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1 Intoduction

Starting with Landau’s works [1], the hydrodynamic description of the quark-gluon plasma
(QGP) is the main theoretical method for linking the QGP models with experimental
results. Experimental data, as a rule, are distributions by energy, momenta, spin polariza-
tion, and types of particles, etc. Parameters of the QGP fluid are primary important and
are fitted to describe experimental data. After several tests it is believed that the QGP
fluid satisfies the relativistic ideal hydrodynamics equations, in the simplest case such as
the Bjorken [2] or Gubser’s ones [3]. Vorticity is an important characteristic of fluids [4–8].
Recent experiments by the STAR collaboration at the RHIC facility [9–12] indicate that
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the QGP fluid produced in peripheral relativistic heavy-ion collisions is in fact a rotating
fluid. It was proposed to use the average polarization of Λ hyperons to experimentally
estimate the fluid vorticity in heavy-ion collisions. The global spin polarization of Λ/Λ
hyperons related with vorticity was observed at RHIC [9–12] (see [13–15] for more details).
The angular momentum J is shown to be in the range of 103~ − 105~ [6, 7]. Rotation is
also important for neutron starts [16].

On the other hand, a powerful method for the theoretical study of QGP is the holo-
graphic approach, which is closely related to the hydrodynamic method [17–19]. As was
established by Bhattacharyya et al. [20, 21], the rotating fluid models are associated with
rotating AdS (Kerr-AdS) black holes. A description of dynamics of fluid flows through
the conformal Navier Stokes equations with transport coefficients holographically were
computed in the 5d Kerr-AdS background and the dual field stress-energy tensor was cal-
culated in [20, 21]. In the paper [22] a solution of relativistic ideal hydrodynamics that
describes rotation around two axes and parametrized by two parameters, the first one is re-
lated with non-vanishing angular momentum for off-center collisions, while the second one
parametrizes inhomogeneities of incoming nuclei, is constructed and its relevance to exper-
imental data is shown. Recently, the effects of rotation on the hydrodynamic quasinormal
modes of spinning black hole were studied in [23].

The holographic duality relates the properties of black holes in an AdS spacetime to
the thermal properties of dual conformal field theories at strong coupling in a spacetime
of smaller dimension. The five dimensional rotating black holes with AdS asymptotics
were discovered in [24]. 5d Kerr-AdS metrics due to SO(4)-symmetry are characterized by
two rotation parameters that are associated with the number of Casimirs for SO(4) and
are preserved independently. Kerr-AdS black holes have been studied in the framework of
holographic duality [24]. In this case CFT duals to Kerr-AdS black holes are CFTs in a 4d
rotating Einstein universe.1 Application of Kerr AdS/CFT duality to QGP is justified at
hight energies reached at LHC and RHIC, since in these regions the restoration of conformal
invariance takes place. Note, that in dual conformal theories operators are characterized
by two quantum numbers, dimension and spin, the last of which has two independent parts
if the theory is defined on R× S3.

Within holographic applications Kerr-AdS black holes were discussed for both high-
energy physics and condensed matter phenomena [20]–[37].

One of the well-tested holographic predictions are related with energy loss calcula-
tions [38]–[46], in particular, jet suppression calculations [40]. To model QGP phase tran-
sition these calculations were made for non-conformal isotropic [47] and anisotropic [48–50]
backgrounds, some of them taking into account the motion of the QGP fluid [51, 52]. In
context of recent interest to a rotational vorticity and the efforts to get this quantity exper-
imentally it is of interest to perform a holographic calculation of energy loss in a rotating
fluid. This is the main goal of the paper.

1After [24], a number of interesting facts concerning the Kerr-AdS/CFT correspondence were found
out [25]–[29].
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For our analysis we follow-up the holographic prescription [38, 39] where moving of a
heavy quark in QGP is dual to an open string endpoint at the boundary of the background
under consideration. In our case the string is stretched down from the Kerr-AdS space
boundary to the black hole horizon. The dynamics of the string is described by the Nambu-
Goto action. To solve the corresponding equations we generalize an approach proposed
for more simple Kerr-AdS4 case of [32]. This approach consists in expanding an ansatz
for solutions to string equations of motion in series by a rotating parameter. We write
string equations of motion in Kerr-AdS5, expand them on rotations parameters and solve
the linearized version of these equations of motion. Then we find the components of
conjugate momenta. We perform calculations both in Boyer-Lindquist (rotating-at-infinity
frame) and AdS (static-at-infinity frame) coordinate systems. In this paper we consider
explicitly two cases: a) rotational parameters are non-zero and equal in the absolute value;
b) one of rotational parameters vanishes. The third case will be the subject of separated
considerations. For the extremal black holes (with merging horizons) that are related to
the case with equal rotational parameters we observe vanishing of the drag force.

The paper is organized as follows. Section 2 consist of several sections that contain
the description of main tools using in this paper. In section 2.1 we briefly remind the
main steps of the drag force calculations. In section 2.2 we remind how the drag forces
appear hydrodynamic equations. In section 2.3 we present the relation between drag forces
and special Wilson loops, and notice the difference of this connection between a spherical
symmetric case considered here and a plane AdS case. In section 2.4 we describe thermo-
dynamics of the 5d Kerr-AdS black holes. In section 3 we find the drag force for a fixed
quark studying string dynamics in a 5d Kerr-AdS black hole with one rotational parameter.
In section 3.1 we find solutions to linearized string equations of motion. Assuming that
the rotational parameter is small we find the conjugate momenta and the leading term for
the drag force. Then in section 3.2 we calculate corrections to the thermal quark mass
at rest. In section 4 we discuss the case with two rotational parameters that are equal in
magnitude. We perform computations of the drag force in Boyer-Lindquist and global AdS
coordinates in sections 4.1 and 4.2, respectively. In section 5 we conclude with a summary
of the presented results as well with outline of future directions mainly related with NICA
that requires the calculations in the deformed Kerr-AdS metric. In the appendix, we keep
supplementary relations, that are useful for the main calculations.

2 Setup

2.1 Drag forces in QGP as resistance to string moving in holographic space

The drag force is a force acting opposite to the relative motion of the heavy quark moving
with respect to a surrounding quark-gluon plasma. Drag forces define the energy loss in
QGP. This is an important property and there is a large literature dedicated to this sub-
ject [38]–[46] and refs. therein. Following the dictionary of the gauge/gravity duality the
heavy quark is associated to an endpoint of a relativistic string suspended from the bound-
ary of the Kerr-AdS background into the interior [38, 39]. Here we briefly describe this
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approach for an arbitrary curved background. In the holographic approach to investigate
quark dynamics one has to study the string motion described by the Nambu-Goto action

SNG = − 1
2πα′

∫
dσ0dσ1

√
|g|, (2.1)

where g = det gαβ is the determinant of the induced metric which is defined though the 5d
spacetime metric Gµν (in section3 and 4 this will corresponds to the 5d Kerr-AdS black
hole metric) by

gαβ = Gµν∂αX
µ∂βX

ν , (2.2)

Xµ are the embedding functions of the string worldheet in the spacetime, we also assume
that Xµ = Xµ(σ). The equations of motions have the form

1√
−g

∂α
(√
−g Gµν ∂αXν

)
− 1

2∂µGρν∂αX
ρ ∂αXν = 0. (2.3)

The conserved currents are defined as variational derivatives on ∂αXµ

παµ ≡ −2πα′ δS

δ∂αXµ
=
√
−g gαβGµν(X) ∂βXν . (2.4)

Note, that this current is related to the translational invariance.
In (2.1)–(2.2) we define σα with α = 0, 1 as the string worldsheet coordinates. So for

the conjugated momenta παµ one can write

∂απ
α
µ = 0, ∂απ

α
µ =

∂πσ
0
µ

∂σ0 +
∂πσ

1
µ

∂σ1 . (2.5)

The corresponding charge reads

∫
M
∂απ

α
µdσ

2 =
∫
M

(
∂πσ

0
µ

∂σ0 +
∂πσ

1
µ

∂σ1

)
dσ0dσ1

=
∫
∂M

−πσ1
µ dσ

0 +
∫
∂M

πσ
0
µ dσ

1 =
∫
∂M

~πµd~σ, (2.6)

whereM is a two-dimensional worldsheet manifold and ∂M is its boundary. The associated
conserved charge is the total momentum in the µ-direction

pµ =
∫
dΣαπ

α
µ , (2.7)

where Σα is a cross-sectional surface on the worldsheet. Taking into account Σσ1 =
dσ0√−g00n̂σ1 with

n̂α =
(
− g10√
−g g11

,

√
g11
−g

)
, (2.8)

the time-independent force on the string is

∂pµ
∂σ0 = − 1

2πα′π
σ1
µ . (2.9)
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Therefore, to find the components of the drag force (2.9) we need to calculate the conjugate
momenta of the string (2.4).

The total energy of the string is given by

E = − 1
2πα′

∫
drπσ

0
t , (2.10)

where the conjugate momentum πσ
0
t is calculated using (2.4). In what follows we simplify

notations: πσ0
t = π0

t , πσ
1
t = πrt .

Drag forces in the holographic approach have been calculated for several isotropic
models including models describing the quark confinement/deconfinement and chiral sym-
metry breaking phase transitions [38, 39, 41, 46, 52, 53]. Drag forces in anisotropic QGP
using the suspected string are calculated in [48–50, 54–57] including plasma with magnetic
field [58–62].

2.2 Drag forces via hydrodynamic equations

Here we show that the drag force can be considered as a relativistic pressure gradient force
in the fluid. Originally this was demonstrated in [32] for the 3d case. Here we consider a
rotating fluid in a 4-dimensional spacetime R× S3 that has the metric

ds2 = −dT 2 + 1
`2

(
dΘ2 + sin2 ΘdΦ2 + cos2 ΘdΨ2

)
. (2.11)

The metric has the following non-zero Christoffel symbols

Γ2
33 = −1

2 sin(2Θ), Γ2
44 = 1

2 sin(2Θ), Γ3
32 = cot Θ, Γ4

42 = − tan Θ. (2.12)

The stress-energy tensor in hydrostationary equilibrium reads

TAB = (ρ+ P )uAuB + PgAB, (2.13)

where gAB are components of the metric (2.11), A,B = 1, . . . , 4, ρ is the density, P is the
pressure, and uA is the velocity field:

uA = 1√
1− `−2Ω2

φ sin2 Θ− `−2Ω2
ψ cos2 Θ

(1, 0,Ωφ,Ωψ), (2.14)

so uAuA = −1, Ωφ = a`2, Ωψ = b`2.
Correspondingly, taking into account uA = gABu

B we also have

uA = 1√
1− `−2Ω2

φ sin2 Θ− `−2Ω2
ψ cos2 Θ

(−1, 0, `−2Ωφ sin2 Θ, `−2Ωψ cos2 Θ). (2.15)
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Let’s put `−2Ω2
Φ sin2 Θ + `−2Ω2

Ψ cos2 Θ = v2, (1−v2)−1/2 = γ and following [20] we get

TAB=γ2


ρ+Pv2 0 (ρ+P )Ωφ (ρ+P )Ωψ

0 P`2γ−2 0 0
(ρ+P )Ωφ 0 ρΩ2

φ+P (`2csc2Θ−Ω2
ψcot2Θ) (ρ+P )ΩφΩψ

(ρ+P )Ωψ 0 (ρ+P )ΩφΩψ ρΩ2
ψ+P (`2sec2Θ−Ω2

φtan2Θ)

,
(2.16)

the same as eq. (30) [20]. Taking ρ = 3P and 3P = 3τ4γ4 we obtain

TAB = γ6τ4


(3+v2) 0 4Ωφ 4Ωψ

0 `2(1−v2) 0 0
4Ωφ 0 3Ω2

φ+`2 csc2 Θ−Ω2
ψ cot2 Θ 4ΩφΩψ

4Ωψ 0 4ΩφΩψ 3Ω2
ψ+`2 sec2 Θ−Ω2

φ tan2 Θ

 ,
(2.17)

that coincides with (eq.34) [20] and (eq.11) [22].
The corresponding conservation law of the stress-energy tensor is

∇ATAB = 0. (2.18)

One can rewrite the conservation law projecting (2.18) onto the direction orthogonal to the
velocity field

(gBC + uBuC)∇ATAC = 0, (2.19)

that can be rewritten as

(gBC + uBuC)∇CP + (ρ+ P )uC∇CuB = 0. (2.20)

Owing to rotational symmetry we have the dependence only on Θ for ρ and P :

ρ = ρ(Θ), P = P (Θ), (2.21)

that reduces to the following equation

∂ΘP = (ρ+ P )u3Γ3
32u3 + (ρ+ P )u4Γ4

42u4. (2.22)

Substituting (2.12), (2.14), (2.15) into (2.22) we get

∂ΘP = (ρ+P )
cot Θ`−2Ω2

φ sin2 Θ
1− `−2Ω2

φ sin2 Θ− `−2Ω2
ψ cos2 Θ

− (ρ+P )
tan Θ`−2Ω2

ψ cos2 Θ
1− `−2Ω2

φ sin2 Θ− `−2Ω2
ψ cos2 Θ

,

(2.23)
finally one can write as follows

∂ΘP = (ρ+ P )
(Ω2

φ − Ω2
ψ) sin(2Θ)

2`2(1− `−2Ω2
φ sin2 Θ− `−2Ω2

ψ cos2 Θ)
. (2.24)

So, particularly we have for the contribution only from Ωφ

∂ΘP = (ρ+ P )
Ω2
φ sin(2Θ)

2`2(1− `−2Ω2
φ sin2 Θ)

, (2.25)
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that is in agreement with our result for the drag force in a 5d Kerr-AdS black holes with
one rotational parameter and the prediction from [32]. If Ωφ = Ωψ we get

∂ΘP = 0. (2.26)

Below we will show that it matches with the holographic calculations for the case with two
equal rotational parameters. Now taking into account

ρ+ P = sT. (2.27)

the entropy density can be written as

s =
(
πT

`

)3 1
4G5(1− a2) , s ∼

(
πT

`

)3 1
4G5

, (2.28)

where the Newton’s constant equals G5 = π
(2N2

c `
3) . A relativistic pressure gradient force is

given by
dpθ
dt

= −3mrest
∂θP

sT
. (2.29)

So we can write
dpθ
dt

= −3mrest
2

π2T 4N2
c

∂θP, (2.30)

which is in good agreement with the calculation for the drag force considering a curved
string in the 5d Kerr-AdS with one non-zero rotational parameter presented in the next
section. We note that mrest is related with a cut-off at the point rm (where rm is a location
of a quark).

2.3 Drag forces and special Wilson loops

It has been noticed [43, 63] that holographic calculations of the drag forces for an isotropic
matter are directly related with calculations of spatial Wilson loops. This relation is also
inherited for non-isotropic case including full anisotropic case [50, 62].

Holographic consideration of drag forces in spherically symmetric backgrounds brings
with it a new feature that we would like to note before we are going to special calculations.
First of all, we note that, by analogy with the case of a flat boundary, it is natural to
expect the connection between the technique of suspended strings and the calculation of
the spatial Wilson loops. In spherical symmetric backgrounds we deal with boundaries
that have R × S3 topology. In these cases it is more natural to deal not with rectangular
special Wilson loops, but with circular ones. Circular Wilson loops have been considered
in holographic approach [64] and refs. therein, however there are obvious obstacles to deal
with these objects on the lattice.

In figure 1 we present the geometry of suspected string in R1 × S2 case where S2 is
parametrized by two spherical angles φ, θ (in addition, it can be assumed that there is a
third angle ψ, used for the parameterization of S3, is suppressed in figure 1).
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Figure 1. Heavy quark moves on the boundary of AdS5 having topology R1×S3 (R1 and the third
special coordinate, the angle ψ are suppressed). It moves along a circle with fixed θ0 and varying
φ. A) We consider the Wilson loop fixing θ = θ0 and 0 ≤ φ ≤ 2π (the small green circle). The blue
surface is an extremal surface that ends on trajectory of a heavy quark and touches the horizon of
a black hole. The red surface is an analog of the disconnected holographic surface for planar BH
calculations. B) The string suspected from the boundary and touched the horizon. C) The straight
string ending on the horizon.

2.4 D = 5 Kerr-AdS black holes

Our starting point is the following five-dimensional gravity model with a negative cosmo-
logical term:

S = − 1
16πG5

∫
d5x

√
|G|(Rg + 12`2), (2.31)

where G5 is the five-dimensional Newton constant, G = detGµν , Gµν being the spacetime
metric, and the cosmological constant is Λ = −6`2. The Einstein equations following
from (2.31) are given by

Rµν = −4`2Gµν . (2.32)
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Rotating black holes with an AdS aymptotics solve eqs. (2.32). It is known that a rotating
black hole in five dimensions is characterized by the mass and two angular parameters
related to Casimir invariants of SO(4). The generic five-dimensional Kerr-AdS metric with
two non-zero rotational parameters in the Boyer-Lindquist coordinates is [24]

ds2 = −∆r

ρ2

(
dt− a sin2 θ

Ξa
dφ− b cos2 θ

Ξb
dψ

)2

+ ∆θ sin2 θ

ρ2

(
adt− (r2 + a2)

Ξa
dφ

)2

+∆θ cos2 θ

ρ2

(
bdt− (r2 + b2)

Ξb
dψ

)2

+ ρ2

∆r
dr2 + ρ2

∆θ
dθ2

+(1 + r2`2)
r2ρ2

(
abdt− b(r2 + a2) sin2 θ

Ξa
dφ− a(r2 + b2) cos2 θ

Ξb
dψ

)2

, (2.33)

where 0 ≤ φ, ψ ≤ 2π, 0 ≤ θ ≤ π/2, and the parameter M is associated with the mass, a, b
are related to the angular momentum and we also have

∆r = 1
r2 (r2 + a2)(r2 + b2)(1 + r2`2)− 2M,

∆θ = (1− a2`2 cos2 θ − b2`2 sin2 θ), (2.34)
ρ2 = (r2 + a2 cos2 θ + b2 sin2 θ),
Ξa = (1− a2`2), Ξb = (1− b2`2).

We note that we use Hopf coordinates for the spherical part of the metric (2.33). The
horizon position is defined as a largest root r+ to the equation ∆r = 0. The rotational
parameters a and b are constrained such that a2, b2 ≤ `−2 and the angular momenta [29]
are given by

Ja = πMa

2Ξ2
aΞb

, Jb = πMb

2Ξ2
bΞa

. (2.35)

The Hawking temperature is defined as

TH = 1
2π

(
r+(1 + r2

+`
2)
( 1
r2

+ + a2 + 1
r2

+ + b2

)
− 1
r+

)
. (2.36)

The dependence of r+ on parameters a and b is illustrated in figures 2 and 3.
We note that in the Boyer-Lindquist coordinates, the metric is asymptotic to AdS5 in

a rotating frame, with angular velocities

Ω∞φ = −a`2, Ω∞ψ = −b`2. (2.37)

Let us consider the case of the Kerr-AdS solutions with a = b, then the metric (2.33) takes
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Figure 2. A) 3 roots of equation ∆(r) = 0 vs a for b = 0 (thin lines) and b = 0.2 (thick lines).
Dashed line shows the imaginary part of the first root r+. B) First two roots for the same values
of b = 0, 0.2. C) The first root vs a for variety of b. We see that only for a < acr(b) the root r1
is positive, acr(0) = 1/

√
2. D) The dependence of critical points of acr on b. Here M is taken to

be 0.25 and ` = 1.

the form

ds2 = −
(

1 + ρ2`2 − 2M
ρ2

)
dt2 + ρ2

∆r
dr2 + ρ2

∆θ
dθ2

+sin2 θ

Ξ2

(
ρ2Ξ + 2a2M

ρ2 sin2 θ

)
dφ2 + cos2 θ

Ξ2

(
Ξρ2 + 2a2M cos2 θ

ρ2

)
dψ2

+2a sin2 θ

Ξ

(
ρ2`2 − 2M

ρ2

)
dtdφ+ 2a cos2 θ

Ξ

(
ρ2`2 − 2M

ρ2

)
dtdψ, (2.38)

+4Ma2 sin2 θ cos2 θ

Ξ2ρ2 dφdψ,

where for (2.35) we have

∆r = 1
r2 (r2 + a2)2(1 + r2`2)− 2M, (2.39)

∆θ = (1− a2`2), ρ2 = (r2 + a2), Ξ = (1− a2`2). (2.40)

The 5d Kerr-AdS solution with a single rotational parameter (a 6= 0, b = 0) reads

ds2=−∆r

ρ2

(
dt− a

Ξa
sin2θdφ

)2
+ ρ2

∆r
dr2+ ρ2

∆θ
dθ2+∆θsin2θ

ρ2

[
adt−(r2+a2)

Ξa
dφ
]2

+r2cos2θdψ2,

(2.41)
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Figure 3. 3 roots of equation ∆(r) = 0 vs a for varieties of b. We see that only the first root can
be positive for a < a(b). Here M is taken to be 0.25 and ` = 1.

with

∆r = (r2 + a2)(1 + `2r2)− 2M,

∆θ = 1− a2`2 cos2 θ, (2.42)
Ξa = 1− a2`2, ρ2 = r2 + a2 cos2 θ.
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For the single parameter 5d Kerr-AdS hole the horizon position is written down explicitly

r+ =

√√
(1− a2`2)2 + 8M`2 − (1− a2`2)

√
2`

. (2.43)

The case of single rotational parameter can this solutions can be constructed from 4d case
as the stationary asymptotically flat higher dimensional black holes from the work by Myers
and Perry [65].

The transformations that convert (2.33) from Boyer-Lindquist coordinates to asymp-
totically AdS coordinates a 6= b 6= 0 [24] are

Ξay2 sin2 Θ = (r2 + a2) sin2 θ,

Ξby2 cos2 Θ = (r2 + b2) cos2 θ,

Φ = φ+ a`2t, (2.44)
Ψ = ψ + b`2t,

T = t.

It should be noted the coordinates (2.44) are difficult for direct representation of the 5d
Kerr-AdS metrics, except the case when we have the two non-zero rotational parameters
which are equal by its magnitude:

ds2 = −(1 + y2`2)dT 2 + y2(dΘ2 + sin2 ΘdΦ2 + cos2 ΘdΨ2) (2.45)

+ 2M
y2Ξ3 (dT − a sin2 ΘdΦ− a cos2 ΘdΨ)2 + y4dy2

y4(1 + y2`2)− 2M
Ξ2 y2 + 2Ma2

Ξ3

.

The position of the horizon of the extremal black hole in these coordinates [24] reads

y2 = 1
4Ξ
[
4a2`2 − 1 +

√
1 + 8a2`2

]
. (2.46)

2.5 Thermodynamics of the 5d Kerr-AdS black holes

Thermodynamics of the holographic background defines the first order phase transition on
(T -parameters) phase diagram. In the gravity language, the origin of this phase transition
is related with is a non-trivial dependence of the Hawking temperature on the location of
the horizon. A typical example of such dependence is given by the Van-Der-Waals curve.
Here we are going to consider the angular momentum of the rotating medium as physical
parameters and find out how they affect on the phase diagram. Technically this means
that we have to understand a location of the phase transition of the background in a two
dimensional space (T − a) for the case of one rotational parameter a (T is the Hawking
temperature given by (2.36)) and in three dimensional space (T −a− b) for the case of two
rotational parameters, a and b.

Below we illustrate that the Kerr-AdS black hole inherits the main thermodynamical
property of the AdS black hole — the presence of the Hawking-Page phase transition. For
this purpose we trace the dependence of the Hawking temperature (2.36) on the rotational
parameters a and b at fixed value of the horizon r+. We present this in figure 4, using
ContourPlot. The factor 2.9 ensures that the background phase transition for a = b = 0
is at Tcr(0, 0) = 0.160GeV, that is in agreement with lattice calculations and LHC and
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Figure 4. Contour plot of the Hawking temperature (2.36) multiplied by 2π ·2.9 depending on a, b
and r+.

RHIC data. From (2.36) it follows that the dependence of the horizon on the temperature
is multivalued. To illustrate this we draw T vs r+ for different values of a and b, see the
left column of figure 5. From these plots we observe that depending on the values of a and
b the background allows to have the Van-Der-Waals type of the temperature dependence
on r+ and for some cases the temperature becomes a three-valued function on the horizon
r+. To show that the Hawking-Page transition takes place for the Kerr-AdS black hole, we
have to consider the dependence of free energy F on temperature T . To this purpose we
find the dependence of the entropy S on T

S = π2

2Ξa · Ξb
(r2

+ + a2)(r2
+ + b2)

r+
(2.47)

where Ξa = 1− a2`2 and Ξb = 1− a2`2.
From the middle column of figure 5 we see that for small enough values of a and/or b,

there is a region of temperatures at which the entropy is three-valued. If we will increase
the value of one of the rotational parameters this region disappears and for the certain
temperature the entropy becomes only one valued.

In the right column of figure 5 we show the influence of the rotational parameters on
the dependence of the free energy on the temperature. For the free energy we use the
following relation

F (r) =
∫ r+

r
S(x)T ′(x)dx. (2.48)

Again for the small values of a and b we observe that the free energy is multivalued and there
are swallow tails in (F −T ) plane and the first order phase transition takes place. At some
points, (acr, bcr), discontinuity of F disappears and the first order phase transition ends.

Finally, in figure 6 A we show how the rotational parameters affect on the value of
the temperature of the phase transition. The higher the value of the rotational parameters
we have, the lower temperature at which the phase transition we get. So we see that it’s
quite justified to consider a case with one non-zero rotational parameter. In figure 6 B we
illustrate the location of the transition plane Tcr = Tcr(a, b).
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Figure 5. The plots in the first column show the dependence of temperature on rh for varieties a
and b. The plots in the second column show a logarithmic dependence of entropy on temperature.
The plots in the third column show the dependence of free energy on temperature.
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Figure 6. Locations of the first order phase transition in terms of a and b. A) Locations of the
end points for fixed b are indicated by dots. We see that all end points have the same temperature
TCEP = 0.134GeV. B) The location of the phase transition Tcr = Tcr(a2, b2) is shown by the green
surface.

3 Drag force in 5d Kerr-AdS background with one rotational parameter

3.1 Static curved string in the 5d Kerr-AdS background

Now we turn to discussion of a curved string in the 5d Kerr-AdS background with one non-
zero rotational parameter (a 6= 0, b = 0). We use the form of the metric in Boyer-Lindquist
coordinates (2.41)–(2.42).2 The string worldsheet is parametrized as (σ0, σ1) = (t, r). The
embedding is characterized by

θ = θ(t, r), φ = φ(t, r), ψ = ψ(t, r). (3.1)

Then non-zero components of the induced metric gαβ (2.2) look like

gtt = Gtt + 2Gtφφ̇+Gφφφ̇
2 +Gθθθ̇

2 +Gψψψ̇
2, (3.2)

grr = Grr +Gφφφ
′2 +Gθθθ

′2 +Gψψψ
′2, (3.3)

grt = Gtφφ
′ +Gθθθ

′θ̇ +Gφφφ
′φ̇+Gψψψ̇ψ

′, (3.4)

where Gµν are components of the 5d Kerr-AdS metric (2.41)–(2.42) and we define ˙ = d
dtA,

′ = d
drA.
The equations of motion that follow from the Nambu-Goto action calculated with (3.2)–

(3.4) seems to be quite difficult to work, instead of them we will consider the linearized
string equations of motion for small values of the rotational parameter a. For the ansatz

2See the SageMath notebook https://cocalc.com/share/565d762758a554b6adffa16d5562e097e0e565eb/
Kerr-AdS-5D-string-b_zero.ipynb for details on the calculation.
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of the curved string solution we take an expansion by order in a as follows

φ(t, r) = Φ0 + β1a`
2t+ β1aφ1(r) +O(a2),

θ(r) = Θ0 + a2θ1(r) +O(a4), (3.5)
ψ(t, r) = Ψ0 + β2a`

2t+ β2aψ1(r) +O(a2),

where β1 and β2 are some constants such that β2
1 + β2

2 = 1. We note that with β2 = 0 we
come to the case with fixed ψ, i.e. ψ(t, r) = Ψ0.

Correspondingly, the induced metric (B.15) with plugged (3.5) into (3.2)–(3.4) takes
the form

−g =
((
a∆r−a(r2 +a2)∆θ

) sin2 θ

Ξaρ2 aβ1φ
′
1+

+
(
∆θ(r2 +a2)2−a2∆r sin2 θ

) sin2 θ

Ξ2
aρ

2 a
2β2

1`
2φ′1 +a2β2

2`
2r2 cos2 θψ′1

)2

−
(
ρ2

∆r
+ ρ2

∆θ
a4θ′21 +

(
∆θ(r2 +a2)2−a2∆r sin2 θ

) sin2 θ

Ξ2
aρ

2 a
2β2

1φ
′2
1 +a2β2

2r
2 cos2 θψ′21

)

×
((
a2∆θ sin2 θ−∆r

) 1
ρ2 +

(
a∆r−a(r2 +a2)∆θ

) 2sin2 θ

Ξaρ2 aβ1`
2

+
(
∆θ(r2 +a2)2−a2∆r sin2 θ

) sin2 θ

Ξ2
aρ

2 a
2β2

1`
4 +r2 cos2 θa2β2

2`
4
)
. (3.6)

From the Nambu-Goto action (2.1) with (3.6) we can find out the first integrals expanded
in series by a and the following relations hold

φ1(r) = p

∫ r

r+

dr̄

r̄4h(r̄) , ψ1(r) = q

∫ r

r+

dr̄

r̄4h(r̄) , (3.7)

where p and q are some constants and h(r) is

h(r) = `2 + 1
r2 −

2M
r4 , (3.8)

which is actually the blackening factor for the 5d AdS-Schwarzschild black hole. It worth
to be noted that the appearance (3.8) is not surprising since we work with an expansion
with the small rotational parameter a and the Kerr-AdS black hole asymptotes to the
AdS-Schwarzschild black hole (A.1).

Substituting (3.7) into the Nambu-Goto action (2.1) with (3.6) we derive the linearized
equation of motion for θ1 in the following form

Υ′ + 2(r + 2`2r3)
r4h

Υ + 1 + β2
2q

2 − 4`2β1M − β2
1p

2 + (2β1 + β2
1 − β2

2)`4r4

2r8h2 sin(2Θ0) = 0,
(3.9)

where we reduce the second order differential equation to a first one by the change of the
variable Υ = θ′1.

Taking into account the dimensions of the quantities [M ] ∼ r2, [`] ∼ 1
r , [h] ∼ 1

r2 ,
[θ1] ∼ 1

r2 one sees that all terms in the l.h.s. of the expression (3.9) have dimension 1
r4 .
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The solution to eq. (3.9) can be represented in the following form

θ′1 = C1
r4h
− sin(2Θ0)

2r4h
(β2

1−β2
2 +2β1)`2r− `sin(2Θ0)

2
√

2
√

1+8M`2r4h
tan−1

 √
2`r√

1−
√

1+8M`2


×(4`2M+1−

√
1+8M`2)(β2

1−β2
2)−2(β2

1p
2−1−β2

2q
2)−2β1(

√
1+8M`2−1)√

1−
√

1+8M`2
(3.10)

+ `sin(2Θ0)
2
√

2
√

1+8M`2r4h
tan−1

 √
2`r√

1+
√

1+8M`2


×(4`2M+1+

√
1+8`2M)(β2

1−β2
2)−2(β2

1p
2−1−β2

2q
2)+2β1(1+

√
1+8M`2)√

1+
√

1+8M`2
,

where C1 is a constant of integration. Remembering that in eq. (3.9) it appears a contri-
bution of the AdS-Schwarzschild blackening function (3.8) one can use the relations for the
horizon and the Hawking temperature by (A.2)–(A.4) and represent the l.h.s. of (3.10) in
terms of rH

θ′1= C̃1
r4h
−sin(2Θ0)

2r4h
(β2

1−β2
2+2β1)`2r (3.11)

+ sin(2Θ0)
2(2`2r2

H+1)r4h
log
(
r+rH
r−rH

)
`4r4

H(β2
1−β2

2)−(β2
1p

2−1−β2
2q

2)−2β1`
2r2
H

rH

+ `sin(2Θ0)
2(2`2r2

H+1)r4h
tan−1

(
`r√

`2r2
H+1

)(`2r2
H+1)2(β2

1−β2
2)−(β2

1p
2−1−β2

2q
2)+2β1(r2

H`
2+1)√

r2
H`

2+1
,

where we also take into account that 1
i tan−1(xi ) = − tanh−1 x and tanh−1 x = 1

2 log
(

1+x
1−x

)
.

Since the solutions to angular variables are known (3.7), (3.11), we are able to write down
the conjugate momenta with respect to (2.4) are

πrθ = h(r)r4θ′1a
2 +O(a4),

πrφ = h(r)r4φ′1 sin2(Θ0)a+O(a2),
πrψ = h(r)r4ψ′1 cos2(Θ0)a+O(a2).

(3.12)

Expanding (3.12) with (3.7), (3.11) near the boundary r → +∞ we get the following
relations for the conjugate momenta

πrθ =
( 2C̃1

sin(2Θ0)−(β2
1−β2

2+2β1)`2r−(β2
1−β2

2+2β1)
r

(3.13)

+ π`

2(2`2r2
H+1)

(`2r2
H+1)2(β2

1−β2
2)+2β1(r2

H`
2+1)−(β2

1p
2−1−β2

2q
2)√

r2
H`

2+1

)
sin(2Θ0)a

2

2

+O(a2)
πrφ = psin(Θ0)2a+O(a2), (3.14)
πrψ = qcos(Θ0)2a+O(a2). (3.15)

where we use log
(
r+rH
r−rH

)
≈ 2 rHr and tan−1

(
r`√

`2r2
H+1

)
≈ π

2 −
√
`2r2

H+1
`r .
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The components of the drag force can be found owing to (2.9) and (3.13)–(3.15) as

dpθ
dt

=
(
− 2C̃1

sin(2Θ0)+(β2
1−β2

2+2β1)`2r+(β2
1−β2

2+2β1)
r

(3.16)

− π`

2(2`2r2
H+1)

(`2r2
H+1)2(β2

1−β2
2)+2β1(r2

H`
2+1)−(β2

1p
2−1−β2

2q
2)√

r2
H`

2+1

)sin(2Θ0)
4πα′ a2,

dpφ
dt

= − 1
2πα′ psin(Θ0)2a+O(a2), (3.17)

dpψ
dt

= − 1
2πα′ qcos(Θ0)2a+O(a2). (3.18)

We see that the component dpθ
dt (3.16) has a linearly divergent term with r →∞

dpθ
dt

= B1(b)`2r sin(2Θ0)
2πα′ a2 + . . . , (3.19)

where B1(b) = β2
1 − β2

2 + 2β1 and we use parametrization β1 = sin b, β2 = cos b, so
B1(b) = 2 sin(b) − cos(2b). The term in r.h.s. of (3.19) can be associated to an infinite
mass of the heavy quark [39]. One can renormalize it introducing a cut-off rm. By virtue
of (A.4) we get from (3.19)

dpθ
dt

= B1(b)
(
`2mrest + 1

4πα′
(
πTH +

√
π2T 2

H − 2`2
))

a2

2 sin(2Θ0),+ . . . (3.20)

where we take for the cut-off rm = 2πα′mrest.
It is interesting to note that B1(b) can have different signs. Here the sign “−” shows

that the drag force is opposite the quark movement.
With respect to values of parameter (b) we have the following special cases

• b = π/2, B1(b) = 3.
The dependence of dpθdt on the temperature is

dpθ
dt

=
(

6`2mrest + 3
2πα′

(
πTH +

√
π2T 2

H − 2`2
))

a2

4 sin(2Θ0) +O(a2)

dpφ
dt

= − 1
2πα′ p sin(Θ0)2a+O(a2), dpψ

dt
= 0. (3.21)

This case corresponds to fixed ψ and the conjugate momentum in the ψ-direction is
equals to 0 and covers the result of [32], i.e. the leading term of the drag force in the
θ-direction is 3`2mrest.

• b = π/4, B1(b) =
√

2,

dpθ
dt

=
(
− 2C̃1

sin(2Θ0) +
√

2`2r +
√

2
r

− π`

2(2`2r2
H + 1)

√
2(r2

H`
2 + 1) + 1− 1

2(p2 − q2)√
r2
H`

2 + 1

)
a2 sin(2Θ0)

2 , (3.22)

dpφ
dt

= − 1
2πα′ p sin(Θ0)2a+O(a2), (3.23)

dpψ
dt

= − 1
2πα′ q sin(Θ0)2a+O(a2). (3.24)

– 18 –



J
H
E
P
0
4
(
2
0
2
1
)
1
6
9

Here the relations seems to have the same form comparing as the previous case except
the coefficients.

• 0 ≤ b ≤ tan−1
(√

3−1√
2 4√3

)
≈ 0.375, −1 ≤ B1(b) ≤ 0.

In this case, the drag force acts on the quark in the opposite direction of the joint
motion of the quark and rotating medium. Note that this case is not exhibited in [32].

Eq. (3.13)–(3.18) reflect the drag force for the fixed quark in the rotating QGP, so for
the rotating parameter a = 0 it just vanishes. One can complete this relation supposing
that the quark also slowly moves with an angular velocity that has components (ωθ, ωφ, ωψ).
Then we have

dpθ
dt

= B1(b)
(
`2mrest+

1
4πα′

(
πTH+

√
π2T 2

H−2`2
))

a2

2 sin(2Θ0)−ωθr
2
H

2πα′ +..., (3.25)

dpφ
dt

= − 1
2πα′ (ωφr

2
H−psin(Θ0)2a)+..., (3.26)

dpψ
dt

= − 1
2πα′ (ωψr

2
H−qsin(Θ0)2a)+..., (3.27)

where rH is given by (A.4).
It is also instructive to obtain a relation to friction coefficients. One can only calculate

this from the first terms of (3.25)–(3.27), related to the slow motion of the quark in a
plasma. The second term in (3.25) can be centripetal force. So we find with (A.4)

µ =
(
πT

`

)2 1
2mπα′ , (3.28)

where p = mω
`2 .

3.2 Energy of the static string in the 5d Kerr-AdS background

The total energy of the string with the worldsheet parametrization (σ0, σ1) = (t, r) is given
by (2.10), so

E = − 1
2πα′

∫
drπ0

t, (3.29)

where by virtue of (2.4) the conjugate momentum for a string in (2.41) reads

π0
t =
√
−g(gtrGtφφ′ + gtrGtψψ

′ + gttGtt + gttGtφφ̇+ gttGtψψ̇). (3.30)

A single quark at rest is described by a static string solution with

θ(r, t) = θ0, φ(t, r) = φ0, ψ(t, r) = ψ0, (3.31)

so eq. (3.30) with (3.2) is represented by

π0
t = gttGtt = GrrGtt. (3.32)

Taking into account that for the 5d Kerr-AdS with one rotational parameter (2.41) we have

Grr = ρ2

∆r
, Gtt = −∆r

ρ2 + a2 ∆θ sin2 θ

ρ2 , (3.33)
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where ∆θ and ∆r are defined by (2.42). Plugging (3.33) into (3.32) we get

π0
t = −

(
1− a2 ∆θ

∆r
sin2 θ

)
. (3.34)

We note that comparing to [39] in (3.34) we have the second term related to a contribution
with a rotational parameter a2, ∆r, which root defines a location of the horizon. Therefore,
there is a divergence related to a pole for ∆r = 0. This can be regularized by introducing
a cut-off. So to regularize this divergence we perform an integration from rH + ε. So for
eq. (3.29) with (3.34) we have

E = 1
2πα′

∫ rm

rH+ε
dr

(
1− a2 ∆θ

∆r
sin2 θ

)
, (3.35)

where rm is a quark location. We note that the relations (3.34)–(3.35) are exact and work
for an arbitrary parameter a.

It’s valuable to consider an expansion of (3.35) by order in small a. For (3.34) we get

1− a2 ∆θ

∆r
sin2 θ ≈ 1− a2 1

r2 + `2r4 − 2M sin2 θ. (3.36)

Plugging (3.36) into (3.35) and integrating we get

E = 1
2πα′

r −
tan−1

( √
2`r√

1−
√

1+8`2M

)
√

1−
√

1 + 8`2M
−

tan−1
( √

2`r√
1+
√

1+8`2M

)
√

1 +
√

1 + 8`2M


√

2a2` sin2 θ√
1 + 8`2M

 ∣∣∣rmrH+ε
.

(3.37)
The case of the zero temperature limit corresponds to M = 0, so expanding (3.37) near
M = 0 we get

E| T=0 = 1
2πα′

(
r −

(
− 1√

2`r
+ iπ

4`
√
M
− tan−1(`r)√

2

)√
2a2` sin2 θ

) ∣∣∣rm
rH+ε

(3.38)

= 1
2πα′

(
rm +

( 1
`rm

+ tan−1(`rm)− 1
ε

)
a2` sin2 θ

)
, (3.39)

where using the relation for the horizon (A.2) we have rH = 0 with M = 0 and define
ε = `ε. From eq. (3.38) we see that the energy of the quark at rest in the zero temperature
limit differs from that one [39] by the contribution from the rotational parameter and an
extra term 1

εa
2` sin2 θ related to the renormalization.

At zero temperature the renormalized energy equals to the (Lagrangian) mass m of
the quark. For the case of the zero temperature limit from (3.39) we get

Eren
∣∣∣
T=0

= 1
2πα′

(
rm +

( 1
`rm

+ tan−1(`rm)
)
a2` sin2 θ

)
= m. (3.40)

Increasing the temperature the relation for the energy takes the form

E = 1
2πα′

m− rH −

√

2 tanh−1
(
rH+ε
rH

)
rH

+
tan−1

(
`(rH+ε)√
2(`2r2

H+1)

)
√

2
√
`2r2

H + 1

 a2` sin2 θ

(2`2r2
H + 1)

 ,
(3.41)
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where we also take into account the relations for the horizon (A.2), (A.5)–(A.6). Follow-
ing [39] we consider (3.35) as the static thermal mass Mrest

Mrest = m−∆m(T, a), (3.42)

where

∆m(T, a) =
√
λ

2π

(
πTH +

√
π2T 2

H − 2`2

2`2 +
(
−

tanh−1
(
1 + 2`2ε

πTH+
√
π2T 2

H−2`2

)
πTH +

√
π2T 2

H − 2`2
(3.43)

+

√
2 tan−1

( (πTH+
√
π2T 2

H−2`2+2ε`2)
√

2
√
π2T 2

H+`2+πTH
√
π2T 2

H−2`2

)
√
π2T 2

H + `2 + πTH
√
π2T 2

H − 2`2

) √
2a2`4 sin2 θ

π2T 2
H + πTH

√
π2T 2

H − 2`2

)
,

where λ = 1/α′2. We are also able to write down thermal corrections to a quark mass
without expansion for an arbitrary value of a. Integrating eq. (3.35) we obtain

E = 1
2πα′

r +


tan−1

( √
2`r√

1+a2`2+
√

(1−a2`2)2+8`2M

)
√

1 + a2`2 +
√

(1− a2`2)2 + 8`2M
(3.44)

−

tan−1
( √

2`r√
1+a2`2−

√
(1−a2`2)2+8`2M

)
√

1 + a2`2 −
√

(1− a2`2)2 + 8`2M


√

2a2`∆θ sin2 θ√
8`2M + (1− a2`2)2


∣∣∣∣∣∣∣∣∣∣

rm

r++ε

.

Taking into account the relation for the horizon (2.43) we get the relation for the energy
at finite temperature takes the form

E = 1
2πα′

(
rm+

(
tan−1(`rm)−tan−1

(
rm
a

) 1
a`

)
a2`∆θ sin2 θ

(1−a2`2) (3.45)

−r+−
( tan−1

(
`r+√

(r2
+`

2+1)

)
(1−a2`2 +2r2

+`
2)
√

(r2
+`

2 +1)
+

√
2tanh−1

(
(r++ε)
r+

)
(1−a2`2 +2r2

+`
2)r+

)
a2`∆θ sin2 θ

)
,

or in terms of (3.42) we have

m =
√
λ

2π

(
rm+

(
tan−1(`rm)−tan−1

(
rm
a

) 1
a`

)
a2`∆θsin2θ

(1−a2`2) , (3.46)

∆m(T,a) = r++
( tan−1

(
`r+√

(r2
+`

2+1)

)
(1−a2`2+2r2

+`
2)
√

(r2
+`

2+1)
+

√
2tanh−1

(
(r++ε)
r+

)
(1−a2`2+2r2

+`
2)r+

)
a2`∆θsin2θ, (3.47)

where the horizon is related to the temperature through (2.36). It is interesting to note
that without performing expansion by a we do not meet with the divergence (3.39). This
is related with non analiticity of r.h.s. of (3.44) on a. The divergence in tanh−1

(
(r++ε)
r+

)
at ε→ 0 is the same in two approaches.
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4 Drag force from the 5d Kerr-AdS metric with two equal rotational
parameters

4.1 Static curved string in the Boyer-Lindquist coordinates

Here we consider the drag force from the 5d Kerr-AdS metric with two rotational param-
eters that are equal in magnitude a = b (2.38)–(2.39).3 As for the one non-zero rotational
parameter we are going to solve the linearized string equation of motion for small rota-
tional parameters. For the string worldsheet coordinates we take (σ0, σ1) = (t, r) and the
embedding is characterized by (3.1) as for the case with one rotational parameter. The
Nambu-Goto action calculated through the determinant of the induced metric of a string
worldsheet looks like (2.1), where the components of the induced metric are

gtt = Gtt +Gθθθ̇
2 +Gφφφ̇

2 +Gψψψ̇
2 + 2

(
Gtφφ̇+Gtψψ̇ +Gψφψ̇φ̇

)
, (4.1)

gtr = Gθθθ̇θ
′ +Gφφφ̇φ

′ +Gψψψ̇ψ
′ +Gtφφ

′ +Gtψψ
′ +Gψφψ̇φ

′ +Gψφψ
′φ̇, (4.2)

grr = Gθθθ
′2 +Gφφφ

′2 +Gψψψ
′2 +Grr + 2Gψφψ′φ′. (4.3)

We expand the transversal variables φ, θ and ψ by small a as we do this in the previous
case (3.5)

φ(t, r) = Φ0 + aβ1`
2t+ aβ1φ1(r) +O(a2) (4.4)

ψ(t, r) = Ψ0 + aβ2`
2t+ aβ2ψ1(r) +O(a2), (4.5)

θ(r) = Θ0 + a2θ1(r) +O(a4), (4.6)

where as in the previous section β1, β2 are some parameters with β2
1 + β2

2 = 1.
Then we obtain the determinant of the induced metric as follows

−g =
(
a2`2ρ2

Ξ2

(
β2

1 sin2 θφ′
1 +β2

2 cos2 θψ′
1
)

+ 2Ma4`2

Ξ2ρ2 (β1 sin2 θ+β2 cos2 θ)(β1 sin2 θφ′
1 +β2 cos2 θψ′

1)

+a2

Ξ

(
ρ2`2− 2M

ρ2

)
(β1 sin2 θφ′

1 +β2 cos2 θψ′
1)
)2

(4.7)

−
(
−1−ρ2l2 + 2M

ρ2 + a2`4ρ2

Ξ (β2
1 sin2 θ+β2

2 cos2 θ)+ 2a4`4M

Ξ2ρ2 (β1 sin2 θ+β2 cos2 θ)2

+2a
2`2

Ξ

(
ρ2l2− 2M

ρ2

)
(β1 sin2 θ+β2 cos2 θ)

)
×
(
ρ2

∆r
+ a4ρ2

∆θ
θ′2

1 + a2ρ2

Ξ
(
β2

1 sin2 θφ′2
1 +β2

2 cos2 θψ′2
1
)

+ 2Ma4

Ξ2ρ2 (β1 sin2 θφ′
1 +β2 cos2 θψ′

1)2
)
,

where ∆r,∆θ,Ξ, ρ are given by (2.39)–(2.40).
The first integrals for φ1 and ψ1 can be found from the Nambu-Goto action with (4.7),

in lower order by a, and we can write down

φ1(r) = p

∫ r

r+

dr̄

r̄4h(r̄) , ψ1(r) = q

∫ r

r+

dr̄

r̄4h(r̄) , (4.8)

3See the SageMath notebook https://cocalc.com/share/8a0fbfc77f4422e8e29b66770873d3110ffd95a6/
Kerr-AdS-5D-string-a_eq_b.ipynb for details on the calculation.
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where we also use the conserved quantities p, q and h(r) is given by (3.8). The equation of
motion for θ′, that follows from the Lagrangian with (4.7) after substitution (4.8), reads

Υ′ + 2(r + 2`2r3)
r4h

Υ + `4r4(β2
1 − β2

2 + 2(β1 − β2))
2r8h2 sin(2Θ0)

+−β
2
1p

2 + β2
2q

2 − 4M`2(β1 − β2)
2r8h2 sin(2Θ0) = 0, (4.9)

where we define Υ = θ′1.
Owing to (A.5)–(A.6) we can represent the solution to eq. (4.9)(θ′1) as follows4

θ′1 = C̃1
r4h
− sin(2Θ0)

2r4h
(β2

1 − β2
2 + 2(β1 − β2))`2r (4.10)

+ sin(2Θ0)
2(2`2r2

H + 1)r4h
log
(
r + rH
r − rH

)
`4r4

H(β2
1 − β2

2)− 2(β1 − β2)`2r2
H − (β2

1p
2 − β2

2q
2)

rH

+ ` sin(2Θ0)
2(2`2r2

H + 1)r4h
× tan−1

(
`r√

`2r2
H + 1

)

×(`2r2
H + 1)2(β2

1 − β2
2) + 2(β1 − β2)(r2

H`
2 + 1)− (β2

1p
2 − β2

2q
2)√

`2r2
H + 1

,

where C̃1 is a constant. The corresponding conjugate momenta can be calculated us-
ing (2.4). On the boundary r → +∞ they take the following form

πrθ =
( 2C̃1

sin(2Θ0)−(β2
1−β2

2 +2(β1−β2))`2r−β
2
1−β2

2 +2(β1−β2)
r

(4.11)

+ π`

2(2`2r2
H+1)

(`2r2
H+1)2(β2

1−β2
2)+2(β1−β2)(r2

H`
2+1)−(β2

1p
2−β2

2q
2)√

`2r2
H+1

)
sin(2Θ0)a

2

2 ,

πrφ = psin(Θ0)2a+O(a2), (4.12)
πrψ = qcos(Θ0)2a+O(a2). (4.13)

Thanks to (2.9) the drag force can be found as

dpθ
dt

=
(
− 2C̃1

sin(2Θ0) +(β2
1−β2

2 +2(β1−β2))`2r+ β2
1−β2

2 +2(β1−β2)
r

− π`

2(2`2r2
H +1)

×(`2r2
H +1)2(β2

1−β2
2)+2(β1−β2)(r2

H`
2 +1)−(β2

1p
2−β2

2q
2)√

`2r2
H +1

)sin(2Θ0)a2

4πα′ , (4.14)

dpφ
dt

= − 1
2πα′ psin(Θ0)2a+O(a2), (4.15)

dpψ
dt

= − 1
2πα′ qcos(Θ0)2a+O(a2). (4.16)

As in the case with one non-zero rotational parameter, the component (4.14) has a divergent
term with r → +∞ related to the infinite mass of the heavy quark

dpθ
dt

=
(
B2(b)`2r + . . .

) sin(2Θ0)a2

4πα′ , (4.17)

4The constant C̃1 differs from C1 by to including an imaginary constant.
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where as in the previous section we introduce a parameter B2(b) = β2
1−β2

2 +2(β1−β2) and
we use parametrization β1 = sin b, β2 = cos b, so B2(b) = − cos(2b) + 2(sin(b) − cos(b)).
We see that it vanishes for the special choice of the parameters β1 = β2.

For the special cases we have

• b = π/2, B2(b) = 3

dpθ
dt

=
(
− 2C̃1

sin(2Θ0)+3`2r+3
r
− π`

2(2`2r2
H+1)

(`2r2
H+2)2−1−p2√
r2
H`

2+1

)
a2sin(2Θ0)

2 , (4.18)

dpφ
dt

= − 1
2πα′ psin(Θ0)2a+O(a2), dpψ

dt
=0. (4.19)

• b = π/4, B2(b) = 0

dpθ
dt

=
(
− 2C̃1

sin(2Θ0) −
π`

4(2`2r2
H + 1)

(−p2 + q2)√
r2
H`

2 + 1

)
sin(2Θ0)a

2

2 , (4.20)

dpφ
dt

= − 1
2πα′ p sin(Θ0)2a+O(a2), (4.21)

dpψ
dt

= − 1
2πα′ q cos(Θ0)2a+O(a2). (4.22)

It should be noted that dpθ
dt (4.20) disappears for p = q and C̃1 = 0.

4.2 Static curved string in global AdS coordinates

Now we are going to consider the string in the 5d Kerr-AdS background with a = b written
in global AdS coordinates (2.45).5 For the worldsheet coordinates we set σ0 = T , σ1 = y.
We suppose that the embedding is given by

Θ = Θ(T, y), Φ = Ψ(T, y), Ψ = Ψ(T, y). (4.23)

The string action is given by (2.1), where the components of the induced metric (2.2) are

gTT = GTT +GΘΘΘ̇2 +GΦΦΦ̇2 +GΨΨΨ̇2 +2
(
GTΦΦ̇+GTΨΨ̇+GΨΦΨ̇Φ̇

)
, (4.24)

gTy = GΘΘΘ̇Θ′+GΦΦΦ̇Φ′+GΨΨΨ̇Ψ′+GtΦΦ′+GtΨΨ′+GΨΦΨ̇Φ′+GΨΦΨ′Φ̇, (4.25)
gyy = GΘΘΘ′2 +GΦΦΦ′2 +GΨΨΨ′2 +Gyy+2GΨΦΨ′Φ′. (4.26)

We take the following expansion for the transversal coordinates

Φ(T, y) = Φ0 + aβ1`
2T + aβ1Φ1(y) +O(a2), (4.27)

Θ(y) = Θ0 + a2Θ1(y) +O(a4), (4.28)
Ψ(T, y) = Ψ0 + aβ2`

2T + aβ2Ψ1(y) +O(a2). (4.29)
5See the SageMath notebook https://cocalc.com/share/0577fb7f5f67a290a1c863b0eb5f069b6df747b2/

Kerr-AdS-5D-string-a_eq_b-AdS.ipynb for details on the calculation.
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Plugging (4.27)–(4.29) into (4.24)–(4.26) we calculate the determinant of the induced metric

|g| =
(
`2y2(β2

1 sin2 ΘΦ′1 + β2
2 cos2 ΘΨ′1) + 2`2a2M

Ξ2y2 (β2
1 sin4 ΘΦ′1 + cos4 Θβ2

2Ψ′1)

− 2M
y2Ξ2 (sin2 Θβ1Φ′1 + cos2 Θβ2Ψ′1) + 2Ma2 sin2 Θ cos2 Θ

Ξ2y2 β1β2`
2(Φ′1 + Ψ′1)

)2
a4

−
(
−
(

1 + y2l2 − 2M
y2Ξ2

)
+ (β2

1 sin2 Θ + β2
2 cos2 Θ)a2y2`4

+(sin2 Θβ1 + β2 cos2 Θ)2 2a4`4M

Ξ2y2 − 4a
2M`2

y2Ξ2 (sin2 Θβ1 + cos2 Θβ2)
)

×
(
y2a4Θ′21 + y4

y4(1 + y2`2)− 2M
Ξ2 y2 + 2Ma2

Ξ3

+(β2
1Φ′21 sin2 Θ + β2

2Ψ′21 cos2 Θ)a2y2 + 2a4M

Ξ2y2 (sin2 Θβ1Φ′1 + cos2 Θβ2Ψ′1)2
)
, (4.30)

with Ξ given by (2.40).
As the in Boyer-Lindquist coordinates the variables Φ1 and Ψ1 are cyclic, so we can

find the first integrals for Φ1 and Ψ1 for the Nambu-Goto action (2.1) with (4.30)

Φ1(y) = p

∫ y

y+

dȳ

ȳ2 + `2ȳ4 − 2M , Ψ1(y) = q

∫ y

y+

dȳ

ȳ2 + `2ȳ4 − 2M . (4.31)

Substituting (4.31) into (4.30) we derive the equation of motion for Θ1

Υ′+ 2(y + 2`2y3)
−2M + y2 + `2y4 Υ1 + −β

2
1p

2 + β2
2q

2 − 4(β1 − β2)`2M + `4y4(β2
1 − β2

2)
2(−2M + y2 + `2y4)2 sin(2Θ0) = 0,

(4.32)
with Υ = Θ′1. The solution to (4.32) leads to the following relation

Θ′1 = C̃1
y4`2 + y2 − 2M (4.33)

+−2`2y2
H(1 + `2y2

H)(β1 − β2) + (β2
1 − β2

2)`4y4
H − β2

1p
2 + β2

2q
2

(2`2y2
H + 1)`yH

× `

2(y4`2 + y2 − 2M) tanh−1
(
y

yH

)
sin(2Θ0)

+−2`2y2
H(1 + `2y2

H)(β1 − β2) + (β2
1 − β2

2)(`2y2
H + 1)2 − β2

1p
2 + β2

2q
2

(2`2y2
H + 1)

√
`2y2

H + 1

× `

2(y4`2 + y2 − 2M) tan−1
(

`y√
`2y2

H + 1

)
sin(2Θ0)− (β2

1 − β2
2)`2y sin(2Θ0)

2(−2M + y2 + `2y4) ,

where C̃1 is a constant of integration. Using (2.4), (4.31), (4.33) and taking into ac-
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count (2.9) we can write down the drag force components

dpθ
dt

=
(
− 2C̃1

sin(2Θ0) +(β2
1−β2

2)`2y+ β2
1−β2

2
y

− π`

2(2`2y2
H +1)

(4.34)

×
(
−2`2y2

H(1+`2y2
H)(β1−β2)+(β2

1−β2
2)(`2y2

H +1)2−β2
1p

2 +β2
2q

2)√
`2y2

H +1

)sin(2Θ0)a2

4πα′ ,

dpφ
dt

= − 1
2πα′ psin(Θ0)2a+O(a2), (4.35)

dpψ
dt

= − 1
2πα′ qcos(Θ0)2a+O(a2). (4.36)

Comparing the result with this for two rotational parameter a = b performed in Boyer-
Lindquist coordinates, we find that the relations for dpθ

dt have the common dependence on
the radial coordinates (y and r, correspondingly) and the horizons (yH , rH). At the same
time the coefficients for these terms are different for the Boyer-Lindquist and AdS coordi-
nates (we have β2

1 −β2
2 + 2(β1−β2) and β2

1 −β2
2 , correspondingly). This can be associated

to that the first coordinate system is related to a rotating-at-infinity frame, while the sec-
ond one corresponds to a static-at-infinity frame. However, one can reach an exactly same
answer if we choose the parameters for the string dynamics as sin b = β1 cos b = β2 and
take b = π

4 . Therefore, we have

dpθ
dt

=
(
− 2C̃1

sin(2Θ0) −
π`

4(2`2y2
H + 1)

(
−p2 + q2)√
`2y2

H + 1

)sin(2Θ0)a2

4πα′ , (4.37)

dpφ
dt

= − 1
2πα′ p sin(Θ0)2a+O(a2), (4.38)

dpψ
dt

= − 1
2πα′ q cos(Θ0)2a+O(a2), (4.39)

that matches with (4.20)–(4.22). Moreover, we can also observe a degenerate case if the
parameters p = q and the constant C̃1 = 0. Then the component (4.37) of the drag force
just equals to zero. This is in agreement with the calculations in the Boyer-Lindquist coor-
dinates and with the hydrodynamical results from section 2.2 eq. (2.24) where we consider
the case of equal angular velocities Ωa = Ωb.

5 Conclusion and discussion

In this paper we have studied the drag force acting on a heavy quark moving in the
rotating quark gluon plasma within the context of holographic duality. We have considered
a 5d Kerr-AdS black hole as a holographic dual of a 4d strongly coupled rotating QGP.
We have focused on cases where the black hole solution has either only one non-zero
rotational parameter (a 6= 0, b = 0) or two rotational parameters that are equal (a = b 6=
0). These cases are related to the presence of one and two Casimir invariants for SO(4),
correspondingly.

Following the holographic prescription we have associated the heavy quark with an
end of a string suspended on the boundary of the Kerr-AdS black hole into its interior.
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We note that in this work the ansatz under consideration corresponds to the fixed quark
in a rotating medium. We focused on the case when the rotational parameter is small. We
have solved the string equations of motion order by order in a. Then we have found the
corresponding conjugate momenta, which are related to components of the drag force.

In the case of a single rotational parameter we have performed calculations in Boyer-
Lindquist coordinates. We have established that the relation for the leading term of the
drag force is in agreement with the prediction of the work [32], which considered a lower
dimensional holographic duality, namely, a 4d Kerr-AdS black hole for a 3d rotating quark-
gluon plasma. This is actually not surprising, since 4d rotating black holes have just one
Casimir invariant corresponding to SO(3). We have also found corrections to the thermal
quark mass at rest. It worth to be noted at zero temperature limit that the cut-off term
has a contribution from rotation comparing to the result [39].

In the case of Kerr-AdS black hole with two equal rotational parameters we have calcu-
lated the drag force both in Boyer-Lindquist and in global AdS ones. We have observed that
the results for the drag forces have the same dependence on the radial coordinates, however
the coefficients may be different. This happens because the Boyer-Lindquist coordinates
are related to a rotating frame, while the AdS coordinates — to a non-rotating frame. We
have seen that there is a degenerated case when the drag force vanishes for certain values of
the coefficients. This result matches with calculations from the hydrodynamical approach
on 4-dimensional sphere.

To summarize our considerations about applied holography for Kerr-AdS5 we can
mention that

• rotation has some influence on the fist order phase transition,

– it decreases the critical temperature,
– the critical end point depends on some combination of two rotational parameters.

• The drag force contains two terms; one of them is related the slow motion of the
quark with respect to the fluid, the second one is interpreted as a centripetal force.

– The friction coefficient depends on the temperature quadratically,
– the centripetal term depends on the temperature linearly,
– the centripetal force vanishes in the case of two equal rotational parameter.

• Comparing to [39] the energy of the quark at rest in the zero temperature limit has
a contribution from the rotational parameter.

These phenomena can lead to measurable experimental signals in heavy-ion collisions.
Besides the transport properties, rotation can affect on the phase structure and phase
transition of matter at energies relevant to LHC and RHIC.

A straightforward problem for future study is to investigate the drag force in the 5d
Kerr-AdS black hole with two non-equal rotational parameters and to trace the influence of
the second rotational parameter on energy loss. Our consideration can be also generalized
to higher dimensional cases [65] with a compactification (see also [66]), as well for more
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complicate string configurations [45]. Also it would be interesting to apply exact results
of [67] to the problem treated here.

Another interesting problem for some future work is the study of the drag forces in the
rotating charged Kerr-AdS metric [68], which describes a conformal plasma with non-zero
chemical potential. In this case the phase diagram for a = b in the space (T, a, q) is very
similar to the phase diagram presented in figure 4 for two rotational parameters.

Note that the Kerr-AdS black hole gives a good description of QGP at extremely
high temperature, where the system tends to the conformal limit. Such a temperature
is relevant to LHC and RHIC energies. Hoverer at low temperature, typical for FAIR
and NICA, the conformal symmetry is broken and non-conformal holographic models are
more relevant [69]. The effects of vorticity in peripheral collisions at the NICA facility are
widely discussed and it is expected to have hyperon polarization at NICA energies [70–75].
Therefore, to describe holographically hyperon polarization at NICA energies we have to
deal with 5d deformed metrics with rotation. To date, only one parametric deformed Kerr-
AdS solution is known (a solution with one rotational parameter) [76–79]. In fact from
the side of experimental data, it is not obvious that two parameters should be introduced
to describe rotated QGP produced in HIC. But what is for sure, is that the deformation
of Kerr-AdS solutions which would be relevant in the context of NICA, has to include the
electromagnetic field. From one side, this is because here we deal with non-zero chemical
potential and within the holography it is described by temporal component of the Maxwell
field. From the other side, a huge magnetic field is also expected [80] to be there. Study
of perturbations of the electromagnetic field in deformed rotating metric is also relevant in
the context of the direct photons [69].

We would like to mention that the properties of rotating strongly interacting matter
were also studied with lattice QCD [81]. As compared with chemical potential, rotation is
a simpler task for lattice studies. It is also predicted a dependence of transport phenomena
on rotation, [82–84] and this is a subject of future investigation to find closer relation with
our calculation. This is especially interesting since lattice calculations can be done for two
non-zero parameters of rotation and we are going to compare them with our future studies.
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A Some facts on Kerr-AdS black holes

A.1 Special cases of 5d Kerr-AdS black holes

Taking a = b = 0 in (2.33) for Kerr-AdS metric we come to a Schwartzchild-AdS black hole

ds2 = −r
2 + r4`2 − 2M

r2 dt2 + r2

r2 + r4`2 − 2Mdr2 + r2dΩ2
3, (A.1)

where the horizon is defined by

rH =

√√
1 + 8`2M − 1
√

2`
. (A.2)

The Hawking temperature is given by

TH = 4r2
H`

2 + 2
4πrH

, (A.3)

so the location of the horizon is defined through the temperature as

rH = 1
2`2

(
πTH +

√
π2T 2

H − 2`2
)
. (A.4)

From (A.2) one can write down some useful relations

2`2r2
H =

√
1 + 8`2M − 1, 2`2r2

H + 1 =
√

1 + 8`2M, (A.5)

2`4r4
H = 1 + 4`2M −

√
1 + 8`2M, 4(`2r2

H + 1)2 = (
√

1 + 8`2M + 1)2. (A.6)

In the so-called AdS coordinates (2.45) the 5d Kerr-AdS solutions with M = 0 come
to the following form

ds2
gAdS = −(1 + y2`2)dT 2 + y2(dΘ2 + sin2 ΘdΦ2 + cos2 ΘdΨ2) + dy2

(1 + y2`2) , (A.7)

that is a well known form of the global representation of the AdS solution, often called
static coordinates.

A.2 Boundaries

The metric on the boundary for (2.33) is

ds2
BL = −dt2 + 2a sin2 θ

Ξa
dtdφ+ 2b cos2 θ

Ξb
dtdψ+ `2

∆θ
dθ2 + `2 sin2 θ

Ξa
dφ2 + `2 cos2 θ

Ξb
dψ2. (A.8)

From (A.7) it is easy to see that the 4d conformal boundary of 5d Kerr-AdS black hole
is 4d R× S3 [26, 29], which is reached with y →∞:

ds2 = −`2dT 2 + dΘ2 + sin2 ΘdΦ2 + cos2 ΘdΨ2. (A.9)

The boundary metrics (A.8) and (A.9) are related by

ds2
BL,bnd = y2

r2 ds
2
gAdS,bnd. (A.10)
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B Strings in a 5d Kerr-AdS black hole

B.1 Straight string solution in global AdS

Let us consider a string motion in the 5d Kerr-AdS background written in the AdS co-
ordinates. The general form of the metric in these coordinates is complicated. However,
under the assumption M = 0 that corresponds to absence of the quark-gluon plasma the
Kerr-AdS metric comes to the global AdS solution (A.7), that can be represented as

ds2 = −y2h(y)dT 2 + y2(dΘ2 + sin2 ΘdΦ2 + cos2 ΘdΨ2) + dy2

y2h(y) , (B.1)

where
h(y) = `2 + 1

y2 . (B.2)

We use the physical gauge with
(σ0, σ1) = (T, y). (B.3)

For the embedding we have Xµ = Xµ(σ), so

Θ = Θ(T, y), Φ = Φ(T, y), Ψ = Ψ(T, y). (B.4)

The induced metric is

gαβ =
[
−y2h+GIJẊ

IẊJ GIJẊ
′ IX

′ J

GIJẊ
′ IX

′ J 1
y2h +GIJX

′ IX
′ J

]
, (B.5)

where the indices run as I, J = (Θ,Φ,Ψ) and ˙ = d
dT ,

′ = d
dy .

The Nambo-Goto action reads

SNG =
∫
dTdy

√
|g|, (B.6)

with the determinant of the induced metric:

g = −1 + h−1
(
Θ̇2 + Φ̇2 sin2 Θ + cos2 ΘΨ̇2

)
− y4h

(
Θ′ 2 + Φ′ 2 sin2 Θ + cos2 ΘΨ′ 2

)
+y4

(
(Θ̇2 + Φ̇2 sin2 Θ + cos2 ΘΨ̇2)(Θ′ 2 + Φ′ 2 sin2 Θ + cos2 ΘΨ′ 2)

−(Θ̇Θ′ + sin2 ΘΦ̇Φ′ + cos2 ΘΨ̇Ψ′)2
)
, (B.7)

assuming that fluctuations ẊI , X ′I are small we can write
√
−g ≈

√
1− h−1

(
Θ̇2 + Φ̇2 sin2 Θ + cos2 ΘΨ̇2

)
+ y4h

(
Θ′ 2 + Φ′ 2 sin2 Θ + cos2 ΘΨ′ 2).

(B.8)
The equations of motion that follow from (B.6) with (B.8) take the following form

∂

∂y

(
hy4 Θ′√

−g

)
− 1
h

(
∂

∂t

Θ̇√
−g

)
= sin(2Θ)

2
√
−g

(
hy4(Φ′2 −Ψ′2)− Φ̇2 − Ψ̇2

h

)
, (B.9)

∂

∂y

(
hy4 Φ′√

−g

)
− 1
h

(
∂

∂t

Φ̇√
−g

)
= 0, (B.10)

∂

∂y

(
hy4 Ψ′√

−g

)
− 1
h

(
∂

∂t

Ψ̇√
−g

)
= 0. (B.11)
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Eqs. (B.9)–(B.11) posses the static string solution that reads as

Θ = Θ0, Φ = Φ0, Ψ = Ψ0, (B.12)

where Θ0, Φ0 and Ψ0 are some constants corresponding to a massive quark at rest. We
note that plugging the solution for the straight static string (B.12) into (B.7), we see that
−g is not positively defined. This fact was mentioned in [39].

The corresponding “time-dependent” solution in the Boyer-Lindquist coordinates
with (2.44) is thus

ψ = Ψ0 φ = Φ0 − a`2t, θ = arccos
(
y

r
cos Θ0

)
, (B.13)

where
y2 = r2(r2 + a2)

(1− a2l2 sin2 Θ0)r2 + a2 cos2 Θ0
. (B.14)

B.2 Curved string in 5d Kerr-AdS with one rotational parameter (supple-
mentary relations)

The determinant of the induced metric built on (3.2)–(3.4) is

−g =
((
a∆r − a(r2 + a2)∆θ

) sin2 θ

Ξaρ2 φ
′ + ρ2

∆θ
θ̇θ′

+
(
∆θ(r2 + a2)2 − a2∆r sin2 θ

) sin2 θ

Ξ2
aρ

2 φ̇φ
′ + r2 cos2 θψ̇ψ′

)2

−
(
ρ2

∆r
+ ρ2

∆θ
θ′2 +

(
∆θ(r2 + a2)2 − a2∆r sin2 θ

) sin2 θ

Ξ2
aρ

2 φ
′2 + r2 cos2 θψ′2

)

×
((
a2∆θ sin2 θ −∆r

) 1
ρ2 +

(
a∆r − a(r2 + a2)∆θ

) 2 sin2 θ

Ξaρ2 φ̇

+
(
∆θ(r2 + a2)2 − a2∆r sin2 θ

) sin2 θ

Ξ2
aρ

2 φ̇
2 + ρ2

∆θ
θ̇2 + r2 cos2 θψ̇2

)
, (B.15)

where ∆r,∆θ,Ξa, ρ are defined as (2.42).
Owing to (3.5) the components of the induced metric can be represented in the follow-

ing way

grt = a2 sin2 θ

ρ2Ξ2
a

(
β1Ξa(∆r −∆θ(r2 + a2)) + β2

1`
2(∆θ(r2 + a2)2 − a2∆r sin2 θ)

)
φ′1

+a2`2β2
2r

2 cos2 θψ′1, (B.16)

gtt = a2∆θ sin2 θ −∆r

ρ2 + 2β1a
2`2 sin2 θ(∆r −∆θ(r2 + a2))

ρ2Ξa

+β2
1
a2`4 sin2 θ

ρ2Ξ2
a

(∆θ(r2 + a2)2 − a2∆r sin2 θ) + β2
2a

2`4r2 cos2 θ, (B.17)

grr = ρ2

∆r
+ a2β2

1 sin2 θ

Ξ2
aρ

2

(
∆θ(r2 + a2)2 −∆ra

2 sin2 θ
)
φ′21 + a4 ρ

2

∆θ
θ′21

+β2
2a

2r2 cos2 θψ′21 . (B.18)
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