this

work, we examine the influence of spatial anisotropy on the behavior of the entanglement

entropy.

The paper is organized as follows. Section 2 is devoted to constructing the exact solu-

tions which asymptotes to the Lifshitz-like metric (1.1). In section 2.1 we present the 5d

black brane background. In section 2.2 we generalize it to the Vaidya type solution, which

describes a thin shell collapsing to a black hole in the Lifshitz-like background. In section 3

we numerically calculate thermalization times using our Lifshtiz-Vaidya type solution. Sec-

tion 4 is devoted to studies of the holographic entanglement entropy at equilibrium as well

as its out-of-equilibrium behavior. We conclude in section 5 with a discussion of our re-

sults. Appendix A collects some technical details used for constructing analytic solutions.

In appendix B we present some details concerning numerical solutions to EOM related the

functional of the entanglement entropy.

2 Gravity backgrounds

2.1 Black branes in Lifshitz-like backgrounds

In [24] we considered a collision of two domain walls in the five-dimensional Lifshitz-like

background

ds2 = r̃2ν
(
−dt2 + dx2

)
+ r̃2(dy21 + dy22) +

dr̃2

r̃2
, (2.1)

where ν is the critical exponent. Note that (2.1) is equivalent to (1.1) via the change of

coordinate z = r̃−ν and the rescaling (t, x, y1, y2) 7→ ν−1(t, x, y1, y2).

In [24, 25] the metric ansatz (2.1) was considered for a 5d model governed by the action

S =
1

16πG5

∫
d5x
√
|g|
(
R+ Λ− 1

6

(
H2

(3) +m2
0B

2
(2)

))
, (2.2)

where m0 and Λ are constant and the 3-form H(3) and the 2-form B(2) are related by

H(3) = dB(2). (2.3)

However, it seems difficult to find an analytic black brane (hole) solution for the model (2.2)

due the dependence (2.3) for the gauge fields.

In this paper we consider another bulk theory, possessing the metric (2.1) as a solution

to Einstein equations, with the following action

S =

∫
d5x
√
|g|
(
R[g] + Λ− 1

2
(∂φ)2 − 1

4
eλφF 2

(2)

)
, (2.4)
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where the 2-form F(2) is the gauge field with

F 2
(2) = FmnF

mn, (2.5)

φ is the dilaton scalar field, λ is a dilatonic coupling constant and Λ is the cosmological

constant.1 The model (2.4) can be considered as a truncated supergravity IIA in the style

of [25]. Another possible underlying theory is the 5d SO(6) gauged supergravity [44].

The Einstein equations of motion can be written as

Rmn = −Λ

3
gmn +

1

2
(∂mφ)(∂nφ) +

1

2
eλφFmpF

p
n −

1

12
eλφF 2

(2)gmn. (2.6)

The scalar field equation is

�φ =
1

4
λeλφF 2

(2), with �φ =
1√
|g|
∂m(gmn

√
|g|∂nφ). (2.7)

Finally the equation of motion for the gauge field is

Dm

(
eλφFmn

)
= 0. (2.8)

Introducing the new variable

r = ln r̃, (2.9)

one can rewrite (2.1) as

ds2 = e2νr
(
−dt2 + dx2

)
+ e2r(dy21 + dy22) + dr2. (2.10)

We then select the following anzatz for the dilaton and Maxwell fields:

φ = φ(r), eλφ = µe4r, (2.11)

F(2) =
1

2
q dy1 ∧ dy2, (2.12)

where µ and q are two constants. One can see that this ansatz has some features. Firstly,

the dilaton has the linear dependence in the radial coordinate (2.11). Black hole solutions

with a linear dilaton in the supergravity context were discussed in [43]. At the same time the

similar ansatz for the gauge fields (2.12) emerges to support AdS2×R3, AdS3×R2, AdS2×
R2 solutions and their non-zero temperature analogues of gauged supergravity in [44]–[45].

The 6-dimensional Lif4×R2 background with a constant two-form field was found in [46].

The model (2.4) with the fields given by (2.11)–(2.12) can be generalized to the non-

zero temperature case without changing the field ansatz. The metric of the black brane

solution reads

ds2 = e2νr
(
−f(r)dt2 + dx2

)
+ e2r

(
dy21 + dy22

)
+

dr2

f(r)
, (2.13)

with the blackening function given by

f(r) = 1−me−(2ν+2)r. (2.14)

1More precisely, Λ = −2Λ̄, where Λ̄ is the standard cosmological constant.
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For the particular case ν = 4, the metric (2.13)–(2.14) along with the ansatz (2.11)–(2.12)

solves the field equations (2.6)–(2.8) provided that the constants take the following values:

λ = ± 2√
3
, Λ = 90, µq2 = 240. (2.15)

See appendix A.1 for details.

If the dilaton is constant and the Maxwell field vanishes, the metric (2.13) with ν = 1

turns out to be the black brane solution in the AdS background:

ds2 = e2r
(
−f(r)dt2 + dx2

)
+ e2r

(
dy21 + dy22

)
+

dr2

f(r)
(2.16)

with

f(r) = 1−me−4r (2.17)

or in terms of variable r̃

ds2 = r̃2
(
−f(r̃)dt2 + dx2

)
+ r̃2(dy21 + dy22) +

dr̃2

f(r̃)r̃2
, (2.18)

where

f(r̃) = 1− m

r̃4
. (2.19)

This corresponds to r → 0 or the UV limit.

2.2 The Vaidya-Lifshitz geometry

To study the thermalization process we need to use the infalling shell approach based on

the Vaidya solution [47]. First, we introduce the coordinate z = e−νr, which, after the

rescaling (t, x, y1, y2) 7→ ν−1(t, x, y1, y2), allows one to rewrite the metric (2.13) in the form

ds2 = z−2
(
−f(z)dt2 + dx2

)
+ z−2/ν(dy21 + dy22) +

dz2

z2f(z)
, (2.20)

with the blackening function

f = 1−mz2+2/ν . (2.21)

To write down the Vaidya-Lifshitz solution, one should consider the ingoing null

geodesics

dt+
dz

f(z)
= 0 (2.22)

and introduce the Eddington-Finkelstein coordinate system (v, x, y1, y2, z) via

dv = dt+
dz

f(z)
. (2.23)

Owing to (2.23) we can represent (2.20) in the following form

ds2 = −z−2f(v, z)dv2 − 2z−2dvdz + z−2dx2 + z−2/ν(dy21 + dy22), (2.24)

– 5 –
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with

f(v, z) = 1−m(v)z2+2/ν , (2.25)

where the mass function m(v) determines the thickness of the shell falling along v = 0 and

captures the information about the black hole formation. For the infinite thin shell m(v)

has the form

m(v) = Mθ(v), (2.26)

where M is a constant and θ(v) is the Heaviside function. One can also consider a smooth

function m(v) and get, for instance,

f(v, z) = 1− m

2

(
1 + tanh

v

α

)
z2+2/ν , (2.27)

where m and α are two constants.

The solution (2.24)–(2.25) interpolates between the vacuum Lifshitz solution (2.1)

inside the shell (v < 0) and the Lifshitz black brane geometry (2.20)–(2.21) outside the

shell (v > 0).

The check of the equations of motion for the background (2.24)–(2.25) is given in

appendix A.2.

3 The thermalization process

In [24] we have shown that there is a trapped surface, which forms in the collision of two

shock waves in the background (2.1), controlled by boundary points za and zb, with za < zb.

This trapped surface defines the location of the horizon for (2.24)–(2.25).

Calculations of the thermalization time ttherm at the scale ` is based on finding geodesics

with endpoints located at the distance ` for a bulk particle. Then, the thermalization time

ttherm is the time when this geodesic covered by the shell (2.24)–(2.25).

The general case for the Lagrangian of the pointlike probe has the form

L =

√
−z−2f(z)

dv

dτ

dv

dτ
− 2z−2

dv

dτ

dz

dτ
+ z−2

dx

dτ

dx

dτ
+ z−2/ν

(
dy1
dτ

dy1
dτ

+
dy2
dτ

dy2
dτ

)
, (3.1)

where τ is a parameter. Here we have two possibilities for the choice of τ with respect to

the transverse directions.

3.1 Thermalization along the longitudinal direction

Consider the first case taking τ = x, which can be interpreted as a longitudinal direction.

Now we obtain

L =

√
Rx
z

, (3.2)

where we define

R = 1− f(z)(v
′
x)2 − 2v

′
xz
′
x. (3.3)

– 6 –
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The integrals of motion corresponding to (3.2) are

J = − 1

z
√
Rx

, (3.4)

I =
f(z)v

′
x + z

′
x

z
√
R

. (3.5)

From the relations (3.4) and (3.5) we get

z
′
x = ±

√
f(z)

(
1

z2J 2
− 1

)
+
I2
J 2

. (3.6)

The turning point z∗ can be found from the equation

f(z∗)

(
1

z2∗
− J 2

)
+ I2 = 0. (3.7)

For simplicity, we put I = 0 and we get from (3.7)

J 2 =
1

z2∗
. (3.8)

For the distance ` between the ends of the geodesic and the thermalization time one gets

` = 2z∗

∫ 1

0

wdw√
f(z∗w)(1− w2)

, (3.9)

ttherm = z∗

∫ 1

0

dw

f(z∗w)
. (3.10)

Note that here we assume that the turning point lies above the horizon, i.e. zh > z∗.

The behavior of the thermalization time as a function of the distances for (3.9)–(3.10) is

represented in figure 1.A. We see that the thermalization time behaves linearly with `. The

results match to those for modified AdS models from [34] and coincide for all values of the

dynamical exponent ν.

3.2 Thermalization along the transversal direction

Now turn to the second case when τ = y1, that we interpret as the thermalization along a

transversal direction. From (3.1) we have

L =

√
R
z
, (3.11)

where we put

R = z2−2/ν − f(z)(v̇y)
2 − 2v̇y ży. (3.12)

The integrals of motion corresponding to (3.11) read

J = −z
1−2/ν
√
R

, (3.13)

I =
f(z)v̇y + ży

z
√
R

. (3.14)
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Figure 1. The thermalization time τ as a function of ` for the 5-dimensional Lifshitz met-

ric (2.20)–(2.25) for ν = 2, 3, 4. A: thermalization along the longitudinal direction with m = 0.5

and m = 0.1. All lines coincide. B: thermalization along the transversal direction, ν = 1 (orange),

ν = 2 (brown), ν = 3 (blue) and ν = 4 (gray). The solid and dotted curves correspond to m = 0.5

and m = 0.1, respectively.

From (3.13) and (3.14) we get that the turning point z∗ is defined from

− I2z2−
4
ν

(
fJ 2z2/n − f − I2z2

)
= 0. (3.15)

For I = 0 this equation is simplified to give

J 2 =
1

z
2/n

∗
(3.16)

and we also get

ży = ±
z1−

2
ν

√
f
(
1− J 2z2/ν

)
J

. (3.17)

From (3.17) one gets the relation between the ends of geodesic and the thermalization

time

` = 2 z
1/ν
∗

∫ 1

0

w−1+2/νdw√
f(wz∗)

(
1− w2/ν

) , (3.18)

ttherm = z∗

∫ 1

0

dw

f(z∗w)
. (3.19)

Here we remove the regularization since ν > 0. The dependence (3.19) on (3.18) is given

in figure 1.B. We see that the thermalization time in the transversal direction depends on

the anizotropic parameter ν. In particular, for ν = 2 the thermalization process is more

then twice faster as compared to the longitudinal direction. By increasing ν we make the

thermalization in the transversal direction faster. We also see that for larger values of ν

the dependence on the mass m becomes more essential.
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4 Entanglement entropy

In this section we explore the evolution of entanglement entropy in the context of the

holographic prescription. We perform calculations using both black brane (2.13)–(2.14)

and Vaidya-Lifshitz time dependent backgrounds (2.24)–(2.25).

The entanglement entropy can be useful to probe correlations in the background mea-

suring an entanglement of a quantum system. If the system is divided into two spatially

disjoint parts A and B, the entanglement entropy S(A) gives an estimation of the amount

of information loss corresponding to the restriction of an A. It seems not to be simple to cal-

culate the entanglement entropy from the strongly coupled system side. However, one can

compute its holographic dual using the suggestion from works [48]–[50]. The holographic

formula for the entanglement entropy of a subsystem A

S =
A

4G5
, (4.1)

where A is the area of the minimal three-dimensional surface whose boundary coincides

with the boundary of the region A. The area of the surface is defined by the relation

A =

∫
d3σ
√
| det gMN∂αXM∂βXN |, (4.2)

where

σ1 = x, σ2 = y1, σ3 = y2. (4.3)

(4.1) is known as the holographic entanglement entropy. It is useful to represent (2.20)–

(2.21) and (2.24)–(2.25) in the generic form

gMN = g00dt
2 + g11dx

2 + g22dy
2
1 + g33dy

2
2 + g44dz

2. (4.4)

From (4.4) we see that the entanglement entropy depends on the direction along which

the subsystem is delineated. There are two possible cases for the subsystems both for the

black brane and the thin shell we have we study and compare each other.

4.1 Entanglement entropy in a time-independent background

To begin with, we compute the entanglement entropy for the black hole (2.20)–(2.21).

Here we present the results for the two subsystems cut out both along longitudinal and

transversal directions.

4.1.1 Subsystem delineated along the longitudinal direction

First, consider the subsystem A cut out along x-direction, say, the belt is located as

x ∈ [0, lx < Lx], y1 ∈ [0, Ly1 ], y2 ∈ [0, Ly2 ]. (4.5)

We assume that the minimal area surface is invariant under the y1 and y2 planar directions

and the embedding function is the function of only one coordinate, z = z(x). Thus, the

three-dimensional minimal surface is defined by

A = 2

∫ lx

0
dx

∫ Ly1

0
dy1

∫ Ly2

0
dy2

√
g22g33 (g11 + g44(z

′)2). (4.6)

– 9 –
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Taking into account (2.20), one has

A = 2Ly1Ly2

∫ lx

0
dxL, where L =

1

z1+2/ν

√
1 +

z′2

f(z)
, (4.7)

where it is supposed that ′ = d

dx
.

The integral of motion corresponding to the system with the Lagrangian L reads

− z−1−2/ν√
1 + z′2

f(z)

= C. (4.8)

The function z = z(x) that minimizes the surface area is then given by the equation

of motion

z
′

= ±

√
f(z)

((z∗
z

)2(1+2/ν)
− 1

)
, (4.9)

where the turning point z∗ is related with C as z
1+2/ν
∗ = C−1. The length scale lx can be

found from

lx
2

=

∫ z∗−ε

z0

dz

z′
=

∫ z∗−ε

z0

(
z

z∗

)1+ 2
ν dz√

f(z)

[
1−

(
z
z∗

)2(1+2/ν)
] . (4.10)

We can remove ε from the upper limit in (4.10) under the assumption that the turning

point z∗ is above the horizon. Indeed, if the function f is given by (2.21) with the horizon

defined by

zh =
1

mν/(2+2ν)
, (4.11)

the integrand in (4.10) near z = z∗ can be represented as

1√
f
(

1− z2+4/ν

z
2+4/ν
∗

) =

√
νz∗

2(ν + 2)

1√
(z∗ − z)

(
1−mz2+

2
ν

∗

) +O
(√
z − z∗

)
, (4.12)

thus, we have the integrable singularity for z∗ < zh. However, for z∗ = zh one obtains

1√(
1−

(
z
z∗

)2+ 2
ν

)(
1−

(
z
z∗

)2+ 4
ν

)=
1

2
√

ν2+3ν+2
ν2z2∗

(z − z∗)
+

−ν − 3

4νz∗

√
ν2+3ν+2
ν2z2∗

+O
(
(z − z∗)1

)
,

(4.13)

which leads to the logarithmic singularity. For calculations of the entropy in the black hole

background we assume that the turning point is below the horizon, while for the case of

the shell we present the results for the case when the horizon is crossed.

Substituting (4.9) into (4.7) and coming to the integration with respect to z-variable,

one has

A = 2Ly1Ly2

∫ z∗

z0

dz a(z), a(z) =
1

z1+2/ν
√
f(z)

(
1− (z/z∗)2(1+2/ν)

) . (4.14)
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In (4.14) we remove ε assuming m 6= 1, but keep UV regularization z0.

The latter expression can be represented in terms of the dimensionless variable w =

z/z∗ as
A

2Ly1Ly2
=

1

z
2/ν
∗

∫ 1

z0

dw

w1+2/ν
√
f(z∗w)

(
1− w2(1+2/ν)

) . (4.15)

The renormalized functional for the minimal surface reads

Aren

2Ly1Ly2
=

1

z
2/ν
∗

∫ 1

0

dw

w1+2/ν

 1√
f
(
1− w2+4/ν

) − 1

− ν

2z
2/ν
∗

. (4.16)

Taking into account (4.12) one can also rewrite (4.10) in the w-variable

lx = 2

∫ 1

0
z∗w

1+2/ν dw√
f(z∗w)

(
1− w2(1+2/ν)

) , (4.17)

for z∗ 6= zh.

One can see that the relation for the entanglement entropy is proportional to the area

of the boundary ∂A = Ly1Ly2 which is in agreement to the area law.

The behavior of the area (4.16) is presented in figure 2 A. To get the dependence of

the entanglement entropy of the length for small values of ` one can consider the massless

case. We see that for m = 0 the integrals (4.16) and (4.17) can be calculated explicitly.

By analogy with [25] one gets

Aren ∝ −
1

`2/ν
. (4.18)

From numerical calculations we see that for large `

Aren

Ly1Ly2
≈ γL(m)`+ . . . (4.19)

To keep the correct dimension we have to assume

γL(m) ∝ m
2+ν

2(1+ν) (4.20)

It should also be noted, that from figure 2.A the dependence on the mass of the black brane

for the intermediate ` is rather small. The physical meaning of estimation (4.19) is that our

surface for large ` becomes like a smothered parallelepiped almost touching to the horizon.

4.1.2 Subsystem delineated along the transversal direction

Another possible subsystem A can be divided along the y1-direction (which is equivalent

to dividing it along y2). It is also assumed that z = z(y1) and

x ∈ [0, Lx], y1 ∈ [0, ly1 < Ly1 ], y2 ∈ [0, Ly2 ]. (4.21)

The three-dimensional minimal surface bordering on ∂A has the form

A = 2LxLy2

∫ ly1

0
dy1L, where L =

1

z1+1/ν

√
1

z2/ν
+

(z′)2

f(z)z2
. (4.22)
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Figure 2. A: the
Aren

2Ly1
Ly2

as a function of ` (4.17) in the 5d Lifshitz black brane background (2.20)–

(2.21) for ν = 2, 3, 4 (the upper gray, middle green and lower brown curves, respectively). B:

dependencies of
Aren

2LxLy2

(4.27) on ` (4.25) in the black brane (2.20)–(2.21) for ν = 2, 3, 4 (from left

to right, respectively). For both cases we plot for m = 0 (solid lines), m = 0.1(dotted lines) and

m = 0.9(dashed lines).

This dynamical system has the following integral of motion

− z−(1+3/ν)√
1

z2/ν
+ 1

z2f(z)
(z′)2

= C, (4.23)

where ′ = d

dy1
.

The corresponding equation of motion reads

z
′

= ±z1−1/ν
√√√√f(z)

((
z

z∗

)−2(1+2/ν)

− 1

)
, (4.24)

where z∗ is related with C as z
1+2/ν
∗ = C−1. The length scale ly1 can be defined in the

following way

ly1 = 2z
1/ν
∗

∫ 1

0

w3/νdw√
f(w, z∗)

(
1− w2(1+2/ν)

) . (4.25)

We note that for the lower limit in (4.25) one can take z0 = 0. At the same time, we can

remove ε for the upper limit of (4.25) for z∗ < zh , by the same reason as above in (4.10).

Owing to (4.24) the relation (4.22) in terms of the dimensionless w-variable takes the

form
A

2LxLy2
=

1

z
(1+1/ν)
∗

∫ 1

z0/z∗

1

w(2+1/ν)

1√
f(wz∗)

(
1− w2(1+2/ν)

)dw. (4.26)

The renormalized functional for the minimal surface (4.26) reads

Aren

2LxLy2
=

1

z
1+1/ν
∗

∫ 1

0

dw

w2+1/ν

 1√
f
(
1− w2+4/ν

) − 1

− ν

1 + ν

 . (4.27)
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Numerical results for the entanglement entropy density (4.27) for different values of ν

are shown in figure 2. In a similar way with [25] one can estimate for small `

Aren ∝ −
1

`1+νy
(4.28)

and numerical calculations approximately give

Aren ≈ γT (m)`+ . . . (4.29)

when ` is large. To keep the correct dimension we have to write

γT (m) ∝ m
2ν+1
2(1+ν) (4.30)

for large `. We see the dependence on the mass in figure 2.B for large `. Note that the

functions γL(m) (4.19) and γT (m) (4.29) are different.

4.2 Entanglement entropy in a time-dependent background

Now we come to studies of the evolution of entanglement entropy in the Lifshitz-Vaidya

background (2.24)–(2.25), describing the infalling shell. As before we will consider subsys-

tems delineated along both transversal and longitudinal directions.

4.2.1 Subsystem delineated along the longitudinal direction

We once again start from the consideration of a subsystem A extending along x-direction,

assuming that the minimal surface area is parameterized by

v = v(x), z = z(x). (4.31)

Taking into account (4.5), the volume functional corresponding to the minimal three-

dimensional surface is given by

A = 2Ly1Ly2

∫ lx

0
dxL, (4.32)

L =
1

z2/ν+1

√
1− f(z, v)(v′)2 − 2v′z′. (4.33)

Here we suppose that ′ ≡ d
dx . Substituting (4.32) in (4.1) we get the expression for the

holographic entanglement entropy.

The Lagrangian L in (4.32) has the integral of motion given by

J = − 1

z1+
2
ν

√
R
, (4.34)

where we denote

R = 1− f(z, v)(v′)2 − 2v′z′. (4.35)

From (4.34) we immediately obtain

z
2+4/ν
∗ = z2+4/ν R, (4.36)
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Figure 3. The behavior of the solution for z(x) to eqs. (4.37)–(4.38). A: ν = 2, z(3) = 0. B:

ν = 3, z(4) = 0. C: ν = 4, z(4) = 0.

where z∗ is the turning point defined from the requirements z′ = v′ = 0 and related with

J as z
1+2/ν
∗ = J −1.

The equations of motion following from the Lagrangian L (4.33) are

2νzv′′ = νz
∂f

∂z
v′2 + 2(2 + ν)

(
1− f(v′)2 − 2v′z′

)
, (4.37)

2νzz′′ = −2(2 + ν)f + 4f2v′2 + 2νf2v′2 + 4(2 + ν)fv′z′ − νzv′2∂f
∂v

−νzfv′2∂f
∂z
− 2νzv′z′

∂f

∂z
,

which coincide with those from [51] for ν = 1.

Taking into account (4.36) the equations of motion (4.37)–(4.38) can be rewritten as

2νzv′′ = νz
∂f

∂z
v′2 + 2(2 + ν)

z
2(1+2/ν)
∗

z2(1+2/ν)
, (4.38)

2νzz′′ = −

[
2(2 + ν)f

z
2(1+2/ν)
∗

z2(1+2/ν)
+ νzv′2

∂f

∂z
+ νzfv′2

∂f

∂v
+ 2νzv′z′

∂f

∂z

]
. (4.39)

Here we assume that the function f has the form (2.27). We can solve these equation

numerically using the following initial conditions

z(0) = z∗, z′(0) = 0, (4.40)

v(0) = v∗, v′(0) = 0. (4.41)

We are interested in solutions which reach z = 0 at some point xs, similar boundary

conditions have been proposed for example in [52, 53] . The point xs is, in fact, a singular

point of the solutions. Solutions to eqs. (4.37)–(4.38) obeying (4.40)–(4.41) are presented

in figure 3. We can observe that there are two types of such solutions that have a z∗ below

and above the horizon. It is useful to study a domain of the initial data, where these

solutions can exist, see appendix B.

It is also instructive to see the behavior of the quantity fv′ + z′. An assumption, that

the function f does not depend on v, yields to the fact that fv′ + z′ is some conserved

quantity. At the same time for f defined by (2.27) it changes that we observe on figure 15.
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However, it can also be seen that at the end of the curve z = z(x) at x = xUV , this quantity

does not vary significantly and admits the approximation ∂vf = 0.

Owing to (4.36) the minimal three-dimensional surface (4.32) can be represented as

A = 2Ly1Ly2

∫ `x

0

dx

z1+2/ν

(z∗
z

)1+2/ν
. (4.42)

Coming to the z-variable one can rewrite (4.42) in the following form

A
2Ly1Ly2

= −
∫ z∗

z0

dz a(z), (4.43)

with a(z) defined by

a(z) =
1

z′z1+2/ν

(z∗
z

)1+2/ν
. (4.44)

In (4.44) the r.h.s. is taken with the negative sign since z′ < 0 for the solutions of our

interest.

To calculate the entanglement entropy we have to study the behavior of the integrand

a in (4.42). For z ∼ 0 we expect the following behaviour

a(z) ∼ 1

z1+2/ν
. (4.45)

It is also convenient to introduce the quantity b(z), defined by

b(z) =
1

z′

(z∗
z

)1+2/ν
. (4.46)

We study the behaviour of function b(z) on the solution to eqs. (4.37)–(4.38) for ν = 2

and different masses is shown in figure 16 (appendix B). We see that b(z)→ C 6= 0 for any

value of mass, and therefore, we have a(z) ∼ C/z1+2/ν . From figure 16 one can see that

for z∗ = 1 we have C = 1. Hence, the UV divergence is similar to the shell free case and

one can perform the similar renormalization

AShell
ren

2Ly1Ly2
= −

(∫ z∗

z0

[b(z)− b(z0)]

z1+2/ν
dz − ν

2

b(z0)

z
2/ν
∗

)
. (4.47)

Returning to the variable x we obtain the finite contribution to the entanglement

entropy of the shell

AShell
ren

2Ly1Ly2
=

∫ `x

ε

dx

z1+2/ν

(z∗
z

)1+2/ν
− ν

2

b(z0)

z
2/ν
0

. (4.48)

Now we can define the quantity ∆AShell−LV

∆AShell−LV

2Ly1Ly2
=
AShell −ALV

2Ly1Ly2
. (4.49)

It should be noted that the holographic entanglement entropy for the Lifshitz-Vaidya back-

ground depends on two parameters, z∗ and v∗, whereas for the pure Lifshitz case it depends
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only on z∗. One takes z∗ in the second term in such a way that it gives the same distance

` as in the first term. From (4.17) and for f = 1 one gets

ν = 2 : lsing = lx/2 ≈ 0.59907z∗, (4.50)

ν = 3 : lsing = lx/2 ≈ 0.68978z∗, (4.51)

ν = 4 : lsing = lx/2 ≈ 0.74687z∗. (4.52)

Taking into account that

ALV

2Ly1Ly2
=

∫ z∗

z0

dz

z1+2/ν

1√
1−

(
z
z∗

)2+4/ν
=
aν,ren

z
2/ν
∗

+
ν

2

1

z
2/ν
0

, (4.53)

where a2,ren = −0.5991, a3,ren = −1.03468, and a4,ren = −1.49367, we can explicitly write

down ∆AShell−LV. Thus, we have

ν = 2 :
∆AShell−LV

2Ly1Ly2
=

∫ `x−ε

ε

z2∗dx(
z
f=f(z,v)

(x)
)4 − 1

z0
+

0.5991 · 0.59907

`sing
, (4.54)

ν = 3 :
∆AShell−LV

2Ly1Ly2
=

∫ `x−ε

ε

z
5/3
∗ dx(

z
f=f(z,v)

(x)
)10/3− 3

2z
2/3
0

+
1.03468 · (0.68977)2/3

`
2/3
sing

, (4.55)

ν = 4 :
∆AShell−LV

2Ly1Ly2
=

∫ `x−ε

ε

z
3/2
∗ dx(

z
f=f(z,v)

(x)
)3− 2

z
1/2
0

+
1.49367 · (0.74687)1/2

`
1/2
sing

. (4.56)

Figure 4 shows the behavior of the entropy density as a function the length ` for different

values of the anisotropic exponent ν. We see that the entanglement entropy increases

in a linear regime at small distances like it was observed for the black brane case. The

dependence on the critical exponent grows with the reaching the saturation value of the

entropy. In figures 5, 6 we demonstrate the evolution of the entanglement entropy in time.

Note that in figures 5 we show the difference between the entropy in the current time and

the initial value of the entropy at t = 0, i.e. the value of the entropy in the Lifshitz vacuum.

Figures 6 show the difference between the entropy in the current time and the value of the

entropy at very large time (time when the thermalization has already taken place), i.e.

the difference between the entropy in the current time and thermal entropy. We observe

the kink in the evolution which was considered for Lifshitz (ν = 2) and AdS (ν = 1)

backgrounds in [33] and [51], respectively. From figures 5, 6 we see that the entanglement

entropy increases almost linearly with time. We note that after the saturation point had

been reached the entropy flattens out. It should also be mentioned that the saturation is

faster for small values of ` and is almost independent on the anisotropic parameter ν.

4.2.2 Subsystem delineated along the transversal direction

Now we turn to the case when a subsystem A is delineated along y1 (y2)-direction. Param-

eterizing the minimal surface are by v = v(y1), z = z(y1) with (4.21), we have

A = 2LxLy2

∫ ly1

0
dy1L, (4.57)
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Figure 4. The renormalized entanglement entropy at fixed t = 0, 0.6, 1, 1.4, 3, as a function of `

for a subsystem delineated along the longitudinal direction, ν = 2, 3, 4 (A, B, C, respectively). In

D we plot the renormalized entanglement entropy as a function of ` at t = 0.9.The different curves

correspond to the values ν = 2, 3, 4 from top to bottom.
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Figure 5. The time dependence of the holographic entanglement entropy Aren after the correspond-

ing initial state subtraction (t = 0) at fixed l = 1, 1.4, 2, 2.8 for a subsystem delineated along the

longitudinal direction,(A, B, C, respectively). In D we plot the time dependence of Aren−Aren|t=0

at ` = 1. The different curves correspond to the values ν = 2, 3, 4 from top to bottom.
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Figure 6. The time dependence of the holographic entanglement entropy Aren for the Lifshitz-

Vaidya metric after the corresponding subtraction of the state when the black brane has already

been formed (t = 2.5) at fixed l = 1, 1.4, 2, 2.8 for a subsystem delineated along the longitudinal

direction, (A, B, C, respectively). In D we plot the time dependence of Aren −Aren|t=2.5 at ` = 2

for the values of ν = 2, 3, 4 from bottom to top.

with

L =
1

z1+1/ν

√
1

z2/ν
− 1

z2
f(z, v)(v′)2 − 2

z2
v′z′, (4.58)

where it is supposed that ′ ≡ d
dy1

.

The integral of motion corresponding to the system with Lagrangian L (4.57) is

J = − 1

z1+3/ν
√
R
, (4.59)

with

R =
1

z2/ν
− 1

z2
f(z, v)(v′)2 − 2

z2
v′z′. (4.60)

Denoting

J = − 1

z
1+2/ν
∗

, (4.61)

we get the conserved quantity

z6/ν(z2−2/ν − v′2f − 2z′v′) = z
2+4/ν
∗ . (4.62)

The EOM corresponding to (4.57) can be presented in the form

2νz1+
2
ν v′′ = νz1+

2
ν
∂f

∂z
v′2 − 2fz2/νv′2 (4.63)

−4fνz2/νv′2 − 4νz2/νv′z′ − 8z2/νv′z′ + 2νz2 + 4z2,

−2νz1+
2
ν z′′ =−2f2z2/νv′2 − 4νf2z2/νv′2 + νz1+2/ν ∂f

∂v
v′2 + νz1+2/νf

∂f

∂z
v′2 (4.64)

−4fz2/νv′z′−8νfz2/νv′z′+2νz1+2/ν ∂f

∂z
v′z′+4z2/νz′2−4νz2/νz′2+4fz2+2νfz2.
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Figure 7. The behavior of the profiles of the solution z(x) to (4.37)–(4.38). A: ν = 2, z(2.1) = 0.

B: ν = 3, z(2.2) = 0. C: ν = 4, z(2.1) = 0.

Taking into account (4.62) the equations of motion (4.63)–(4.65) can be re written as

2νz1+
2
ν v′′ = νz

2
ν
+1∂f

∂z
v′2 + 2(2 + ν)z2

z
2(1+2/ν)
∗

z2(1+2/ν)
+ 2(1− ν)fz2/νv′2, (4.65)

−2νz1+
2
ν z′′ = 2(2ν + 1)fz2

z
2(1+2/ν)
∗

z2(1+2/ν)
+ νz1+

2
ν v′2

∂f

∂z
+ νz1+

2
ν fv′2

∂f

∂v
(4.66)

+2νz1+
2
ν v′z′

∂f

∂z
+ 4(1− ν)z2/νz′2.

Here we assume that the function f is given by (2.27) as in the previous section and

we solve (4.63)–(4.65) with the same boundary conditions

z(0) = z∗, z′(0) = 0, (4.67)

v(0) = v∗, v′(0) = 0. (4.68)

We consider once again only solutions that reach z = 0 at some point xs, that is in fact

a singular point of the solutions. In figure 7 we plot solutions to (4.63)–(4.65) with (4.67)–

(4.68). We also present domains of the initial data plane, where these solutions can exist

in figure 21–23, see appendix B. We show the position of the singular point corresponding

to the solution with given z∗ and varying v∗. We present more details about solutions to

eqs. (4.37)–(4.38) in appendix B.

One can rewrite (4.57) in the following way

A = 2LxLy2

∫ ly1

0
dy1

z
1+2/ν
∗

z2+4/ν
. (4.69)

On the solution z the functional (4.69) can be presented as

A
2LxLy2

= −
∫ z∗

z0

dz a(z), (4.70)

where

a(z) =
1

z2+1/ν
b(z), (4.71)

and

b(z) =
z
1+2/ν
∗

z′ z3/ν
. (4.72)
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Figure 8. The renormalized entanglement entropy at fixed t = 0.1, 0.6, 1, 1.4, 2, 2.6, as a function

of ` for a subsystem delineated along the transversal direction, ν = 2, 3, 4 (A, B, C, respectively).

In D we plot the renormalized entanglement entropy as a function of l at t = 1 for different values

of ν (from left to right, respectively).

As in the previous section we derive the factor b(z) thus b(z) → 1 (see, appendix B). In

this case the UV behaviour is the same as in the vacuum case and we can represent the

answer to (4.69) in the following form

AShell
ren

2LxLy2
= −

(∫ z∗

z0

[b(z)− b(z0)]

z2+1/ν
dz − ν

1 + ν

b(z0)

z
1+1/ν
∗

)
. (4.73)

The finite contribution to the holographic entanglement entropy can be represented in the

following way

AShell
ren

2LxLy2
=

∫ lx

ε

dx

z2+1/ν

z
1+2/ν
∗

z3/ν
− ν

ν + 1

b(z0)

z
1+1/ν
0

. (4.74)

The renormalized entanglement entropy (4.74) as a funciton of ` is presented in figure 8.

From figure 2 B and figure 8 D one can see the entanglement entropy in time-dependent

background has the similar behavior as for the static case. For small ` we observe the depen-

dence of the entropy on ν, which vanishes for large `, where the entropy has linear behavior.

In three left panels of figure 11 we present the renormalized entanglement entropy (4.74)

as a function of ` and t.

Now as above let us define ∆AShell−LV
reg by

∆AShell−LV

2LxLy2
=
AShell −ALV

2LxLy2
. (4.75)

Taking into account that for ALVreg we have

ALV

2LxLy2
=

ν

1 + ν

1

z
1+1/ν
0

+

(
L(ν, 0)

ly1

)ν+1

aν,ren, (4.76)
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where a2,ren = −0.225, a3,ren = −0.208,a4,ren = −1.885 and L(ν, 0) is read from (4.25) with

m = 0, so

ν = 2 : L(2, 0) ≈ 0.67497, (4.77)

ν = 3 : L(3, 0) ≈ 0.8324, (4.78)

ν = 4 : L(4, 0) ≈ 0.9425. (4.79)

Now we get

∆AShell−LV

2LxLy2
=

∫ `y

ε

z
1+2/ν
∗ dx(

z
f=f(z,v)

(x)
)2+4/ν

− ν

1 + ν

1

(z(`y))
1+ν
ν

−
(
L(ν, 0)

ly1

)ν+1

aν,ren. (4.80)

For ν = 2, 3, 4 one can write down explicitly

ν = 2 :
∆AShell−LV

2LxLy2
=

∫ `y

ε

z2∗ dx(
z
f=f(z,v)

(x)
)4 − 2

3

1

z
3
2
0

+
0.225 · 0.67493

l3y
, (4.81)

ν = 3 :
∆AShell−LV

2LxLy2
=

∫ `y

ε

z
5/3
∗ dx(

z
f=f(z,v)

(x)
)10/3 − 3

4

1

z
4
3
0

+
0.208 · 0.83244

l4y
, (4.82)

ν = 4 :
∆AShell−LV

2LxLy2
=

∫ `y

ε

z
3/2
∗ dx(

z
f=f(z,v)

(x)
)3 − 4

5

1

z
5
4
0

+
0.1885 · 0.94255

l5y
. (4.83)

We present the time evolution of the entanglement entropy (4.74) for different values of

the critical exponent ν in figure 9 and figure 10 . In figures 9 we show the difference between

the entropy in the shell background and the value of the entropy in the Lifshitz vacuum.

The evolution in time of the quantity which represents the difference between the entropy

in the current time and thermal entropy is demonstrated in figures 10. For each value of `

we observe that the entropy grows linearly at small times. Then it approaches saturation

and we see a kink in the dependence on time, which is much sharper for greater values `.

We note that the evolution of the entanglement entropy has more essential dependence on

the anisotropic parameter ν comparing to the case when the subsystem cut out along the

longitudinal direction.

Three right panels in figure 11 also demonstrate the behavior of the entanglement

entropy with subtracted vacuum values as a function of ` and t for different ν.

5 Conclusions

In this paper, we have investigated the holographic thermalization process of the quark-

gluon plasma in anisotropic backgrounds. For this purpose, we have used an analytic

black brane solution which asymptotes to the Lifshitz-like spacetime with arbitrary critical

exponent. We also have built the corresponding Lifshitz-Vaidya solution, which metric

interpolates between the vacuum Lifshitz-like and the black brane geometries. This back-

ground has been used to describe the thermalization process as well to model the “quench”
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Figure 9. The time dependence of the holographic entanglement entropy Aren after the correspond-

ing initial state subtraction for the Lifshitz-Vaidya metric at fixed l = 1, 1.4, 1.9, 2.2, 2.5, 2.8 for a

subsystem delineated along the transversal direction, ν = 2, 3, 4 (A, B, C, respectively). In D we

plot the time dependence of Aren−Aren|t=0 at l = 2 for ν = 2, 3, 4 (from top to bottom, respectively)
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Figure 10. The time dependence of the holographic entanglement entropy Aren for the Lifshitz-

Vaidya metric after the corresponding subtraction of the state when the black brane has already been

formed (t = 2.5) at fixed l = 1, 1.4, 1.9, 2.2, 2.5, 2.8 for a subsystem delineated along the transversal

direction, ν = 2, 3, 4 (A,B,C, respectively). In D we plot the time dependence of Aren −Aren|t=2.5

at l = 2 for ν = 2, 3, 4 (from bottom to top, respectively).
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Figure 11. Left panel: the evolution of AShell
ren on ` and t for ν = 2, 3, 4 (from top to bottom,

respectively); right panel: the evolution of ∆AShell−LV on ` and t for ν = 2, 3, 4 (from top to

bottom, respectively).
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process. Let us note that 4-dimensional Lifshitz spacetimes with black hole are widely used

in AdS/CMT models [54–56].

We have considered thermalization processes both in the transversal and longitudinal

directions, which differ by the contribution of the anisotropic exponent. The thermaliza-

tion along the longitudinal direction turned to have the linear regime similar to that in

modified AdS models. At the same time, in the transversal direction the thermalization

process is much faster and behaves linearly only for large distances. It should also be noted

that the thermalization along the longitudinal direction is independent of the value of the

dynamical exponent, while results obtained for the transversal direction strongly depend

on the anisotropic parameter and are more sensitive to the value of mass.

Holographic entanglement entropy have also been studied for the subsystems delineated

along both transversal and longitudinal directions. For a subsystem cutting out along the

longitudinal direction in the black brane background, we have found that the dependence

of the entropy on the critical exponent for small distances was absent and appeared for

larger values of `. In the transversal direction we have observed that the entropy depends

on ν at small distances and approaches a linear behavior which is the same for all ν. Thus,

for both subsystems at large `, the entanglement entropy comes to a linear regime, which,

depending on the chosen direction, depends or does not on the critical exponent.

The regime is similar to the one found for the Lifshitz metrics in [33], which, however,

is independent on ν. This is related to that the anisotropy between the spatial coordinates

is absent in the Lifshitz backgrounds considered in [33] unlike the Lifshitz-like metrics

suggested in [22, 25].

The most interesting results concern the holographic entanglement entropy in the

Vaidya-Lifshitz solution that we constructed. Here we again studied subsystems divided

along two possible directions. The common feature of the time evolution of the entropy for

both subsystems is the kink observed already for small distances. The entropy increases

linearly in time until it approaches the saturation point. We found that the form of the

kink is sharper for large values of `. The dependence on the critical exponent looks similar

to this one in the black brane background. Since the subsystems differ by the contribution

of the critical exponent, the rate of approaching saturation and the saturation value of the

entanglement entropy were seen to be different for each case.

It would be interesting to study other non-local operators, like two-point correlation

functions and Wilson loops operators, in the backgrounds considered in this paper and

compare their velocity bounds as well as estimate with experimental data. We shall address

these problems in our future work [27].

Acknowledgments

We would like to thank Dima Ageev, Misha Khramtsov and Giuseppe Policastro for useful

discussions, as well as Blaise Goutreaux and Elias Kiritsis for the correspondence at early

stage of the work. We also thank to the JHEP referee for careful reading of our paper

and fruitful discussions. This work was supported by the RFBR grant 14-01-00707 and by

the ANR grant ANR-12-BS01-012-01. I. A. and A.G. thank the Galileo Galilei Institute

– 24 –



J
H
E
P
0
9
(
2
0
1
6
)
1
4
2

for Theoretical Physics for the hospitality and the INFN for partial support during the

preparation of this work.

A Einstein equations

Here we provide both sides of the Einstein equations derived from the action (2.4):

Rmn = −Λ

3
gmn +

1

2
∂mφ∂nφ+

1

4
eλφ (2FmpF

p
n )− 1

12
eλφF 2gmn. (A.1)

The computations have been checked with SageManifolds [28], which is an extension of the

free computer algebra system SageMath [29]. The corresponding worksheets are publicly

available at the following links:

https://cloud.sagemath.com/3edbca82-97d6-41b3-9b6f-d83ea06fc1e9/raw/Lifshitz black brane.html

https://cloud.sagemath.com/3edbca82-97d6-41b3-9b6f-d83ea06fc1e9/raw/Vaidya-Lifshitz.html

A.1 The l.h.s. of the Einstein equations

Without any black brane, the metric reads

ds2 = e2νr
(
−dt2 + dx2

)
+ e2r

(
dy21 + dy22

)
+ dr2. (A.2)

The non-zero components of the Ricci tensor are

R00 = 2(ν2 + ν)e2νr, R11 = −2(ν2 + ν)e2νr; (A.3)

R22 = −2(ν + 1)e2r R33 = −2(ν + 1)e2r, R44 = −2(ν2 + 1). (A.4)

The scalar curvature is

R = −6ν2 − 8ν − 6. (A.5)

The metric for a black brane solution that asymptotes to the Lifshitz background (A.2) is

given by

ds2 = e2νr
(
−f(r)dt2 + dx2

)
+ e2r

(
dy21 + dy22

)
+

dr2

f(r)
, (A.6)

where

f(r) = 1−me−(2ν+2)r. (A.7)

The geometry (A.6)–(A.7) is supported by

eλφ = µe4r, F(2) =
1

2
q dy1 ∧ dy2. (A.8)

The non-zero components of the Ricci tensor of the metric (A.6) are

R00 = e2νrf(r)

(
2(ν2 + ν)f(r) + (2ν + 1)

∂f(r)

∂r
+

1

2

∂2f(r)

∂r2

)
, (A.9)

R11 = −2(ν2 + ν)e2νrf(r)− νe2νr ∂f(r)

∂r
, (A.10)

R22 = −2(ν + 1)e2rf(r)− e2r ∂f(r)

∂r
, (A.11)

R33 = −2(ν + 1)e2rf(r)− e2r ∂f(r)

∂r
, (A.12)

R44 = −2(ν2 + 1)− 1

f(r)
(2ν + 1)

∂f(r)

∂r
− 1

2f(r)

(
∂2f(r)

∂r2

)
. (A.13)
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The generalization of (A.6)–(A.7) to the Vaidya background reads

ds2 = −e2νrf(v, r)dv2 + 2eνrdvdr + e2νrdx2 + e2r
(
dy21 + dy22

)
, (A.14)

where

f(v, r) = 1−m(v)e−(2ν+2)r. (A.15)

The solution (A.14)–(A.15) is supported by the fields (A.8), plus the infalling shell of null

dust, whose energy-momentum tensor is

T s = T s
00 dv ⊗ dv. (A.16)

The non-zero components of the Ricci tensor of the metric (A.14) are

R00 = e2νrf(v, r)

(
2(ν2 + ν)f(v, r) + (2ν + 1)

∂f(v, r)

∂r
+

1

2

∂2f(v, r)

∂r2

)
−(ν + 2)

2
eνr

∂f(v, r)

∂v
, (A.17)

R04 = −eνr
(

2(ν2 + ν)f(v, r) + (2ν + 1)
∂f(v, r)

∂r
+

1

2

∂2f(v, r)

∂r2

)
, (A.18)

R11 = −e2νrν
(

2(ν + 1)f(v, r) +
∂f(v, r)

∂r

)
, (A.19)

R22 = R33 = −e2r
(

2(ν + 1)f(v, r) +
∂f(v, r)

∂r

)
, R44 = 2(ν − 1). (A.20)

A.2 The r.h.s. of the Einstein equations

Here we write down the right-hand sides of Einstein equations corresponding to the Vaidya

solution (A.14) which asymptotes to the Lifshitz-like spacetime (A.2):

00 : −Λ

3
g00 −

1

6
eλφF23F23g

22g33g00 + T s
00 =

(
Λ

3
+

1

24
µq2
)
e2νrf(r) + T s

00, (A.21)

11 : −Λ

3
g11 −

1

6
eλφF23F23g

22g33g11 = −
(

Λ

3
+

1

24
µq2
)
e2νr, (A.22)

22 : −Λ

3
g22 +

1

2
eλφF23F23g

33 − 1

6
eλφF23F23g

22g33g22 = −
(

Λ

3
− 1

12
µq2
)
e2r, (A.23)

33 : −Λ

3
g33 +

1

2
eλφF23F23g

22 − 1

6
eλφF23F23g

22g33g33 = −
(

Λ

3
− 1

12
µq2
)
e2r, (A.24)

44 : −Λ

3
g44 +

1

2
(∂4φ)2 − 1

6
eλφF23F23g

22g33g44 =
1

2

(
∂φ

∂r

)2

, (A.25)

04 : −Λ

3
g04 −

1

6
eλφF23F23g

22g33g04 = −
(

Λ

3
+

1

24
µq2
)
eνr. (A.26)

Substituting (A.15) into (A.17)–(A.26) and representing the non-vanishing term in the

component R00 (A.17) as

− (ν + 2)

2
eνr

∂f(v, r)

∂v
=

(ν + 2)

2
e−(ν+2)r dm

dv
, (A.27)
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A

z∗

ls(v1) ls(v2)

B

Figure 12. A: positions of the singular point for given z∗ and given v∗ belonging to the variety

v1 ≤ v∗ ≤ v2, ls(v1) ≤ ls(v1) ≤ ls(v2). In this plot v1 = −5, v2 = 25. ν = 2. B: different zones

corresponds to different domains for varying v∗.

A B

Figure 13. The same as in figure 12 for ν = 2, 3, 4 (blue,brown,green,respectively), A: z∗ ≤ 1, B:

z∗ > 1.

leads to a solution for the constants λ, µ, q and Λ and the component T s
00 of the shell

energy-momentum tensor. Thus, one finds that the ansatz (A.8) for the fields is valid. For

ν = 4, the solution is formed by the values (2.15) for the constants λ, µ, q and Λ, as well

as by the following expression of the shell energy-momentum:

T s
00(v, r) = 3e−6r

dm

dv
. (A.28)

B Details on solutions to profiles equations

B.1 Equations (4.37), (4.38)

In figure 12 and figure 13 we show the position of the singular point (x-axis) of the solution

with given z∗ (y-axis) and varying v∗. From figure 12 we see that for the given value of

z∗ ≤ 1 varying v∗, say from v∗ = v1 to v∗ = v2, we get different positions of ls lying between

ls(v1) and ls(v2). It is interesting to note that for small z∗ the position of the singular point

is not considerably depends on value of v∗. For z∗ → 1 this dependence is more significant.

We also see that one given value of ls corresponds to different values of z∗ and v∗.
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C D

E F

Figure 14. Left panel: contour plots for the boundary time as a function of initial conditions z∗
and v∗ for eqs. (4.37)–(4.38) for ν = 2, 3, 4 (A,C,E, respectively). Right panel: contour plots for

z(lsing) as a function of z∗ and v∗ for eqs. (4.37)–(4.38) for ν = 2, 3, 4 (B,D,F, respectively). The

regions of white colour correspond to irrelevant initial conditions.

The position of the singular point for different values of critical exponent ν is presented

in figure 13.

In figure 14 we present the contour plots for the boundary time and z(lsing) as functions

of z∗ and v∗. The values of the initial conditions taken from regions of white colour yields

solutions to eqs. (4.37)–(4.38), which do not obey the boundary constraints.

– 28 –



J
H
E
P
0
9
(
2
0
1
6
)
1
4
2

     
�











✁

A

     
�













✁✂✄☎✄

B

Figure 15. A: the dependence of f(x) on x on the solutions to eqs. (4.37)–(4.38). B: the dependence

of the quantity fv′+ z′ on the solutions z(x), v(x) to equations (4.37)–(4.38). For both plots ν = 2

and different masses: m = 1, m = 0.5 and m = 0.1 shown by solid, dashed and dotted lines,

respectively.
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Figure 16. A: the dependence of the quantity (4.46) on the solution z(x) to equations (4.37)–

(4.38) for ν = 2 and m = 1. B: the dependence of the quantity (4.46) on the solution z(x) to

equations (4.37)–(4.38) for different masses: m = 0.5 and m = 0.1 shown by dashed and dotted

lines, respectively, ν = 2. In both cases z∗ = 1 and ` = 0.63, ` = 0.75 for B and C, respectively.

It is also interesting to find the behaviour of the function f (2.27) as a function of

position on the constructed solutions to eqs. (4.37)–(4.38). In figure 15.A we present the

behavior of f(x) near to 1 in the region of the singular point.

In figure 16 we check the asymptotic behaviour of b(z) defined by (4.46) on the solution

z(x) to equations (4.37)–(4.38) for ν = 2. For these solutions z∗ is taken to be 1. We see

that for x→ `, i.e. near the end of the profile, b(z)→ 1.

B.2 Equations (4.63), (4.65)

In figure 17 we show the profiles of the solutions to equations (4.63)–(4.65) for z∗ = 1 and

different values of α and different v∗. We see that the profile for α = 0.05 is sharper, as

can be obviously expected.

As it has been mentioned in section 4.2.2 on the region, where we can guarantee, that

the quantity

Q =
f(z)v̇y + ży

2z2−2/ν
(B.1)

is conserved on the solution, we can say the solution can be approximated by the static

solution in this region. We also present the dependence of the “quasi” conserved quantity

Q on x for ν = 2 in figure 19.

In figure 20 we check the asymptotic behaviour of b(z) defined by (4.72).
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Figure 17. Forms of the profiles of the solutions to eqs. (4.63)–(4.65). A: v∗ = 1, B: v∗ = 0.5. For

both cases z∗ = 1 and α = 0.2. C: v∗ = 1, D: v∗ = 0.5. In both cases z∗ = 1 and α = 0.05.
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Figure 18. The dependence f = f(x) on the solutions to eqs. (4.63)–(4.65). A: v∗ = 1, B:

v∗ = 0.5. For both cases z∗ = 1.
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Figure 19. Behaviour of a “quasi” conserved quantity Q for ν = 2. A: v∗ = 1, B: v∗ = 0.5. For

both cases z∗ = 1
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Figure 20. Check of asymptotic behaviour of b(z) near z = 0. A: v∗ = 1, B: v∗ = 0.5. In both

cases z∗ = 1 C: v∗ = 1, D: v∗ = 0.1. In both cases z∗ = 0.8; E: v∗ = 1, F: v∗ = 0.1. In both cases

z∗ = 0.5 The asymptotic is 1/z2∗, i.e. for z∗ = 0.8 it is 1.5625 and for z∗ = 0.5 it is 4.

z∗

ls(v1) ls(v2)

A B

Figure 21. A: positions of the singular point for given z∗ ≤ 1 and given v∗ belonging to the

variety v1 ≤ v∗ ≤ v2, ls(v1) ≤ ls(v1) ≤ ls(v2). In this plot v1 = −5, v2 = 25. ν = 2. B: the same

for α = 0.05.
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Figure 22. A: positions of the singular point for given z∗, 0 < z∗ < 15 and given v∗ belonging to

the variety v1 ≤ v∗ ≤ v2, v1 = −5, v2 = 25. ν = 2. B: the same for 0 < z∗ < 5 and ν = 2, 3, 4.

We present the dependence of lsing on the turning point z∗ and v∗ in figure 21 and

figure 22. Here we again observe that one can get different positions of ls in the range from

ls(v1) to ls(v2) varying v∗ and fixing z∗.

In the three left panels of figure 23 we show contour plots for the boundary time depend-

ing on the initial conditions z∗, v∗ for ν = 2, 3, 4. In the three right panels of figure 23 we

present contour plots for z(lsing) as a function of initial conditions z∗, v∗ for ν = 2, 3, 4. As

in the previous case, regions of white colour correspond to the irrelevant initial conditions.

– 32 –



J
H
E
P
0
9
(
2
0
1
6
)
1
4
2

A B

C D

E F

Figure 23. Left panel: contour plots for the boundary time as a function of initial conditions z∗
and v∗ for eqs. (4.63)–(4.65) for ν = 2, 3, 4 (A,C,E, respectively). Right panel: contour plots for

z(lsing) as a function of z∗ and v∗ for eqs. (4.63)–(4.65) for ν = 2, 3, 4 (B,D,F, respectively). The

regions of white colour correspond to irrelevant initial conditions.
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