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We analyze numerically the existence of regular stationary rotating hairy black holes within the
framework of general relativity, which are the result of solving the Einstein-Klein-Gordon system for a
complex-valued scalar field under suitable boundary (regularity and asymptotically flat) conditions. To that
aim we solve the corresponding system of elliptic partial differential equations using spectral methods
which are specially suited for such a numerical task. In order to obtain such system of equations we employ
a parametrization for the metric that corresponds to quasi-isotropic coordinates (QIC) that have been used
in the past for analyzing different kinds of stationary rotating relativistic systems. Our findings are in
agreement with those reported originally by Herdeiro and Radu. The method is submitted to several
analytic and numerical tests, which include the recovery of the Kerr solution in QIC and the cloud solutions
in the Kerr background. We report different global quantities that allow us to determine the contribution of
the boson hair to the spacetime, as well as relevant quantities at the horizon, like the surface gravity. The
latter indicates to what extent the hairy solutions approach the extremal limit, noting that for this kind of
solutions the ratio of the angular momentum per squared mass J∞=M2

ADM can be larger than unity due to
the contribution of the scalar hair, a situation which differs from the Kerr metric where this parameter is
bounded according to 0 ≤ jJ=M2j ≤ 1, with the upper bound corresponding to the extremal case.
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I. INTRODUCTION

Black holes (BH) are one of the most fascinating
predictions of general theory of relativity (GR). A BH
region within an asymptotically flat (AF) spacetime is a no-
escape region where the event horizon, Hþ, a null surface,
separates this region from the “observable universe,” called
the domain of outer communication (DOC).
Uniqueness theorems establish that the only regular, AF

and stationary BH in GR coupled to Maxwell theory, are
contained within the Kerr-Newman family of solutions
which are characterized by only three parameters, the mass,
electric charge and angular momentum [1]. In particular, in
the absence of rotation, this family reduces to the Reissner-
Nordstrom BH, and for a vanishing electric charge the only
possible solution is the Schwarzschild solution, which has
only the mass as a single parameter.
The no-hair conjecture, first proposed by Carter in

1968 [2], stipulates that the only stationary AFBH are
precisely described in terms of those three parameters. This

conjecture has been reinforced by no-hair theorems which
establish the circumstances under which some nontrivial
fields cannot coexist outside a BH [3–5]. Similar theorems
are extended as to include nonminimally coupled scalar fields
to gravity [6]. Several of these “no-go theorems” are mainly
restricted to static, spherically symmetric and asymptotically
flat scenarios, leading to the conclusion that the only possible
BH corresponds to the Schwarzschild solution.
From the observational point of view, there is strong,

albeit indirect evidence, that BH’s do exist in the universe.
For instance, the gravitational-wave (GW) observatories
LIGO-VIRGO together with massive numerical simulations
and a detailed statistical analysis indicate that the source of
several GW signals detected in recent years come from the
collision of two BH that presumably are of Kerr or
Schwarzschild type [7]. Moreover, the dynamics of stars
near the center of our galaxy (Sgr A*) also shows that the
central object is undoubtedly a supermassive BH [8,9].
Finally, the Event Horizon Telescope (EHT) has produced
radio images from the matter in the neighborhood of the
center of galaxyM87 and our own galaxy that are consistent
with the hypothesis of an accretion luminous disk around a
Kerr BH [10], which is in addition, one of the simple
mechanisms to explain the emission of relativistic jets in this
kind of environments [11].
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This overwhelming observational evidence about the
existence of BH’s in the universe leaves, however, some
room for speculating about the specific kind of BH that
have been observed, notably, BH’s other than Kerr or
Schwarzschild. At this respect, we mention that despite the
elaboration of several no-hair theorems, hairy BH solu-
tions have been found in different kind of field theories
coupled to GR [12,13] (for a review see [14,15]), showing
that more general BH’s require more parameters and thus,
indicating that the no-hair conjecture might be wrong.
Nevertheless, most, if not all, of those kind of hairy BH
solutions have proved to be unstable under linear pertur-
bations (cf. Refs. [13,16]), and correspond to static and
spherically symmetric situations. Thus, it is possible that if
the stability condition is included the no-hair conjecture
may hold.
In 2014 a remarkable result that puts in jeopardy this

conjecture was obtained by Herdeiro and Radu [17,18]
(hereafter referred to as HR): Namely, that a regular,
stationary and rotating AFBH solution in GR can coexist
with a complex-valued boson field (hereafter hairy sol-
utions). This is a surprising result in view that a specific
no-hair theorem for this kind of matter was proved in the
past, although assuming a static and spherically symmetric
spacetime [5]. The hairy solutions found by HR under
different kind of values for the boundary conditions at the
horizon are numerical, and the corresponding partial
differential equations (PDEs) involved in the problem
are not easy to solve, even numerically. The authors also
showed that nontrivial configurations for the same kind of
fields can be also found when the background is fixed,
notably, a Kerr spacetime background. These solutions
were termed clouds. The numerical analysis of these
clouds was then extended as to include electric charge,
and nontrivial charged scalar clouds were also found
within a fixed Kerr-Newman background [19].
A further study by some of us pinpointed the reason of

why the no-hair theorems for static situations could not be
extended to stationary and rotating scenarios [20,21]. This
analysis provides a further hint to understand in a simple
and heuristic fashion the existence of those cloud solutions.
It is still premature to assess the impact of those hairy

solutions from the observational point of view, as the current
data from the observations alluded above have several
uncertainties, which in the future might be accommodated
as to include or rule out this kind of hairy black holes.
Theoretically, these hairy solutions might be unstable but
they still cannot be dismissed since a sound stability
analysis is still lacking. Only a preliminary analysis of this
sort has been performed recently [22,23], but it only
includes a very small region of the parameter space of
solutions. Other hairy solutions in alternative gravity
theories have also been found [15,24]. Thus, observations
can also validate, rule out or constrain those solutions as
well, or the alternative theories themselves [25].

Since the hairy solutions found by HR might have an
impact in the interpretation of the forthcoming observations
regarding BH’s, it is important to provide an independent
study of this kind of solutions.
The goal of this paper is to provide that analysis using an

approach that differs significantly from the HR method.
Namely, (a) we use a parametrization of the metric in terms
of quasi-isotropic coordinates (QIC), that leads to a rather
compact system of elliptic PDE for the metric potentials;
and (b) we use a spectral method decomposition that has
proved to be well suited to solve those kind of PDEs with
great numerical precision.1 Spectral methods have been
used systematically in the past by the Meudon group and
collaborators [27] to analyze numerically a large variety of
scenarios involving similar kind of relativistic rotating
systems, like neutron stars, boson stars, Galileon BH’s,
among others. Thus, these numerical methods are reliable
and relatively easy to implement thanks to the spectral-
method library KADATH [28]. Furthermore, other groups
have used KADATH to construct a large variety of isolated
and binary initial data to explore and analyze compact-
object binaries [29].
The article is organized as follows. In Sec. II we provide

the formalism and equations. Section II A discusses the
boundary conditions; Sec. III introduces some formulas to
compute global quantities associated with the BH solutions,
like the Komar mass, angular momentum, and the surface
gravity. Section IV provides the numerical analysis and
Sec. V compares our results with previous studies reported
recently by HR. Finally, in Sec. VI we present the
conclusions and outlook for further studies along this line
of research. Several appendixes are included in order to
complete the different sections and to make the article more
self-contained.

II. FORMALISM AND FIELD EQUATIONS

We consider the action functional

S½gab;Ψ� ¼
Z �

R
16π

−
�
1

2
ð∇cΨ�Þð∇cΨÞ þ 1

2
μ2Ψ�Ψ

��

×
ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

associated with GR and a matter contribution from a
complex-valued scalar fieldΨ, submitted to a potential that
includes only a mass term. Variation of the metric and the
scalar field leads respectively to Einstein’s field equations
endowed with an energy-momentum tensor (EMT) that

1At the time this work was completed we became aware about
Ref. [26] where the authors analyze different kind of BH’s using
spectral methods and perform similar sort of tests that appear in
our Appendix A.
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describes the distribution of the scalar field, and a Klein-
Gordon equation for the field:

Gab ¼ Rab −
1

2
gabR ¼ 8πTab; ð2Þ

Tab ¼∇ðaΨ�∇bÞΨ− gab

�
1

2
ð∇cΨ�Þð∇cΨÞþ1

2
μ2Ψ�Ψ

�
ð3Þ

□Ψ ¼ μ2Ψ; ð4Þ

where□ ¼ gcd∇c∇d, and as remarked above, we assume a
potential describing a free but massive scalar field Ψ
(hereafter boson field) with mass μ. We use geometrized
units where G ¼ c ¼ 1.
Our task is to find solutions of the above system of field

equations under several symmetries: we focus on sta-
tionary, axisymmetric, asymptotically flat (AF) spacetimes
without “meridional currents,” i.e., under the circularity
condition. Therefore, we assume the existence of two
Killing fields, ξa and ηa which are, respectively, timelike
and spacelike, in the asymptotic regions, and are associ-
ated with the above symmetries. Due to the above
assumptions, these Killing fields commute and therefore
can be taken as a part of the coordinate basis. We use the
time t and the spatial angle φ as coordinates adapted to
such vector fields,

ξa ¼
�
∂

∂t

�
a
; ηa ¼

�
∂

∂φ

�
a
: ð5Þ

The circularity condition translates into ξaRa
½bξcηd� ¼

ηaRa
½bξcηd� ¼ 0 [30], which upon the use of the Einstein

fieldEq. (2), this condition imposes the following restrictions
on the EMT: ξaTa

½bξcηd� ¼ ηaTa
½bξcηd� ¼ 0. In addition, the

AF allows for the following conditions to be verified:
ξ½aηb∇cξd� ¼ 0, ξ½aηb∇cηd� ¼ 0 on the (rotation) axis of
symmetry [30]. These assumptions imply that the planes
orthogonal to ξa and ηa are integrable (cf. Refs. [31–33]).
Thus far, we have local coordinates ðt; x1; x2;φÞ,

where the coordinates x1, x2 are associated with the two
coordinate basis vectors ð ∂

∂x1Þa, ð ∂

∂x2Þa respectively, which
due to the previous hypothesis, are orthogonal to ξa and ηa,
and thus, the metric components gμν with respect to the basis
vectors satisfy gt1 ¼ gt2 ¼ gφ1 ¼ gφ2 ¼ 0, and the remain-
ing no-null components are functions of x1, x2 solely.
Furthermore, for the two coordinates x1, x2 we adopt the
so-called Quasi-Isotropic gauge (QI) so that these coordi-
nates are of spherical type r, θ and the metric reads2

ds2 ¼ −N2dt2 þ A2ðdr2 þ r2dθ2Þ
þ B2r2sin2θðdφþ βφdtÞ2; ð6Þ

where the metric potentials N, A, B, βφ are functions of the
coordinates r, θ, solely. In particular, in the limit of spherical
symmetry and staticity, the shift-vector component βφ

vanishes, andN,A,B become independent of the coordinate
θ. Moreover, in that scenario AðrÞ ¼ BðrÞ, and in vacuum
such parametrization leads to the Schwarzschild solution in
isotropic coordinates (cf. Appendix A).
QI coordinates (QIC) cover the DOC of the BH but they

become singular at the horizon where the lapse function
vanishes. Therefore in order for the differential equations to
be valid at the horizon we impose suitable regularity
conditions there (cf. Sec. II A). In practice QIC have proven
to be very useful in analyzing several compact objects, in
particular black hole spacetimes with scalar hair, mainly
because the Einstein equations lead to a system of elliptic
PDE for the metric potentials (or combinations of them) that
can be solved numerically with great accuracy using
spectral methods. Since in this paper we are not interested
in solving the equations inside the BH, we do not require the
use of more regular coordinates that cover its interior like
Kruskal-Szekeres type of coordinates, which are usually
adopted to obtain the maximal analytic extensions of some
prominent exact BH solutions, as in the Schwarzschild and
Kerr cases. Moreover, the ansatz (14) for the scalar field is
consistent with the use of QIC.
That being said, other type of coordinates can be used as

well. For instance, in a previous work configurations of
black holes with scalar hair were obtained using maximal
slicing and a spatial harmonic gauge [34]. Such coordinates
are regular even on the horizon but they require the use of a
more general ansatz for the scalar field.
Since the QI gauge for spacetimes with the above

symmetries have been extensively used in the past [35,36],
notably in the study of rotating boson stars [37], we
proceed directly to write the specific Einstein equations
for the metric potentials, which have been derived under the
3þ 1 formalism of GR (for a review see [38–40]) and
arranged in a more convenient fashion to take into account
the spectral solver KADATH [28], and the fact that at the
inner boundary, which represents the BH horizon Hþ, the
lapse function N vanishes (cf. Sec. II A):

Δ3N þ ∂N∂B
B

−
B2r2sin2θ

2

∂βφ∂βφ

N
¼ 4πA2NðEþ SÞ; ð7Þ

Δ3ðβφr sin θÞ −
βφ

r sin θ
− r sin θ

∂βφ∂N
N

þ 3r sin θð∂βφ∂ lnBÞ

¼ 16π
NA2pφ

B2r sin θ
; ð8Þ

2The reader is urged not to confuse the QI coordinates with the
usual Boyer-Lindquist radial coordinates of Kerr geometry
(cf. Appendix A).
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NΔ2½ðB − 1Þr sin θ� þ ½ðB − 1Þr sin θ�Δ2N

þ 2∂N∂½ðB − 1Þr sin θ� þ Δ2½ðN − 1Þr sin θ�
¼ 8πNA2Br sin θðS − SφφÞ; ð9Þ

NΔ2Aþ AΔ2N −
N
A
∂A∂A −

3

4
AB2r2sin2θ

∂βφ∂βφ

N
¼ 8πA3NSφφ: ð10Þ

In this set of equations the following notation has been
adopted:

Δ3 ≡ ∂
2

∂r2
þ 2

r
∂

∂r
þ 1

r2
∂
2

∂θ2
þ 1

r2 tan θ
∂

∂θ
; ð11Þ

Δ2 ≡ ∂
2

∂r2
þ 1

r
∂

∂r
þ 1

r2
∂
2

∂θ2
; ð12Þ

and

∂u∂v≡ ∂u
∂r

∂v
∂r

þ 1

r2
∂u
∂θ

∂v
∂θ

: ð13Þ

As concerns the scalar field Ψ, we assume the following
harmonic form on the time and angular dependence3:

Ψðt; r; θ;φÞ ¼ ϕðr; θÞeiðωt−mφÞ; ð14Þ

where ϕðr; θÞ is real valued andm is a nonzero integer. The
harmonic dependence of the boson field is such that the
EMT respects the symmetries of the underlying spacetime.
As stressed in Ref. [41], and further analyzed in Ref. [20]
the noninheritance of the spacetime symmetries in the
scalar field via the harmonic time dependence and har-
monic azimuthal angular dependence in (14) is crucial to
obstruct the extensions of the existing no-hair theorems to
the stationary and rotating scenarios where the EMT
respects the symmetries of the underlying spacetime.
The other ingredient that leads to bound (stationary) states
for the scalar field is the synchronicity condition given
below in Eq. (26) from which one notes that in the absence
of both rotation (ΩH ¼ 0) and the harmonic dependence
(m ¼ 0) the scalar field becomes real valued in a static and
spherically symmetric spacetime where several no-hair
theorems apply [3–5]. Further remarks along these sym-
metry considerations are addressed in Refs. [42].

The Klein-Gordon Eq. (4) then reads

Δ3ϕþ A2

N2
ðωþ βφmÞ2ϕ −

m2ϕ

r2sin2θ

�
A2

B2

�

þ 1

N
∂ϕ∂N þ ∂ϕ∂ lnB ¼ A2μ2ϕ: ð15Þ

The system of elliptic PDEs provided by Eqs. (7)–(10) is
equivalent but different from the system used previously by
HR [18] under a different coordinate gauge. The source
terms that appear at the rhs of Eqs. (7)–(10) are provided by
the 3þ 1 decomposition of the EMT (3) [37–40]4:

E ¼
�ðωþmβφÞ2

N2
þ m2

B2r2sin2θ

�
ϕ2

2

þ 1

2A2

��
∂ϕ

∂r

�
2

þ 1

r2

�
∂ϕ

∂θ

�
2
�
þ μ2ϕ2

2
; ð16Þ

pφ ¼ m
N
ðωþmβφÞϕ2; ð17Þ

Sφφ ¼
�ðωþmβφÞ2

N2
þ m2

B2r2sin2θ

�
ϕ2

2

−
1

2A2

��
∂ϕ

∂r

�
2

þ 1

r2

�
∂ϕ

∂θ

�
2
�
−
1

2
μ2ϕ2; ð18Þ

S ¼
�
3
ðωþmβφÞ2

N2
−

m2

B2r2sin2θ

�
ϕ2

2

−
1

2A2

��
∂ϕ

∂r

�
2

þ 1

r2

�
∂ϕ

∂θ

�
2
�
−
3

2
μ2ϕ2: ð19Þ

The above components of the EMT in 3þ 1 form
are compatible with the circularity condition, namely,
the components Ttθ, Ttr, Tφθ, Tφr vanish identically.
Incidentally, the component Trθ, which does not vanish,
is not necessary to solve the above system of equations. We
performed some basic tests to check the consistency of this
system, namely, we verified that in vacuum they satisfy the
exact Kerr solution in QIC (cf. Appendix A), as opposed to
the Kerr solution in Boyer-Lindquist (BL) coordinates. At
this point it is important to emphasize that BL coordinates
have been used to find solutions (with the Kerr background
fixed) of cloud configurations for the boson field
Ψ [17,18,20,21,43], which in turn allowed the use of
separation of variables for the radial and angular depend-
ence θ of the boson field leading to Teukolsky type of
equations [44].

3In order to match the notation of Ref. [37] one has to use
m ¼ k. Moreover, the integerm of this paper is not to be confused
with the scalar-field mass of that reference. Finally, to compare
with [20,21] one has to transform ω → −ω, m → −m, i.e., to
change a global sign in the harmonic dependence of Ψ.

4We stress a difference (possibly due to a typo—a misplaced
right bracket–) in a similar expression in Eq. (A14) of [37].
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A. Boundary (regularity) conditions

In order to solve the system of elliptic PDE’s, appropriate
regularity conditions are implemented. We consider an inner
boundary corresponding to the BH horizon Hþ, that we
assume to have a spherical topology, and thus, it is located
at r ¼ rH. Therefore, we impose regularity conditions at
r ¼ rH for each of the metric potentials N, A, B, and βφ.
According to Hawking’s rigidity theorem [45], when
physically reasonable conditions are satisfied (weak energy
condition and matter obeying hyperbolic equations—in
dynamic situations), the event horizon of a stationary BH
coincide with a Killing horizon. These conditions are
verified in the current scenario. This theorem is compatible
with the circularity condition [32,33]. In the present case the
null geodesic generators of the horizon have as tangent the
helical Killing field

χa ¼ ξa þ ΩHη
a; ð20Þ

in the region where its norm vanishes, like in the Kerr BH,
where

ΩH ¼ −
ξaξ

a

ξaη
a

				
Hþ

¼ −
ηaξ

a

ηaη
a

				
Hþ

¼ const; ð21Þ

is the angular velocity of the horizon [46]. In terms of the
3þ 1 variables

ΩH ¼ −βφðrH; θÞ ¼ const: ð22Þ
This is the condition imposed on the shift vector at rH.
As mentioned above, the BH horizon is located at the

place where χaχajHþ ¼ 0. In terms of the 3þ 1 variables
this corresponds at the place where the lapse function
vanishes NðrH; θÞ ¼ 0. Additionally, the ergosphere is
defined as the region where the Killing field ξa becomes
spacelike. The ergosurface corresponds to the spacetime
points where ξaξa ¼ 0; this is where the metric component
gtt ¼ 0. Outside the ergosphere the Killing field ξa is
timelike, where it is possible to find static observers, i.e.
observers with 4-velocity uaS parallel to ξ

a. However, inside
the ergosphere, those observers no longer exist, and must
rotate with a component in the direction of the rotational
Killing field ηa [see Eqs. (5)]. It is precisely within the
ergosphere where the Penrose process of energy extraction
can take place.
As concern the metric potentials A and B, we assume that

the event horizon Hþ coincides with an apparent horizon,
and so these potentials have to satisfy the following
condition (see Appendix B):

�
∂

∂r

�
1

A

�
þ 1

A

�
2

A
∂A
∂r

þ 1

B
∂B
∂r

þ 2

r

��
rH

¼ 0: ð23Þ

In particular, we checked that the condition (23) is verified
exactly for the Kerr metric in QIC. It may seem strange to

use just one boundary condition for the two quantities A
and B. However, by looking at Eqs. (9) and (10) one can see
that they are degenerate, in the sense that the factor in front
of the highest derivative (i.e. theNΔ2 operators) vanishes at
the inner boundary. Such degenerate equations cannot be
solved with any boundary conditions. In the case at hand, it
appears that Eq. (9), on the horizon, becomes a regularity
condition and is treated as such by the solver. Equation (23)
is treated as being the boundary condition associated
with Eq. (10).
As regards the boson field, we consider the so-called

synchronicity or no-flux condition across the horizon to
ensure the existence of “bound states” associated with a
stationary boson field [17,18],

χa∇aΨjHþ ¼ 0: ð24Þ

In view of Eq. (14), this condition translates into

ðω −mΩHÞΨH ¼ 0: ð25Þ

So for any finite ΨH ≠ 0 we obtain

ω ¼ mΩH: ð26Þ

This condition stems also from demanding regularity in
Eq. (15) at Hþ as one can appreciate from the first term
within brackets, which must vanish as the horizon is
approached and where NH ¼ 0.
The Klein-Gordon equation (15) also requires some

regularity condition to be fulfilled, due to the division
by N. Close to the horizon the solver works with N times
Eq. (15) to remove possible divergences. Doing so, the
equation becomes degenerate [as for Eqs. (9) and (10)] and
so it is solved without any boundary condition. This
procedure allows to find the right value of the scalar field,
consistent with regularity, without the need to enforce that
regularity explicitly.
Asymptotic flatness (AF) is to be imposed on the

spacetime, and thus, βφ → 0, N → 1, A → 1, B → 1, as
r → ∞. Thanks to a compactification of space those
conditions are enforced at exact infinity.
Now, when the background spacetime is fixed, one needs

to solve only for the scalar field Eq. (15). With a Kerr
background, the solution for Ψ leads to the cloud solutions
mentioned before [17,18,20]. In this context, Eq. (15) is
linear with respect to the scalar field and it admits nonzero
solutions only for discrete values of the parameters (a, M,
ΩH, ω, and μ). So this is an eigenvalue problem. The
numerical method thus needs some conditions to prevent
the code from converging to the trivial solution ϕðr; θÞ ¼ 0
and to find the right values of the parameters. A method for
dealing with this class of problems (i.e. eigenvalue prob-
lems arising from a linear approximation) has already been
used several times (see [47,48] and especially [34] in the
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context of clouds). Using the same technique, clouds are
constructed using a Kerr background in QI coordinates.
They correspond to the limit of the full system when
ϕ → 0. In this work, clouds are used as an initial guess to
construct black holes with scalar hair, thus leading to the
solution of the full nonlinear problem once we take into
account the backreaction of the scalar field into the
spacetime. By changing the parameters away from those
of the cloud solutions, sequences of hairy BH can be
obtained. For instance, in Fig. 6, the cloud solution
corresponds to the rightmost point (with ΩH=μ ≈ 0.98)
and the sequence is constructed by slowly varying ΩH. We
elaborate more about this point in Sec. IV.
As remarked before, the first test for the spectral code

consisted of recovering numerically the exterior Kerr
solution by setting the sources to zero, i.e., assuming a
vacuum scenario with a vanishing scalar field. These tests
are included in Appendix A, where we compare the
numerical solution with the exact Kerr solution in QIC
coordinates. The relative numerical errors are typically
∼10−14–10−16 or lower for 17 coefficients in the radial
spectral expansion.
We perform a second test where we fix the Kerr back-

ground and recover the same kind of cloud solutions
provided in Ref. [20] for the subextremal scenarios, but
in QIC.

III. GLOBAL QUANTITIES, SURFACE GRAVITY
AND BH THERMODYNAMICS

A. Boson number, mass and angular momentum

There are basically three global quantities that emerge as a
consequence of the AF conditions which are measured at
spatial infinity (as opposed to global quantities defined at
Hþ). The first one is related to the internal symmetry
associated with the boson field, namely, the invariance of the
model with respect to a global phase transformation
Ψ → Ψ0 ¼ eiαΨ, where α ¼ const. This symmetry leads
to the local conservation of the boson current ∇aja ¼ 0,
where5

ja ¼ i
2ℏ

ðΨ�∇aΨ −Ψ∇aΨ�Þ: ð27Þ

Furthermore, the conserved current implies that the total
particle number of the boson field is also conserved. This is
given in terms of a volume integral on a spatial hypersurface
Σt of the component of the flux ja that is normal to the
hypersurfaces Σt:

Q≡
Z
Σt

−naja
ffiffiffi
γ

p
d3x; ð28Þ

where γ ¼ detðγijÞ ¼ A4B2r4sin2θ is the determinant of the
three-dimensional metric, and d3x ¼ drdθdφ. In this case
the timelike normal is given by

na ¼ 1

N
ðξa − βφηaÞ; ð29Þ

na ¼ −N∇at ¼ −NðdtÞa; ð30Þ

which is interpreted physically as the 4-velocity of
observers that have zero angular momentum (ZAMO’s)
l≡ −naηa ≡ 0.
Using the harmonic form for the scalar field (14), the

current (27) reduces to

ja ¼ ℏ−1ϕ2∇aðmφ − ωtÞ; ð31Þ

and the total boson number is

Q≡ 2π

ℏ

Z
∞

rH

Z
π

0

1

N
ðωþmβφÞϕ2A2Br2 sin θdrdθ; ð32Þ

where we used the fact that all the quantities involved in the
integral are independent of the angle φ due to the axial
symmetry.
On the other hand, there are two global quantities at

spatial infinity related to the spacetime symmetries. The
first one is the Komar mass, which is associated with the
Killing vector ξa ¼ ð∂=∂tÞa [30]:

MK ≡ −
1

8π

I
S
∇aξbdSab: ð33Þ

Since in the current scenario the scalar field is present
outside the BH, this integral can be split into two
contributions [38], one at the inner boundary corresponding
to the intersection Ht ≡ Σt ∩ Hþ, between the spatial
hypersurfaces Σt defined by the parameter t associated
with the timelike Killing field ξa [cf. Eq. (5)], and the event
horizon Hþ. The second contribution corresponds to a
volume integral within a 2-sphere S∞ ⊂ Σt that extends
to spatial infinity. In both cases dSab is the area-element
2-form normal to both boundaries. Thus, Eq. (33) reads

MK ¼ MHt þMΣt : ð34Þ

The massMHt can bewritten using the 3þ 1 variables [38]6:

5Some differences on sign in the current depend on conven-
tions. Here we agree with [17], but we use a different variable Ψ
that introduces a factor 1=2 (cf. the EMT). For all the numerical
calculations we take units where ℏ ¼ 1.

6In Ref. [38] the normal sa is taken pointing inward the
horizon Ht, i.e., sa → −sa, and therefore there is a global sign
difference in Eqs. (35) and (43) as compared with the same
equations of Ref. [38].
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MHt ¼ −
1

8π

I
Ht

∇aξbdSHt
ab

¼ 1

4π

I
Ht

ðDaN − Kabβ
bÞsa ffiffiffi

q
p

d2x; ð35Þ

whereDaN ¼ γba∇bN, γba ¼ δba þ nanb, Kab ¼ −γcaγdb∇cnd,
sa ¼ ffiffiffiffiffiffi

grr
p ð∂=∂rÞa is the outward normal to Ht,

q ¼ A2B2r4 sin2 θ, is the determinant of the two-
dimensional metric induced on r ¼ const surfaces, and
d2x ¼ dθdφ. More specifically, saDaN ¼ ffiffiffiffiffiffi

grr
p

∂rN ¼
∂rN=A and Kabβ

bsa ¼ Krφβ
φ=A. Therefore7

MHt ¼ r2H
2

Z
π

0

ð∂rN − Krφβ
φÞB sin θdθjrH

¼ r2H
2

Z
π

0

�
∂rN − B2r2sin2θ

∂rβ
φ

2N
βφ
�
B sin θdθjrH ;

ð36Þ

where we used Krφ ¼ B2r2sin2θ ∂rβ
φ

2N .
The volume integral at spatial infinity associated with the

contribution MΣt can be expressed in terms of the EMT
associated with the matter [30,38], in this case associated
with the EMT of the boson field (3):

MΣt ¼ 2

Z
Σt

�
Tabnaξb −

1

2
Tnaξa

� ffiffiffi
γ

p
d3x; ð37Þ

this mass can be obtained as well from the conserved
current ∇að−TabξbÞ ¼ 0, which is associated with the
stationary condition.
For the problem at hand, Tabnaξb ¼ N−1ðTtt − Ttφβ

φÞ.
The components of the EMT involved in the previous
expressions and its trace T appearing in Eq. (37) can be
obtained directly from (3), which yield

MΣt ¼ 2π

Z
∞

rH

Z
π

0

�
2ω

N
ðωþmβφÞϕ2 − Nμ2ϕ2

�

× A2Br2 sin θdrdθ: ð38Þ

For instance, in vacuum, MΣt ≡ 0, and for Schwarzschild
and Kerr spacetime in QIC MHt ≡M (cf. Appendix A).
On the other hand, since the spacetime considered in our

analysis is AF, one can obtain the total energy of the system
from the mass ADM, which is given by a surface integral at
infinity in the following form [38,40]:

MADM ≡ 1

16π

I
r→∞

½D̄bγab − D̄aðfcdγcdÞ�sa ffiffiffi
q

p
d2x; ð39Þ

where fcd is the flat 3-metric, γab is the 3-metric and D̄a
denotes the covariant derivative associated with the metric
fcd. For the physical system that we study, it is found that

MADM ¼ 1

8π

Z
2π

0

Z
π

0

½D̄jγrj− D̄rðfklγklÞ�

×Br2 sinθdθdφ
			
r→∞

¼−
1

8

Z
π

0

�
∂

∂r
ðA2þB2ÞþB2−A2

r

�
Br2 sinθdθ

			
r→∞

:

ð40Þ

When we consider the Kerr spacetime in QIC, as r → ∞ the
leading terms of the metric potentials are as follows
(cf. Appendix A): A2 ∼ 1, B2 ∼ 1, ∂A2

∂r ∼ − 2M
r2 and

∂B2

∂r ∼ − 2M
r2 , so from Eq. (40), it is found that MADM ¼ M.

Due to the AF assumption, the Komar mass MK given by
Eq. (34) coincides with the ADM mass (39).
The second global quantity defined at spatial infinity

which is associated with the axial Killing vector
ηa ¼ ð∂=∂φÞa, is the Komar angular momentum. This
quantity is given by an integral similar to the Komar
mass (33) but replacing ξa ¼ ð∂=∂tÞa by ηa ¼ ð∂=∂φÞa and
introducing a factor “− 1

2
” [30]:

JK ≡ 1

16π

I
S∞

∇aηbdSab: ð41Þ

Similarly, this expression can be split into two contri-
butions [38]:

JK ¼ JHt þ JΣt ; ð42Þ
where JHt is given by the following expression in terms of
3þ 1 variables [38]:

JHt ¼ 1

8π

I
Ht

Kabsaηb
ffiffiffi
q

p
d2x: ð43Þ

More explicitly,

JHt ¼ r2H
4

Z
π

0

KrφB sin θdθ
			
rH

¼ r4H
8

Z
π

0

∂rβ
φ

N
B3sin3θdθ

			
rH
: ð44Þ

The contribution JΣt can be written in terms of a volume
integral from the conserved current ∇aðTabηbÞ ¼ 0:

JΣt ¼ −
Z
Σt

Tabnaηb
ffiffiffi
γ

p
d3x: ð45Þ

In this case Tabnaηb ¼ N−1ðTtφ − βφTφφÞ, and from (3),
one obtains

7In principle, this integral can be evaluated at r → ∞ as well as
at r ¼ rH when matter is absent.
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JΣt ¼ 2πm
Z

∞

rH

Z
π

0

1

N
ðωþmβφÞϕ2A2Br2 sinθdrdθ: ð46Þ

From (46) and (32) note that

JΣt ¼ mQℏ; ð47Þ

that is, JΣt is an integer multiple of the boson number Qℏ,
as it happens also in the rotating boson-star sce-
nario [37,49].
An equivalent expression of the Komar angular momen-

tum is (see e.g. Eq. (8.77) in Ref. [38])

J∞ ≡ 1

8π

I
S∞

Kabη
asbdS; ð48Þ

where, as before, ηa ¼ ð∂=∂φÞa and sa ¼ ffiffiffiffiffiffi
grr

p ð∂=∂rÞa. For
our current analysis, this becomes

J∞ ¼ 1

8π

Z
2π

0

Z
π

0

Krφη
φsrr2 sin θdθdφ

			
r→∞

¼ 1

8

Z
π

0

∂rβ
φ

N
B3r4sin3θdθ

			
r→∞

: ð49Þ

For instance, in Kerr spacetime in QIC, as r → ∞ the
leading terms of the metric potentials are as follows
(cf. Appendix A): N ∼ 1, A ∼ 1, B ∼ 1 and βφ ∼ −2J=r3,
in agreement with Eq. (49).
WhileMK ≡MADM and JK ¼ J∞ are identities that hold

exactly, from the numerical point of view this is not
necessarily the case as each quantity is computed differ-
ently. At the end of the next section we show that both pairs
of quantities converge to the same value as the number of
coefficients in the spectral decomposition increase. This is
an important convergence test that allows us to determine
the precision of the spectral code that has been used to solve
the Einstein-Klein-Gordon (EKG) system.

B. Surface gravity

Following Ref. [30] the surface gravity κ of a stationary
BH is given in terms of the Killing field (20) by

κ2 ¼ −
1

2
ð∇aχbÞð∇aχbÞjHþ : ð50Þ

This expression leads to the following formulas for the
surface gravity associated with a stationary, axisymmetric
and circular spacetime containing a BH with metric (6) (see
Appendix C for the details):

κ ¼
�
1

A

�
ð∂rNÞ2 þ 1

r2
ð∂θNÞ2

�
1=2

�
rH

¼
�

1

2AN

�
ð∂rN2Þ2 þ 1

r2
ð∂θN2Þ2

�
1=2

�
rH

: ð51Þ

From (51) one can check that the surface gravity for
Schwarzschild and Kerr spacetimes using QIC
(cf. Appendix A) leads to the usual expressions [30] in
terms of the mass M and the angular momentum a ¼ J=M
(cf. Appendix C).

C. Mass and BH thermodynamics formula

According to Ref. [30], stationary, rotating, axisymmet-
ric and AFBH’s like the ones we are analyzing here satisfy
the following Smarr relation (using the notation of this
section):

MK ¼ MΣt þ 1

4π
κAþ 2ΩHJHt ; ð52Þ

where A is the area of the horizon, which in terms of the
QIC is given by

A ¼ r2H

Z
2π

0

Z
π

0

AB sin θdθdφ
			
rH

¼ 2πr2H

Z
π

0

AB sin θdθ
			
rH
: ð53Þ

Using Eq. (34) in Eq. (52), we can write the following
formula at the horizon:

MHt ¼ 1

4π
κAþ 2ΩHJHt : ð54Þ

Formula (52), obtained first by Bardeen, Carter and
Hawking [50], was instrumental to derive the first law
of BH mechanics. In particular, in the absence of matter
outside the BH, the formula reduces to the one provided by
Smarr [51] which takes the same form as (54).
For instance, in the case of Schwarzschild and Kerr BH’s

(cf. Appendix A) Eq. (54) simply reduces to MHt ¼ M.
The temperature of the BH horizon is defined as

TH ¼ κ=ð2πÞ, whereas the entropy SH ¼ A=4.

IV. NUMERICAL ANALYSIS

To solve the system of elliptic partial differential
equations (7)–(10) together with the Klein-Gordon equa-
tion (15), we have used the KADATH library, which, as
mentioned above, implements the spectral methods to solve
this type of system. Furthermore, to solve the EKG system,
we have included the regularity conditions for the metric
potentials N, A, B, and βφ, and for the amplitude of the
scalar field ϕðr; θÞ that were described in Sec. II A. In this
work we focus only on solutions corresponding to n ¼ 0
(i.e. where ϕ has no nodes) and m ¼ 1.
Figure 1 shows the metric potentials N and A, while

Fig. 2 depicts B and βφ, both for black hole solutions with
scalar hair by fixing the coordinate at the horizon as rH ¼
0.057648=μ and taking three different values of ΩH.
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Figure 3 shows the corresponding solutions for the
scalar-field amplitude ϕðr; θÞ at the equatorial plane
(θ ¼ π=2). The values of ϕ together with the corresponding
metric potentials shown in Figs. 1 and 2 are examples of
solutions of the full EKG system, and as such, they
represent black hole solutions endowed with scalar hair.
We stress that these solutions are regular in the DOC,

notably, at the event horizon. Moreover, we appreciate that
asymptotically the scalar field vanishes and the metric
functions match the Minkowski values (N → 1, A → 1,
B → 1, and βφ → 0).
Figure 4 shows the scalar field near the horizon

(rH ≈ 0.058=μ) in order to appreciate closely the regularity
conditions there. Figure 5 displays a family of scalar-field
solutions ϕ at the equatorial plane taking different values
for rH and ΩH.
Figure 6 depicts the Komar mass (33) and the Komar

angular momentum (41) for a sequence of hairy black hole
solutions with different values of ΩH, but keeping fixed the
horizon at rH ¼ 0.057648=μ. Note that these global quan-
tities are very sensitive to small variations of the angular
velocity of the black hole. The larger the angular velocity,

the lower the amplitude of the scalar-field results (cf. Fig. 3),
and therefore the Komar quantities become smaller as the
scalar-field contribution decreases in the DOC.
As a measure of the contribution of the scalar field Ψ to

the black hole solution, it is convenient to define the

FIG. 1. Solutions for the lapse N and the metric function A
(evaluated at the equator θ ¼ π=2) associated with the elliptic
system Eqs. (7)–(10), with μrH ¼ 0.057648 and three different
values of ΩH.

FIG. 2. Solutions for the function B and the shift βφ (evaluated
at the equator θ ¼ π=2) associated with the elliptic system
Eqs. (7)–(10) with μrH ¼ 0.057648 and three different values
of ΩH .

FIG. 3. Scalar-field solutions ϕðr; π=2Þ for a black hole with
μrH ¼ 0.057648 and three different values of ΩH .
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dimensionless quantity q, in terms of the Noether chargeQ
and the total angular momentum JK, as follows:

q≡mQ
JK

: ð55Þ

From the expressions given by Eqs. (44) and (45) it is easy to
see that for a Kerr black hole q ¼ 0, since in this scenario the
Noether charge vanishes identically, while for a boson star
(no horizon is present) q ¼ 1 because in this case JK ¼ JΣt

and JΣt ¼ mQ (i.e.MHt ¼ 0 ¼ JHt). By continuity we may
conclude that the quantity q takes values in the interval (0, 1)
when we consider a black hole solution with scalar hair.
Figure 7 depicts the quantity q as a function of ΩH for

two different sequences of solutions of the Einstein-Klein-
Gordon system corresponding to hairy black holes with
event horizons fixed at rH ¼ 0.057648=μ (top panel) and
rH ¼ 0.053651=μ (bottom panel). In both plots we observe
how the quantity q approaches 1 as the angular velocity of
the black hole with scalar hair moves away from the value
of ΩH corresponding to a Kerr black hole from which the

sequence of solutions were generated. This result is a
consequence of the fact that the value of the amplitude of
the scalar field ϕ increases as ΩH decreases from the initial
guess configuration.
Figure 8 shows the contribution of the black hole mass

at the horizon, MHt=MADM, and the corresponding con-
tribution of the scalar-field massMΣt=MADM, relative to the
total mass, for the family of hairy black holes associated
with the values μrH ¼ 0.057648 and μrH ¼ 0.053651,
respectively, as a function of ΩH. When the former
contribution is lower, the latter is larger and vice versa
because both fractions add to one according to Eq. (34),
where MK ≡MADM.
Figure 9 depicts the dimensionless quantity J∞=M2

ADM
as a function of ΩH for three different sequences of hairy
black holes associated with the event horizons located at
μrH ¼ 0.057648, μrH ¼ 0.053651 and μrH ¼ 0.048574,
respectively. We appreciate that this quantity is not
bounded from above by unity, unlike the Kerr black hole
where 0 ≤ ja=Mj ≤ 1 (a ¼ J=M andMADM ¼ M for Kerr)
(cf. tables in Appendix E). This behavior is an indicator of
how different the hairy configurations can be relative to the
vacuum Kerr solution.
Figure 10 shows the surface gravity κ (see Appendix C)

for the same sequence of solutions that appear in Fig. 9.

FIG. 4. Scalar-field solutions ϕðr; π=2Þ associated with Fig. 3,
but depicted close to the horizon located at μrH ¼ 0.057648.

FIG. 5. Scalar-field solution ϕðr; π=2Þ for different values of rH
and ΩH (the latter are not shown).

FIG. 6. Komar mass (top panel) and Komar angular momentum
(bottom panel) as a function of ΩH for hairy BH solutions with
μrH ¼ 0.057648 fixed.
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Figure 11 plots the metric component gtt ¼ −N2 þ
B2ðβφÞ2r2sin2θ as a function of the coordinate r (on the
equatorial plane), in order to locate the ergosurfaces
associated with the regions where gtt ¼ 0. Here we have
considered three hairy black holes with fixed μrH ¼
0.057648 but for three different values of the angular
velocity ΩH, as shown in the figure.
Figure 12 depicts the existence lines (diagram MADM vs

ω) associated with the hairy black hole solutions when
solving the full EKG system for a fixed rH (we consider six
different sequences) and varying the value ΩH. The values
of rH are shown in the figure for each sequence of
solutions, and as stressed before, all of them correspond
to the integers n ¼ 0 and m ¼ 1. The blue solid line
corresponds to the (vacuum) extremal Kerr solution
jaj ¼ M, while the magenta solid line represents configu-
rations associated with boson stars with m ¼ 1. The latter
were computed with the spectral code used in Ref. [37].
The black dashed line corresponds to the scalar cloud
solutions in a Kerr spacetime in QI coordinates with n ¼ 0
and m ¼ l ¼ 1 (see Appendix D).
Figure 13 shows the existence lines in a diagram MADM

vs J∞ for the same sequence of solutions that appear
in Fig. 12.

In Fig. 14 we compare the ADMmass (39) with the value
obtained using Eq. (52), which involves thermodynamic
quantities associated with the BH’s event horizon. This is
for a sequence of hairy black holes with μrH ¼ 0.057648
and different values of ΩH. The relative error between both
quantities is ∼10−6. Table X displays several values of the

FIG. 7. The dimensionless quantity q ¼ mQ=JK as a function
of ΩH for hairy black holes with event horizon at μrH ¼
0.057648 (top panel) and μrH ¼ 0.053651 (bottom panel),
respectively.

FIG. 8. Relative mass contributions MHt =MADM and
MΣt =MADM as a function of ΩH . In these plots the event horizon
is located at μrH ¼ 0.057648 (top panel) and μrH ¼ 0.053651
(bottom panel), respectively.

FIG. 9. The dimensionless parameter J∞=M2
ADM as a function

of ΩH for hairy black holes with three different horizon values.
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thermodynamic quantities fTH;A; SHg associated with the
hairy BH’s.
Figures 15 and 16 show the error indicators for

different spectral resolutions of hairy BH solutions char-
acterized by two different values of rH and ΩH. The top
panel of each figure corresponds to the relative difference
between the ADM mass and the Komar mass defined
as jMK −MADMj=jMK þMADMj, while the bottom
panel corresponds to the relative difference between
expressions (48) and (41) for the angular momentum
defined as jJK − J∞j=jJK þ J∞j. Another error indicator,
depicted in Fig. 17, is the relative difference between the
two expressions for the Komar mass MK, given by
Eqs. (33) and (34), where in practice (33) is computed
using the expression (36) but instead of evaluating at rH
it is computed at r → ∞. The error indicators display
the characteristic exponential convergence with the
expansion number of radial coefficients in the spectral
decomposition [27].

FIG. 10. Surface gravity κ as a function of ΩH for hairy BH’s
with three different horizon values.

FIG. 11. Localization of ergosurfaces on the equatorial plane
(θ ¼ π=2) for three hairy black hole with fixed μrH ¼ 0.057648.

FIG. 12. Existence lines for hairy black holes—colored dashed
lines—(diagram MADM vs ω). Each sequence has a fixed rH, and
six sequences are computed. The solid (magenta) line is asso-
ciated with rotating boson stars, while the (blue) solid line
corresponds to extremal Kerr BH’s (M ¼ 1=2ΩH). The (black)
dashed line that starts close to the values μM ¼ 0.1, ω=μ ¼ 1 and
ends close to the extremal (blue) solid line is the existence line for
boson clouds in the background of Kerr BH’s. Here ω ¼ ΩH
(m ¼ 1) for the hairy solutions and the boson clouds.

FIG. 13. Existence lines for hairy black holes in a diagram
MADM vs J∞.

FIG. 14. Comparison between the ADM mass and the (Smarr)
mass obtained from Eq. (52) for hair BH’s with fixed μrH
¼ 0.057648.
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V. COMPARISON WITH PREVIOUS STUDIES

The cloud solutions in a fixed Kerr background (in QIC)
are used as initial guess to compute the full hairy solutions.
Thus, we recovered first the same kind of clouds found
earlier by Herdeiro and Radu [17] and also in Ref. [20],
where BL coordinates were employed instead. Some
examples of these cloud configurations are depicted in
Appendix D. In contrast, Herdeiro and Radu departed from
a boson star configuration (i.e. a globally regular scalar-
field solution without a horizon) as “initial guess” for the
scalar field, and from that configuration they computed the
rotating hairy BH’s (RHBH) solutions.
Following the above strategy we obtained RHBH sol-

utions similar to those reported in Refs. [17,18]. The space
of solutions can be summarized in the existence lines
depicted as plotsMADM vs ω (cf. Fig. 12) which are similar
to Figs. 4 and 6 of Ref. [18].
A more direct and quantitative comparison between our

results and those of Ref. [18] is difficult due to the use of
different coordinates and parametrization of the metric. The
main contrast between both analyses, ours and theirs, is that

for the moment we cannot recover the globally regular
boson star configurations directly from our spectral code
since our parametrization for the metric and the imple-
mentation of the boundary conditions do not allow us to
take the limit rH → 0 corresponding to a regular origin. In
the present parametrization, this limit is (in principle)
associated with an extremal RHBH. This can be better
appreciated in the Kerr (vacuum) scenario from Eq. (A8)
where the horizon for an extremal Kerr BH in BL
coordinates is located at R ¼ M, which corresponds to
rH ¼ 0 in the QI coordinates. We plan to overcome these
limitations in the future, which in addition will allow us to
study the exact extremal hairy configurations with exactly
vanishing surface gravity κ, and not only in the limit of
small values. Some of these values of κ can be appreciated
from the last rows of Tables VIII and IX associated with a
RHBH that is close to an extremal Kerr due to a small
contribution of the scalar hair to the total mass (cf. columns
5 and 7 of those tables). As we discussed already, the solid
(magenta) line of Fig. 12 corresponding to boson stars was
obtained from an independent and different, albeit similar,
spectral code used in Ref. [37]. There, rotating boson star
models have been computed with regularity conditions
imposed at the origin, as opposed to the regularity con-
ditions at the horizon imposed here. Due to the limitations
alluded to before we appreciate from Fig. 12 that the

FIG. 15. Error indicators between the Komar and ADM
masses and between expressions (42) (JK) and (48) (J∞) of
the total angular momentum associated with a hairy black hole
with event horizon at μrH ¼ 0.057648 and angular velocity
ΩH=μ ¼ 0.88289, as a function of the number of radial coef-
ficients in the spectral expansion.

FIG. 16. Similar to Fig. 15 with μrH ¼ 0.048574 and angular
velocity ΩH=μ ¼ 0.97594.
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existence (dashed) lines of HRBH do not connect con-
tinuously to the boson star (magenta) solid line, but finish
in a configuration with q < 1. The existence lines do not
have a constant q, but a constant rH; therefore, our lines
“cross along” the corresponding (dashed) curves of Fig. 4
of Ref. [18] which are depicted for q ¼ const.
Moreover, as in Ref. [18], we find that the dimensionless

parameter J∞=M2
ADM can be larger than unity in RHBH

unlike the (hairless) Kerr BH’s where 0 ≤ jJ=M2j ≤ 1 (see
the last columns of Tables IV–IX).
In the full nonlinear treatment as well as in the cloud

(linear) study—where the Kerr background is fixed—the
scalar-field solution vanishes identically if the rotation is
“turned off” (e.g. taking m ¼ 0), which is consistent with
the no-hair theorem in spherical symmetry [4,5].8 This is
something that was also remarked in Ref. [18].

VI. CONCLUSIONS AND OUTLOOK

We have confirmed that rotating black holes can support
hair under the form of a complex-valued scalar field using a
completely independent code and a numerical method
different from Ref. [18]; namely, we used QI coordinates
and spectral methods. We have provided different numeri-
cal tests (convergence tests and comparison with the Kerr
exact solution in vacuum) that indicate the robustness of
our numerical analysis. The existence of a nontrivial
configuration of this scalar field avoids the no-hair theo-
rems due to the rotation of the black hole (see Refs. [20,21]
for a deeper discussion). We have computed plenty of hairy
configurations, including the computation of several global
quantities (see Appendix E), showing that the hair can
contribute substantially to the total (ADM or Komar) mass
of the BH. This indicates that the hairy solutions can differ
drastically from the Kerr solution. However, for configu-
rations having a “diluted” hair, the solutions are similar to
the cloud solutions (see Appendix D) where the scalar field
can coexist in the background of a Kerr BH. A particular
feature of the hairy solutions is that the dimensionless
parameter J∞=M2

ADM can take values jJ∞=M2
ADMj > 1,

even when solutions are relatively “far” from extremality
(e.g. the surface gravity κ ∼ 0.5μ) unlike the Kerr solution
where ja=Mj ≤ 1, and the upper bound is reached in the
extremal case a ¼ M where κ ¼ 0. As argued in Ref. [18]
this is because hairy configurations can connect continu-
ously to the solitonic (rotating boson star) solutions where
that dimensionless quantity can also exceed unity.
As we mentioned in the Introduction, from the observa-

tional point of view it is perhaps too early to appreciate the
impact of these hairy solutions for different reasons. So far,
all direct detection of dark matter particles has failed. Thus,
it is still unclear if a fundamental complex-valued scalar
field could be associated with dark matter or not. On the
other hand, it is also unclear if the dark matter phenom-
enology could be instead explained by an alternative theory
of gravity, since all the proposals in that direction have also
failed to recover in addition all the success of GR.
Notwithstanding, we have at our disposal several instru-
ments that can validate, bound or rule out the existence of
this kind of hairy solution in a near future. For instance,
since these solutions produce a spacetime different from the
Kerr solution, their respective shadows can be different
since the photon trajectories are affected differently
(cf. Refs. [52]). Moreover, the gravitational waves emitted
from the collision of two RHBH can have a different pattern
relative to the Kerr counterparts, and so the LIGO-VIRGO
observatories, as well as the forthcoming detectors
KAGRA, Einstein Telescope and LISA can put stringent
bounds to such solutions or perhaps indicate deviations
from the standard Kerr BH interpretation that might be
explained by the RHBH. These are scenarios that are worth
of study. Moreover, it has been argued [53] that RHBH
could be constrained by the analysis of the expected x-ray

FIG. 17. Error indicators associated with the Komar mass MK
when using the two expressions given by (33) and (34), labeled as
MK1

and MK2
in the figure, respectively. The top panel corre-

spond to μrH ¼ 0.057648 and angular velocityΩH=μ ¼ 0.88289,
and the bottom panel to μrH ¼ 0.048574 and ΩH=μ ¼ 0.97594.

8In this case, due to the synchronicity condition (26), when
m ¼ 0 automatically ω ¼ 0 and the scalar field becomes real
valued.
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9We use the notation R for the radial BLC, since r is reserved here for the QIC.

spectra produced by accretion disks around BH’s with
the forthcoming x-ray missions, like Suzaku, eXTP and
LOFT [54]. Finally, recently an unusual gravitational wave
detection GW200129 by the LIRGO-VIRGO collaboration
triggered speculations about possible deviations fromGR, so
that BH’s from alternative theories could explain such
“anomalous” signals (cf. [55]). Nevertheless, a recent analy-
sis [56] presents strong evidence showing that such signals
are due to the collision of two “ordinary” Kerr BH’s that,
however, precess violently and together with the tilt and the
high spin of the primary BH with respect to the orbital
angular momentum, can explain the unusual gravitational
wave patterns. This example teaches us that the answer to an
unexpected phenomenon can be found within GR before
jumping tomuchmore exotic explanations. Thus, hairyBH’s
within GR itself can be a potential candidate to explain some
unexpected features that might be revealed in the forth-
coming observations related with BH astrophysics without
the need to resort tomuchmore drastic avenues likemodified
theories of gravity. Therefore, it is worth exploring different
properties (e.g. stability [22,23] and extremality) and varia-
tions around this kind of RHBH solution.
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APPENDIX A: KERR METRIC IN
QUASI-ISOTROPIC COORDINATES

AND NUMERICAL TESTS

Before providing the Kerr solution in QIC we present the
Kerr solution in Boyer-Lindquist coordinates (BLC),
ðt; R; θ;φÞ, in order to contrast both solutions9:

ds2¼−
ðΔ−a2sin2θÞ

Σ
dt2−

2asin2θðR2þa2−ΔÞ
Σ

dtdφ

þ

�
ðR2þa2Þ2−Δa2sin2θ

�

Σ
sin2θdφ2þ Σ

Δ
dr2þΣdθ2;

ðA1Þ

where

Σ ¼ R2 þ a2cos2θ; ðA2Þ

Δ ¼ R2 þ a2 − 2MR ¼ ðR − RþÞðR − R−Þ; ðA3Þ

and

Rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ðA4Þ

R− ¼ M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ðA5Þ

The event horizon is located at RH ¼ Rþ.
The lapse function is given by

N2 ¼ ΔΣ
ðR2 þ a2Þ2 − Δa2sin2θ

: ðA6Þ

The relationship between the BLC ðt; R; θ;φÞ and the
QIC ðt; r; θ;φÞ is as follows [36]:

R ¼ rþM þM2 − a2

4r
; ðA7Þ

r ¼ 1

2

�
R −M þ

ffiffiffiffi
Δ

p �

¼ 1

2

�
R −M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 2MRþ a2

p �
: ðA8Þ

A2 ¼ −2a2MðMþ 4rÞ þ 8a2r2 cosð2θÞ þ a4 þ ðMþ 2rÞ4
16r4

;

ðA9Þ

N2 ¼ 16r4
�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

2r

�2�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

2r

�2

½−2a2MðMþ 4rÞ þ 8a2r2 cosð2θÞ þ a4 þ ðMþ 2rÞ4�

× ½8a2r2 cosð2θÞða2 −M2 þ 4r2Þ2 − 4a6ðM2 þ 4Mr− 2r2Þ− 4a2ðMþ 2rÞ2ð18M2r2 þ 8M3rþM4 − 8Mr3 − 8r4Þ
þ a8 þ ðM þ 2rÞ8 þ a4ð96M2r2 þ 48M3rþ 6M4 − 64Mr3 þ 32r4Þ�−1; ðA10Þ
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B2 ¼ ½8a2r2 cosð2θÞða2 −M2 þ 4r2Þ2 − 4a6ðM2 þ 4Mr − 2r2Þ þ a4ð96M2r2 þ 48M3rþ 6M4 − 64Mr3 þ 32r4Þ
− 4a2ðM þ 2rÞ2ð18M2r2 þ 8M3rþM4 − 8Mr3 − 8r4Þ þ a8 þ ðM þ 2rÞ8�
× ½16r4ð−2a2MðM þ 4rÞ þ 8a2r2 cosð2θÞ þ a4 þ ðM þ 2rÞ4Þ�−1; ðA11Þ

and

βφ ¼ ½128aMr3ða −M − 2rÞðaþM þ 2rÞ� × ½8a2r2 cosð2θÞða2 −M2 þ 4r2Þ2
− 4a6ðM2 þ 4Mr − 2r2Þ þ a4ð96M2r2 þ 48M3rþ 6M4 − 64Mr3 þ 32r4Þ
− 4a2ðM þ 2rÞ2ð18M2r2 þ 8M3rþM4 − 8Mr3 − 8r4Þ þ a8 þ ðM þ 2rÞ8�−1: ðA12Þ

We have checked using SageMath that the above
values of A, B, N and βφ define a metric that fulfills
the vacuum 3þ 1-Einstein equations.10 We have also
checked using Mathematica that they satisfy the elliptic
equations (7)–(10) in the absence of matter. Moreover, in
the nonrotating limit a ¼ 0, the above variables reduce to
the usual expressions for the Schwarzschild metric in
isotropic coordinates with A ¼ B, βφ ¼ 0, and

N ¼ 1 − M
2r

1þ M
2r

; ðA13Þ

A ¼
�
1þM

2r

�
2

: ðA14Þ

Figures 18 and 19 depict the numerical and the exact
solutions for Kerr spacetime. Figures 20 and 21 show the
corresponding relative errors between those solutions.

APPENDIX B: APPARENT HORIZON

We follow the approach of Refs. [39,40] and consider a
smooth, closed, two-dimensional (spatial) surface S
embedded in Σt, and take sa as its outward-pointing unit
normal tangent to Σt satisfying sasa ¼ 1 and sana ¼ 0. The
two-dimensional metric mab on S induced by γab is

mab ¼ γab − sasb ¼ gab þ nanb − sasb: ðB1Þ

Next, we define the following two null vectors:

ka ≡ 1ffiffiffi
2

p ðna þ saÞ and la ≡ 1ffiffiffi
2

p ðna − saÞ; ðB2Þ

satisfying kaka ¼ 0, mabkb ¼ 0, lala ¼ 0 and mablb ¼ 0.
These vectors at S are tangent and future pointing to the

null geodesics that emanate from S and whose projection
on Σt are orthogonal to S. The normalization is chosen so
that kala ¼ −1. The vectors ka and la are tangent to the
so-called outgoing and ingoing null geodesics. From
Eqs. (B1) and (B2) one obtains

FIG. 18. Red dots correspond to the numerical solution at the
equatorial plane (θ ¼ π=2) for the lapse function N (top panel)
and the metric potential A (bottom panel) obtained from solving
the elliptical system using spectral methods (KADATH) and the
blue solid lines correspond to the exact Kerr solution taking
a=M ¼ 0.5.

10cf. the notebook https://nbviewer.org/github/sagemanifolds/
SageManifolds/blob/master/Notebooks/SM_KerrQI_3p1.ipynb.
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mab ¼ gab þ kalb þ lakb: ðB3Þ

The expansion associated with the outgoing null geodesics
is defined by

H ≡mab∇akb: ðB4Þ

The outer-trapped surface is a surface S with H < 0 and
the trapped region is any region of Σt containing outer-
trapped surfaces. Moreover, when H ¼ 0, the surface S is
called marginally trapped. The apparent horizon is defined
as the outermost marginally trapped surface. The expan-
sion (B4) can be written in terms of 3þ 1 variables as
follows [39]:

H ¼ Dasa − K þ Kabsasb: ðB5Þ

We can apply this formula to the metric (6), and take as
outward-pointing unit (radial) normal sa ¼ 1

A ð ∂∂rÞa. Given
sa and since Krr ¼ 0, the last term in (B5) vanishes.
Moreover, since K ¼ Ka

a ¼ 0, the expansion is

H ¼ Dasa ¼
1ffiffiffi
γ

p ∂rð
ffiffiffi
γ

p
srÞ; ðB6Þ

where as before γ ¼ A4B2r4sin2θ is the determinant of the
spatial metric γab. In this way, Eq. (B6) reads

H ¼ −
1

A2

∂A
∂r

þ 1

A

�
2

A
∂A
∂r

þ 1

B
∂B
∂r

þ 2

r

�

¼ ∂

∂r

�
1

A

�
þ Γ
A
; ðB7Þ

where

Γ≡
�
2

A
∂A
∂r

þ 1

B
∂B
∂r

þ 2

r

�
: ðB8Þ

In Sec. II A Eq. (B7) was used in (23) to impose regularity
conditions for the variables A and B at the horizon. For
instance, in Kerr spacetime the apparent horizon coincides
with the event horizon at rH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
=2, and thus

FIG. 19. Similar to Fig. 18 for the metric potential B (top panel)
and the shift βφ (bottom panel). FIG. 20. Relative errors associated with the solutions for N (top

panel) and A (bottom panel) shown in Fig. 18.
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HjrH ¼ 0: ðB9Þ

We checked using Mathematica that the expansion (B7)
vanishes at rH for the Kerr metric in QIC (cf. Appendix A).

APPENDIX C: SURFACE GRAVITY FORMULAS

In order to obtain a simple expression for the surface
gravity in terms of derivatives for the lapse function N, the
starting point is Eq. (50). That equation leads to [30]

κ ¼ limðVaÞ≡ ðVaÞHþ ; ðC1Þ

where

V ¼ ð−χaχaÞ1=2; ðC2Þ

a ¼ ðacacÞ1=2; ðC3Þ

ac ¼ χb∇bχ
c

ð−χaχaÞ
¼ χb∇bχ

c

V2
: ðC4Þ

The vector na (29) which is normal to Σt is given in terms of
the lapse function N and the shift vector βa as follows [30]:

na ¼ 1

N

�
∂

∂t

�
a
−
βi

N

�
∂

∂xi

�
a
: ðC5Þ

At the horizon and for axisymmetric and circular space-
time, na reduces to (29), and when comparing with (20) we
conclude

χa ¼ NnajHþ : ðC6Þ

Since nana ¼ −1 the squared norm of the helical Killing
field is related to the lapse function by

−χaχajHþ ¼ N2jHþ ¼ V2jHþ ¼ 0: ðC7Þ

Moreover, it is not difficult to prove that the acceleration
(C3) of the Killing field χa coincides with the acceleration
of the normal observers when na is given by (C6):

ac⊥ ¼ na∇anc ¼ Dc lnN;

¼ γca∇a lnN; ðC8Þ

as mentioned below Eq. (35), γca is the 3-metric (or
projector) onto Σt and Dc is the covariant derivative
compatible with the 3-metric [30,38].
From (C7) and (C8) the surface gravity given by (C1)

reads

κ ¼ ½Na⊥�Hþ ; ðC9Þ

where

a⊥ ¼ a ¼ ½ðDc lnNÞðDc lnNÞ�1=2

¼
�
γab

N2
ðDaNÞðDbNÞ

�
1=2

: ðC10Þ

The desired formula for the surface gravity in terms of the
spatial derivatives of the lapse function and the 3-metric is

κ ¼ ½γabðDaNÞðDbNÞ�1=2Hþ

¼ 1

2

�
γab

N2
ðDaN2ÞðDbN2Þ

�
1=2

Hþ
: ðC11Þ

When the formula (C11) is applied to the metric (6) one
obtains

κ ¼
�
1

A

�
ð∂rNÞ2 þ 1

r2
ð∂θNÞ2

�
1=2

�
rH

¼
�

1

2AN

�
ð∂rN2Þ2 þ 1

r2
ð∂θN2Þ2

�
1=2

�
rH

; ðC12Þ

FIG. 21. Relative errors associated with solutions for B (top
panel) and βφ (bottom panel) shown in Fig. 19.
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where we used the following expressions for the relevant
3-metric components and its inverse:

γrr ¼ A2; γθθ ¼ r2A2; ðC13Þ

γrr ¼ 1

A2
; γθθ ¼ 1

r2A2
: ðC14Þ

For instance, the surface gravity (51) for Schwarzschild
and Kerr spacetimes in QIC leads to the well-known
expressions [30]:

κKerr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

2MðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ
; ðC15Þ

κSchw ¼ 1

4M
; ðC16Þ

which can be found more straightforwardly in BL coor-
dinates and its nonrotating limit a ¼ 0.

APPENDIX D: SCALAR CLOUDS

Using the KADATH library, a code was developed to
obtain numerical solutions of scalar clouds, which are
solutions of Eq. (4) in the background of a Kerr spacetime
assuming Eqs. (14) and (26) with an asymptotically
vanishing field. These kinds of solution were analyzed
thoroughly in Refs. [17,18,20,43] using BL coordinates,
and due to the linearity of Eq. (14) one can use separation
of variables that leads to Teukolsky equations for the
angular SlmðθÞ and radial parts Rnlm of the boson field
Ψ, which are associated, respectively, with the spheroidal
harmonics that depend on the integers l andm (jmj ≤ l) and
the radial function that depends also on the positive integer
n (number of nodes). In this context the product SlmðθÞRnlm
(in BL coordinates) is the equivalent of the function ϕðr; θÞ
of Eq. (14) (in QI coordinates). Furthermore in Ref. [20] the
radial Teukolsky equation is solved using the Kerr param-
eter a as an eigenvalue, so below we report such eigen-
values for the cloud solutions computed here.
We computed scalar clouds using QIC within the aim of

using them as input and as initial guess in the spectral code
built to find solutions of the full EKG system and thus
generate an initial hairy black hole solution. From the latter
it was then possible to build a sequence of solutions with
the value rH fixed by varying the frequency ΩH gradually.
Figures 22 and 23 depict some examples of cloud

solutions at the equatorial plane. Although we do not
compute hairy solutions for m > 1 in this work, for
completeness we present cloud solutions for m ¼ l ¼ 1,
2, 3.
Tables I–III show the eigenvalues μa that were found for

different values of rH and ΩH when we solve the Klein-
Gordon equation in the background of Kerr spacetime in QI
coordinates. The numerical data presented in these tables

correspond to configurations with n ¼ 0 (nodeless). The
results obtained using the spectral code for cloud solutions
are consistent with those reported in Ref. [20] for l ¼ m
and n ¼ 0.

FIG. 22. Scalar clouds around a Kerr black hole in quasi-
isotropic coordinates with quantum numbers n ¼ 0 (nodeless)
and m ¼ l ¼ 1 (at the equatorial plane θ ¼ π=2).

FIG. 23. Scalar clouds around a Kerr black hole in quasi-
isotropic coordinates with quantum numbers n ¼ 0 (nodeless)
and integers m ¼ l ¼ 2 (top panel), and m ¼ l ¼ 3 (bottom
panel) respectively (at the equatorial plane θ ¼ π=2).
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APPENDIX E: HAIRY BLACK HOLE PROPERTIES

Tables IV–IX display some properties of hairy black holes associated with the numerical solutions of the Einstein-Klein-
Gordon system discussed in Sec. IV.

TABLE I. Eigenvalues for a scalar cloud with parameters m ¼ l ¼ 1. Some solutions associated with these values
appear in Fig. 22.

μRH μrH μa μM ΩH=μ a=M

0.15 0.036618 0.023013 0.076766 0.999244 0.299778
0.20 0.047829 0.041680 0.104344 0.998601 0.399449
0.30 0.066740 0.099554 0.166518 0.996433 0.597859
0.40 0.075676 0.197281 0.248650 0.991755 0.793407
0.42 0.074966 0.224626 0.270068 0.990165 0.831739
0.46 0.068260 0.293262 0.323482 0.985409 0.906580
0.48 0.060220 0.338793 0.359564 0.981483 0.942232
0.50 0.045465 0.398850 0.409084 0.974959 0.974984
0.51 0.033064 0.438945 0.443898 0.969403 0.988842
0.52 0.013913 0.491451 0.492238 0.959881 0.998401

TABLE II. Eigenvalues for a scalar cloud with parametersm ¼ l ¼ 2. Some solutions associated with these values
appear in Fig. 23 (top panel).

μRH μrH μa μM ΩH=μ a=M

0.20 0.049490 0.020192 0.101018 0.499733 0.199886
0.35 0.084653 0.063126 0.180692 0.499081 0.349357
0.44 0.104129 0.101657 0.231744 0.498472 0.438660
0.50 0.116110 0.133342 0.267780 0.497954 0.497954
0.62 0.136623 0.213487 0.346756 0.496505 0.615670
0.71 0.147570 0.291552 0.414862 0.494907 0.702769
0.80 0.152408 0.390252 0.495186 0.492558 0.788092
0.92 0.141434 0.570923 0.637156 0.486970 0.896049
1.01 0.104874 0.772441 0.800412 0.477674 0.965054
1.10 0.024718 1.051402 1.052564 0.453219 0.998896

TABLE III. Eigenvalues for a scalar cloud with parameters m ¼ l ¼ 3. Some solutions associated with these
values appear in Fig. 23 (bottom panel).

μRH μrH μa μM ΩH=μ a=M

0.50 0.121336 0.085596 0.257326 0.332636 0.332635
0.60 0.143511 0.124801 0.312980 0.332296 0.398752
0.70 0.164374 0.172498 0.371250 0.331863 0.464640
0.80 0.183543 0.229488 0.432916 0.331311 0.530098
0.90 0.200505 0.296954 0.498990 0.330616 0.595110
1.00 0.214570 0.376460 0.570862 0.329729 0.659459
1.10 0.224748 0.470229 0.650508 0.328574 0.722864
1.20 0.229554 0.581511 0.740902 0.327026 0.784869
1.30 0.226633 0.715231 0.846762 0.324863 0.844666
1.50 0.173267 1.048926 1.104686 0.327146 0.949524
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TABLE IV. Global quantities and parameters associated with a sequence of rotating hairy black holes with an event horizon located at
μrH ¼ 0.065804. The columns correspond, respectively, to the angular velocity ΩH (in units of μ), the ADM mass MADM ¼ MK (in
units of 1=μ), the angular momentum J∞ (in units of 1=μ2), the percentage of the BH mass (at the horizon) relative to the total mass, the
percentage of the hair contribution to the total mass, the BH and hair massesMBH andMΨ (in units of 1=μ) defined asMHþ

andMΣt in
Sec. III, the BH and hair angular momenta JBH and JΨ (in units of 1=μ2) defined as JH

þ
and JΣt in Sec. III, the total boson numberQ (in

units of 1=μ2), the dimensionless ratio q ¼ mQ=JK, the surface gravity κ (in units of μ), and the dimensionless parameter J∞=M2
ADM.

Note that in these examples JΨ ¼ Q (taking ℏ ¼ 1) since throughout this work we take the azimuthal number m ¼ 1 [cf. Eq. (47)].

ΩH=μ μMADM μ2J∞ MBHð%Þ MΨð%Þ μMBH μMΨ μ2JBH μ2JΨ μ2Q q κ=μ J∞=M2
ADM

0.92988 0.81204 0.63310 27.4350 72.5650 0.22278 0.58926 0.04947 0.58363 0.58363 0.92186 0.67177 0.9601
0.93018 0.80851 0.62792 27.9207 72.0793 0.22574 0.58277 0.05104 0.57688 0.57688 0.91871 0.65875 0.9606
0.93078 0.80279 0.61994 28.6299 71.3702 0.22984 0.57295 0.05320 0.56674 0.56674 0.91418 0.64185 0.9619
0.93137 0.79774 0.61315 29.2102 70.7900 0.23302 0.56472 0.05487 0.55828 0.55828 0.91051 0.62954 0.9635
0.93316 0.78405 0.59545 30.6678 69.3326 0.24045 0.54360 0.05873 0.53673 0.53673 0.90138 0.60325 0.9686
0.93494 0.77126 0.57951 31.9509 68.0498 0.24643 0.52484 0.06179 0.51772 0.51772 0.89338 0.58424 0.9742
0.93673 0.75883 0.56435 33.1642 66.8369 0.25166 0.50718 0.06444 0.49991 0.49991 0.88581 0.56894 0.9801
0.93852 0.74655 0.54961 34.3487 65.6529 0.25643 0.49013 0.06684 0.48278 0.48278 0.87839 0.55596 0.9862
0.94030 0.73428 0.53510 35.5265 64.4756 0.26086 0.47343 0.06905 0.46606 0.46605 0.87096 0.54462 0.9925
0.94150 0.72608 0.52549 36.3152 63.6873 0.26368 0.46242 0.07044 0.45505 0.45505 0.86596 0.53777 0.9968
0.94269 0.71784 0.51590 37.1107 62.8922 0.26640 0.45146 0.07178 0.44413 0.44413 0.86087 0.53138 1.0012
0.94388 0.70955 0.50632 37.9157 62.0877 0.26903 0.44054 0.07307 0.43325 0.43325 0.85569 0.52539 1.0057
0.94507 0.70119 0.49671 38.7332 61.2715 0.27159 0.42963 0.07432 0.42240 0.42239 0.85038 0.51975 1.0103
0.94626 0.69277 0.48707 39.5647 60.4401 0.27409 0.41871 0.07553 0.41155 0.41155 0.84493 0.51442 1.0149
0.94745 0.68426 0.47740 40.4131 59.5920 0.27653 0.40776 0.07671 0.40069 0.40069 0.83932 0.50936 1.0196
0.94864 0.67567 0.46766 41.2803 58.7247 0.27892 0.39678 0.07786 0.38980 0.38980 0.83352 0.50455 1.0244
0.94983 0.66697 0.45786 42.1689 57.8360 0.28126 0.38575 0.07898 0.37888 0.37888 0.82750 0.49996 1.0292
0.95103 0.65818 0.44798 43.0808 56.9235 0.28355 0.37466 0.08008 0.36791 0.36791 0.82125 0.49558 1.0341
0.95222 0.64927 0.43802 44.0187 55.9849 0.28580 0.36349 0.08115 0.35687 0.35687 0.81474 0.49139 1.0391
0.95341 0.64025 0.42797 44.9849 55.0173 0.28801 0.35225 0.08220 0.34577 0.34577 0.80793 0.48736 1.0440
0.95460 0.63110 0.41781 45.9822 54.0182 0.29019 0.34091 0.08323 0.33458 0.33458 0.80079 0.48350 1.0490
0.95579 0.62182 0.40754 47.0133 52.9847 0.29234 0.32947 0.08425 0.32330 0.32330 0.79328 0.47978 1.0540
0.95698 0.61239 0.39716 48.0814 51.9135 0.29445 0.31792 0.08525 0.31191 0.31191 0.78536 0.47620 1.0590
0.95817 0.60283 0.38665 49.1897 50.8011 0.29653 0.30624 0.08623 0.30042 0.30042 0.77698 0.47275 1.0640
0.95936 0.59310 0.37600 50.3420 49.6441 0.29858 0.29444 0.08720 0.28880 0.28880 0.76808 0.46942 1.0689
0.96055 0.58322 0.36521 51.5422 48.4378 0.30060 0.28250 0.08816 0.27705 0.27705 0.75861 0.46620 1.0737
0.96175 0.57316 0.35426 52.7952 47.1786 0.30260 0.27041 0.08910 0.26516 0.26516 0.74849 0.46308 1.0784
0.96294 0.56292 0.34315 54.1058 45.8615 0.30457 0.25816 0.09003 0.25313 0.25312 0.73765 0.46007 1.0829
0.96413 0.55248 0.33187 55.4799 44.4812 0.30652 0.24575 0.09094 0.24093 0.24093 0.72598 0.45716 1.0873
0.96532 0.54185 0.32041 56.9237 43.0318 0.30844 0.23317 0.09184 0.22857 0.22857 0.71337 0.45433 1.0913
0.96651 0.53099 0.30876 58.4446 41.5069 0.31034 0.22040 0.09272 0.21604 0.21604 0.69971 0.45159 1.0951
0.96770 0.51991 0.29690 60.0511 39.8994 0.31221 0.20744 0.09358 0.20332 0.20332 0.68483 0.44893 1.0984
0.96889 0.50858 0.28482 61.7524 38.2011 0.31406 0.19429 0.09440 0.19042 0.19042 0.66855 0.44635 1.1012
0.97008 0.49700 0.27252 63.5594 36.4027 0.31589 0.18092 0.09520 0.17732 0.17732 0.65066 0.44385 1.1033
0.97128 0.48515 0.25997 65.4846 34.4931 0.31770 0.16734 0.09597 0.16401 0.16401 0.63086 0.44142 1.1045
0.97247 0.47302 0.24717 67.5419 32.4590 0.31949 0.15354 0.09669 0.15048 0.15048 0.60881 0.43906 1.1047
0.97366 0.46059 0.23409 69.7474 30.2842 0.32125 0.13949 0.09738 0.13671 0.13671 0.58402 0.43677 1.1035
0.97425 0.45426 0.22744 70.9117 29.1379 0.32212 0.13236 0.09771 0.12974 0.12973 0.57040 0.43565 1.1022
0.97485 0.44785 0.22072 72.1200 27.9484 0.32299 0.12517 0.09803 0.12269 0.12269 0.55586 0.43454 1.1005
0.97544 0.44136 0.21392 73.3756 26.7126 0.32385 0.11790 0.09835 0.11557 0.11557 0.54025 0.43345 1.0981
0.97604 0.43479 0.20704 74.6812 25.4264 0.32471 0.11055 0.09866 0.10838 0.10837 0.52345 0.43238 1.0952
0.97664 0.42814 0.20007 76.0405 24.0859 0.32556 0.10312 0.09898 0.10110 0.10110 0.50530 0.43132 1.0915
0.97723 0.42141 0.19302 77.4568 22.6862 0.32641 0.09560 0.09929 0.09373 0.09373 0.48559 0.43028 1.0869
0.97783 0.41458 0.18588 78.9343 21.2222 0.32725 0.08798 0.09962 0.08627 0.08627 0.46410 0.42925 1.0815
0.97842 0.40767 0.17865 80.4776 19.6881 0.32808 0.08026 0.09995 0.07870 0.07870 0.44054 0.42824 1.0749
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TABLE V. Global quantities and parameters associated with a sequence of hairy black holes with horizon at μrH ¼ 0.063567. The
description of columns are like in Table IV.

ΩH=μ μMADM μ2J∞ MBHð%Þ MΨð%Þ μMBH μMΨ μ2JBH μ2JΨ μ2Q q κ=μ J∞=M2
ADM

0.91781 0.86192 0.68500 25.7905 74.2090 0.22229 0.63962 0.05246 0.63254 0.63254 0.92342 0.62823 0.92206
0.92070 0.84161 0.65793 27.8515 72.1483 0.23440 0.60720 0.05883 0.59910 0.59910 0.91058 0.58459 0.92889
0.92359 0.82356 0.63511 29.5362 70.4637 0.24325 0.58031 0.06340 0.57171 0.57171 0.90018 0.55770 0.93638
0.92648 0.80613 0.61368 31.1157 68.8844 0.25083 0.55530 0.06725 0.54643 0.54642 0.89041 0.53729 0.94435
0.92938 0.78883 0.59285 32.6670 67.3333 0.25769 0.53114 0.07069 0.52216 0.52216 0.88076 0.52059 0.95275
0.93227 0.77142 0.57224 34.2286 65.7723 0.26405 0.50738 0.07385 0.49839 0.49839 0.87095 0.50636 0.96159
0.93516 0.75378 0.55163 35.8257 64.1759 0.27005 0.48375 0.07679 0.47484 0.47484 0.86080 0.49392 0.97085
0.93805 0.73579 0.53086 37.4786 62.5243 0.27576 0.46005 0.07956 0.45130 0.45130 0.85013 0.48286 0.98056
0.93921 0.72848 0.52249 38.1594 61.8439 0.27798 0.45052 0.08063 0.44186 0.44186 0.84568 0.47876 0.98455
0.94036 0.72110 0.51406 38.8532 61.1504 0.28017 0.44095 0.08168 0.43238 0.43238 0.84111 0.47482 0.98862
0.94152 0.71364 0.50558 39.5612 60.4427 0.28232 0.43134 0.08271 0.42287 0.42287 0.83641 0.47102 0.99274
0.94267 0.70609 0.49704 40.2846 59.7196 0.28445 0.42168 0.08372 0.41332 0.41332 0.83157 0.46737 0.99693
0.94383 0.69846 0.48842 41.0247 58.9797 0.28654 0.41195 0.08471 0.40372 0.40372 0.82656 0.46384 1.00118
0.94499 0.69074 0.47974 41.7827 58.2218 0.28861 0.40216 0.08569 0.39406 0.39405 0.82139 0.46043 1.00549
0.94614 0.68292 0.47098 42.5601 57.4443 0.29065 0.39230 0.08665 0.38433 0.38433 0.81602 0.45714 1.00986
0.94730 0.67501 0.46214 43.3583 56.6459 0.29267 0.38236 0.08760 0.37454 0.37454 0.81045 0.45395 1.01428
0.94846 0.66698 0.45320 44.1787 55.8249 0.29466 0.37234 0.08853 0.36467 0.36467 0.80465 0.45087 1.01874
0.94961 0.65885 0.44418 45.0233 54.9796 0.29664 0.36224 0.08946 0.35472 0.35472 0.79861 0.44788 1.02325
0.95077 0.65061 0.43505 45.8935 54.1081 0.29859 0.35203 0.09037 0.34469 0.34469 0.79229 0.44497 1.02777
0.95193 0.64225 0.42583 46.7916 53.2085 0.30052 0.34173 0.09126 0.33457 0.33457 0.78568 0.44216 1.03234
0.95308 0.63377 0.41649 47.7193 52.2786 0.30243 0.33133 0.09215 0.32434 0.32434 0.77875 0.43942 1.03691
0.95424 0.62516 0.40704 48.6790 51.3162 0.30432 0.32081 0.09303 0.31401 0.31401 0.77145 0.43676 1.04148
0.95540 0.61642 0.39746 49.6732 50.3187 0.30619 0.31017 0.09390 0.30357 0.30357 0.76376 0.43417 1.04605
0.95655 0.60753 0.38776 50.7045 49.2833 0.30805 0.29941 0.09476 0.29301 0.29301 0.75564 0.43166 1.05058
0.95771 0.59851 0.37793 51.7760 48.2072 0.30988 0.28852 0.09561 0.28233 0.28233 0.74703 0.42921 1.05506
0.95887 0.58933 0.36796 52.8908 47.0868 0.31170 0.27750 0.09645 0.27152 0.27152 0.73789 0.42682 1.05947
0.96002 0.57999 0.35785 54.0527 45.9192 0.31350 0.26633 0.09728 0.26057 0.26057 0.72815 0.42450 1.06380
0.96118 0.57049 0.34758 55.2659 44.7004 0.31528 0.25501 0.09810 0.24948 0.24948 0.71776 0.42224 1.06799
0.96233 0.56081 0.33716 56.5349 43.4262 0.31705 0.24354 0.09892 0.23824 0.23824 0.70662 0.42003 1.07204
0.96349 0.55094 0.32656 57.8647 42.0920 0.31880 0.23190 0.09972 0.22685 0.22685 0.69465 0.41788 1.07586
0.96465 0.54088 0.31580 59.2613 40.6928 0.32054 0.22010 0.10050 0.21530 0.21529 0.68175 0.41578 1.07944
0.96580 0.53062 0.30484 60.7309 39.2229 0.32225 0.20813 0.10127 0.20358 0.20358 0.66780 0.41374 1.08269
0.96696 0.52015 0.29370 62.2809 37.6761 0.32395 0.19597 0.10202 0.19168 0.19168 0.65265 0.41174 1.08555
0.96812 0.50945 0.28235 63.9195 36.0450 0.32564 0.18363 0.10274 0.17961 0.17961 0.63613 0.40979 1.08790
0.96927 0.49852 0.27079 65.6564 34.3214 0.32731 0.17110 0.10343 0.16736 0.16736 0.61803 0.40789 1.08962
0.97043 0.48733 0.25900 67.5017 32.4954 0.32896 0.15836 0.10410 0.15491 0.15490 0.59808 0.40604 1.09057
0.97159 0.47590 0.24698 69.4676 30.5550 0.33059 0.14541 0.10473 0.14225 0.14225 0.57594 0.40423 1.09052
0.97274 0.46420 0.23470 71.5675 28.4859 0.33221 0.13223 0.10534 0.12936 0.12936 0.55118 0.40246 1.08921
0.97390 0.45222 0.22216 73.8172 26.2704 0.33382 0.11880 0.10592 0.11624 0.11624 0.52321 0.40074 1.08633
0.97506 0.43997 0.20934 76.2343 23.8866 0.33540 0.10509 0.10650 0.10284 0.10284 0.49126 0.39906 1.08146
0.97621 0.42741 0.19621 78.8401 21.3080 0.33697 0.09107 0.10708 0.08913 0.08913 0.45427 0.39741 1.07406
0.97737 0.41456 0.18277 81.6599 18.5021 0.33853 0.07670 0.10769 0.07508 0.07508 0.41079 0.39581 1.06349
0.97852 0.40137 0.16898 84.7247 15.4311 0.34006 0.06194 0.10835 0.06063 0.06063 0.35881 0.39425 1.04893
0.97968 0.38783 0.15483 88.0747 12.0506 0.34158 0.04674 0.10907 0.04576 0.04576 0.29552 0.39273 1.02937
0.98084 0.37388 0.14028 91.7606 8.3133 0.34308 0.03108 0.10985 0.03043 0.03043 0.21692 0.39125 1.00351
0.98199 0.35947 0.12530 95.8506 4.1692 0.34456 0.01499 0.11063 0.01467 0.01467 0.11708 0.38980 0.96968
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TABLE VI. Global quantities and parameters associated with a sequence of hairy black holes with horizon at μrH ¼ 0.060889. The
description of columns are like in Table IV.

ΩH=μ μMADM μ2J∞ MBHð%Þ MΨð%Þ μMBH μMΨ μ2JBH μ2JΨ μ2Q q κ=μ J∞=M2
ADM

0.90155 0.92761 0.76171 22.2587 77.7410 0.20647 0.72114 0.04785 0.71386 0.71386 0.93718 0.64054 0.88522
0.90659 0.89423 0.71549 25.5517 74.4479 0.22849 0.66574 0.05965 0.65584 0.65584 0.91663 0.55779 0.89476
0.91276 0.86166 0.67409 28.4042 71.5955 0.24475 0.61691 0.06806 0.60603 0.60603 0.89904 0.51331 0.90792
0.91836 0.83278 0.63880 30.8748 69.1252 0.25712 0.57566 0.07429 0.56451 0.56451 0.88370 0.48560 0.92111
0.92340 0.80636 0.60733 33.1416 66.8588 0.26724 0.53912 0.07929 0.52804 0.52804 0.86944 0.46589 0.93404
0.92845 0.77911 0.57548 35.5181 64.4831 0.27673 0.50239 0.08390 0.49158 0.49158 0.85421 0.44939 0.94806
0.93013 0.76979 0.56471 36.3443 63.6572 0.27977 0.49003 0.08537 0.47935 0.47935 0.84884 0.44443 0.95298
0.93293 0.75394 0.54653 37.7680 62.2342 0.28475 0.46921 0.08774 0.45879 0.45879 0.83947 0.43668 0.96146
0.93573 0.73768 0.52801 39.2588 60.7441 0.28960 0.44810 0.09003 0.43798 0.43798 0.82949 0.42948 0.97030
0.93853 0.72095 0.50911 40.8278 59.1755 0.29435 0.42663 0.09226 0.41686 0.41686 0.81880 0.42278 0.97948
0.94133 0.70372 0.48978 42.4878 57.5159 0.29899 0.40475 0.09441 0.39537 0.39537 0.80724 0.41650 0.98901
0.94414 0.68594 0.46996 44.2529 55.7501 0.30355 0.38241 0.09651 0.37345 0.37345 0.79464 0.41061 0.99884
0.94694 0.66755 0.44961 46.1402 53.8608 0.30801 0.35955 0.09856 0.35105 0.35105 0.78079 0.40506 1.00894
0.95030 0.64464 0.42441 48.5944 51.4011 0.31326 0.33135 0.10096 0.32345 0.32345 0.76212 0.39882 1.02130
0.95198 0.63280 0.41145 49.9114 50.0800 0.31584 0.31690 0.10213 0.30932 0.30932 0.75178 0.39586 1.02752
0.95366 0.62068 0.39825 51.2965 48.6895 0.31839 0.30221 0.10330 0.29495 0.29495 0.74063 0.39299 1.03374
0.95534 0.60828 0.38477 52.7571 47.2225 0.32091 0.28725 0.10444 0.28033 0.28033 0.72856 0.39021 1.03990
0.95702 0.59558 0.37102 54.3017 45.6709 0.32341 0.27201 0.10558 0.26544 0.26544 0.71545 0.38753 1.04595
0.95870 0.58255 0.35696 55.9400 44.0253 0.32588 0.25647 0.10669 0.25027 0.25027 0.70111 0.38492 1.05184
0.96039 0.56918 0.34259 57.6836 42.2757 0.32832 0.24062 0.10779 0.23480 0.23480 0.68537 0.38240 1.05749
0.96207 0.55543 0.32788 59.5459 40.4101 0.33074 0.22445 0.10886 0.21901 0.21901 0.66798 0.37995 1.06278
0.96375 0.54129 0.31281 61.5426 38.4149 0.33313 0.20794 0.10990 0.20290 0.20290 0.64865 0.37758 1.06760
0.96543 0.52673 0.29735 63.6923 36.2741 0.33549 0.19107 0.11091 0.18645 0.18645 0.62702 0.37529 1.07174
0.96711 0.51172 0.28149 66.0166 33.9681 0.33782 0.17382 0.11186 0.16963 0.16963 0.60262 0.37306 1.07496
0.96879 0.49624 0.26519 68.5414 31.4727 0.34013 0.15618 0.11276 0.15243 0.15243 0.57480 0.37090 1.07689
0.96935 0.49096 0.25965 69.4328 30.5937 0.34089 0.15020 0.11304 0.14660 0.14660 0.56463 0.37019 1.07717
0.96991 0.48564 0.25406 70.3509 29.6889 0.34165 0.14418 0.11333 0.14073 0.14073 0.55394 0.36950 1.07723
0.97047 0.48025 0.24841 71.2972 28.7568 0.34241 0.13810 0.11360 0.13481 0.13481 0.54269 0.36880 1.07705
0.97103 0.47481 0.24271 72.2731 27.7957 0.34316 0.13198 0.11387 0.12884 0.12883 0.53082 0.36812 1.07659
0.97159 0.46930 0.23695 73.2801 26.8040 0.34391 0.12579 0.11414 0.12281 0.12281 0.51829 0.36744 1.07583
0.97215 0.46374 0.23113 74.3202 25.7794 0.34465 0.11955 0.11441 0.11672 0.11672 0.50501 0.36678 1.07473
0.97271 0.45812 0.22525 75.3943 24.7200 0.34540 0.11325 0.11467 0.11058 0.11058 0.49091 0.36611 1.07325
0.97327 0.45244 0.21930 76.5050 23.6234 0.34614 0.10688 0.11494 0.10437 0.10437 0.47591 0.36546 1.07135
0.97383 0.44669 0.21329 77.6539 22.4869 0.34687 0.10045 0.11520 0.09809 0.09809 0.45989 0.36481 1.06897
0.97439 0.44088 0.20722 78.8436 21.3078 0.34761 0.09394 0.11547 0.09175 0.09175 0.44275 0.36417 1.06608
0.97495 0.43501 0.20108 80.0758 20.0828 0.34833 0.08736 0.11575 0.08533 0.08533 0.42435 0.36353 1.06260
0.97551 0.42907 0.19486 81.3541 18.8088 0.34906 0.08070 0.11604 0.07883 0.07883 0.40454 0.36291 1.05849
0.97607 0.42305 0.18858 82.6806 17.4822 0.34978 0.07396 0.11633 0.07225 0.07225 0.38312 0.36229 1.05366
0.97663 0.41697 0.18222 84.0589 16.0993 0.35050 0.06713 0.11664 0.06558 0.06558 0.35990 0.36167 1.04803
0.97720 0.41082 0.17578 85.4926 14.6560 0.35122 0.06021 0.11696 0.05882 0.05882 0.33464 0.36106 1.04154
0.97776 0.40458 0.16926 86.9859 13.1483 0.35193 0.05320 0.11729 0.05197 0.05197 0.30706 0.36046 1.03407
0.97832 0.39827 0.16266 88.5432 11.5717 0.35264 0.04609 0.11764 0.04503 0.04503 0.27682 0.35987 1.02552
0.97888 0.39186 0.15598 90.1698 9.9219 0.35334 0.03888 0.11799 0.03799 0.03799 0.24354 0.35928 1.01578
0.97944 0.38537 0.14921 91.8719 8.1945 0.35404 0.03158 0.11836 0.03085 0.03085 0.20678 0.35870 1.00472
0.98000 0.37877 0.14235 93.6555 6.3854 0.35474 0.02419 0.11872 0.02363 0.02363 0.16600 0.35813 0.99218
0.98145 0.36113 0.12408 98.7263 1.2725 0.35653 0.00460 0.11959 0.00449 0.00449 0.03617 0.35667 0.95142
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TABLE VII. Global quantities and parameters associated with a sequence of hairy black holes with horizon at μrH ¼ 0.057648. The
description of columns are like in Table IV.

ΩH=μ μMADM μ2J∞ MBHð%Þ MΨð%Þ μMBH μMΨ μ2JBH μ2JΨ μ2Q q κ=μ J∞=M2
ADM

0.88289 0.98692 0.83265 19.2715 80.7280 0.19019 0.79672 0.04364 0.78901 0.78901 0.94760 0.64591 0.85487
0.88831 0.95134 0.78110 22.7088 77.2908 0.21604 0.73530 0.05785 0.72325 0.72325 0.92590 0.54137 0.86304
0.89372 0.92642 0.74810 24.8664 75.1332 0.23037 0.69605 0.06541 0.68269 0.68269 0.91260 0.50110 0.87166
0.89914 0.90275 0.71795 26.8647 73.1351 0.24252 0.66023 0.07168 0.64627 0.64627 0.90020 0.47300 0.88096
0.90456 0.87915 0.68869 28.8414 71.1583 0.25356 0.62559 0.07725 0.61144 0.61144 0.88780 0.45108 0.89104
0.90997 0.85509 0.65952 30.8603 69.1395 0.26388 0.59121 0.08237 0.57715 0.57715 0.87510 0.43304 0.90199
0.91539 0.83024 0.62995 32.9655 67.0344 0.27369 0.55655 0.08716 0.54279 0.54279 0.86160 0.41771 0.91390
0.92081 0.80434 0.59964 35.1965 64.8036 0.28310 0.52124 0.09167 0.50797 0.50797 0.84710 0.40440 0.92687
0.92622 0.77717 0.56833 37.5945 62.4057 0.29217 0.48500 0.09596 0.47237 0.47237 0.83120 0.39267 0.94095
0.93164 0.74851 0.53575 40.2075 59.7926 0.30096 0.44756 0.10004 0.43570 0.43570 0.81330 0.38220 0.95622
0.93705 0.71815 0.50165 43.0954 56.9048 0.30949 0.40866 0.10395 0.39770 0.39770 0.79280 0.37279 0.97269
0.94247 0.68582 0.46578 46.3358 53.6644 0.31778 0.36804 0.10769 0.35809 0.35809 0.76880 0.36428 0.99029
0.94789 0.65125 0.42784 50.0344 49.9659 0.32585 0.32540 0.11128 0.31657 0.31656 0.73990 0.35653 1.00878
0.95330 0.61407 0.38748 54.3405 45.6600 0.33369 0.28039 0.11471 0.27277 0.27277 0.70400 0.34945 1.02756
0.95872 0.57388 0.34427 59.4744 40.5262 0.34131 0.23257 0.11799 0.22627 0.22627 0.65730 0.34297 1.04535
0.96414 0.53011 0.29767 65.7786 34.2222 0.34870 0.18142 0.12113 0.17654 0.17654 0.59310 0.33704 1.05924
0.96955 0.48205 0.24696 73.8205 26.1805 0.35585 0.12620 0.12410 0.12285 0.12285 0.49750 0.33161 1.06278
0.97497 0.42865 0.19112 84.6222 15.3793 0.36274 0.06592 0.12692 0.06421 0.06421 0.33590 0.32665 1.04017
0.97551 0.42297 0.18521 85.9187 14.0827 0.36341 0.05957 0.12719 0.05802 0.05802 0.31330 0.32618 1.03524
0.97605 0.41721 0.17922 87.2645 12.7370 0.36408 0.05314 0.12746 0.05176 0.05176 0.28880 0.32572 1.02962
0.97660 0.41139 0.17317 88.6627 11.3388 0.36475 0.04665 0.12773 0.04544 0.04544 0.26240 0.32526 1.02322
0.97714 0.40548 0.16704 90.1166 9.8847 0.36541 0.04008 0.12800 0.03905 0.03905 0.23380 0.32480 1.01596
0.97768 0.39951 0.16084 91.6304 8.3711 0.36607 0.03344 0.12826 0.03258 0.03258 0.20260 0.32435 1.00775
0.97822 0.39345 0.15457 93.2080 6.7937 0.36673 0.02673 0.12852 0.02604 0.02604 0.16850 0.32390 0.99846
0.97876 0.38731 0.14821 94.8538 5.1478 0.36738 0.01994 0.12878 0.01943 0.01943 0.13110 0.32346 0.98799
0.97930 0.38109 0.14178 96.5726 3.4286 0.36803 0.01307 0.12904 0.01273 0.01273 0.08980 0.32302 0.97619
0.97985 0.37474 0.13520 98.3856 1.6161 0.36869 0.00606 0.12930 0.00590 0.00590 0.04370 0.32258 0.96281
0.98020 0.37063 0.13096 99.5876 0.4142 0.36910 0.00154 0.12947 0.00150 0.00150 0.01140 0.32231 0.95338

TABLE VIII. Global quantities and parameters associated with a sequence of hairy black holes with horizon at μrH ¼ 0.053651. The
description of columns are like in Table IV.

ΩH=μ μMADM μ2J∞ MBHð%Þ MΨð%Þ μMBH μMΨ μ2JBH μ2JΨ μ2Q q κ=μ J∞=M2
ADM

0.86072 1.03651 0.89289 16.8732 83.1265 0.17489 0.86162 0.04098 0.85191 0.85191 0.95411 0.62906 0.83109
0.86150 1.02755 0.87878 17.7308 82.2690 0.18219 0.84536 0.04518 0.83361 0.83361 0.94859 0.59177 0.83229
0.86228 1.02214 0.87057 18.2294 81.7704 0.18633 0.83581 0.04752 0.82305 0.82305 0.94541 0.57330 0.83327
0.87011 0.98697 0.82044 21.3387 78.6612 0.21061 0.77636 0.06089 0.75954 0.75954 0.92578 0.49086 0.84224
0.87794 0.95828 0.78209 23.8120 76.1879 0.22819 0.73010 0.07020 0.71190 0.71190 0.91025 0.44892 0.85166
0.88577 0.93038 0.74623 26.1956 73.8043 0.24372 0.68666 0.07818 0.66806 0.66805 0.89524 0.41942 0.86209
0.89360 0.90188 0.71072 28.6221 71.3779 0.25814 0.64374 0.08540 0.62532 0.62532 0.87984 0.39655 0.87378
0.90143 0.87205 0.67451 31.1686 68.8316 0.27181 0.60025 0.09210 0.58241 0.58241 0.86346 0.37790 0.88696
0.91708 0.80641 0.59740 36.8987 63.1033 0.29755 0.50887 0.10430 0.49310 0.49310 0.82541 0.34877 0.91866
0.92961 0.74612 0.52888 42.4793 57.5232 0.31695 0.42919 0.11315 0.41573 0.41573 0.78606 0.33071 0.95003
0.94213 0.67661 0.45179 49.5690 50.4171 0.33539 0.34113 0.12134 0.33044 0.33044 0.73142 0.31587 0.98685
0.95309 0.60581 0.37495 57.8986 42.0604 0.35076 0.25481 0.12803 0.24692 0.24692 0.65855 0.30495 1.02162
0.95936 0.55981 0.32594 64.1638 35.8367 0.35920 0.20062 0.13144 0.19450 0.19450 0.59674 0.29943 1.04006
0.96562 0.50880 0.27226 72.2019 27.9330 0.36736 0.14212 0.13435 0.13792 0.13792 0.50655 0.29439 1.05170
0.96718 0.49519 0.25798 74.5892 25.5800 0.36936 0.12667 0.13503 0.12295 0.12295 0.47660 0.29320 1.05207
0.96875 0.48122 0.24332 77.1652 23.0263 0.37134 0.11081 0.13573 0.10759 0.10759 0.44216 0.29204 1.05072
0.97058 0.46445 0.22569 80.4438 19.7474 0.37362 0.09172 0.13662 0.08908 0.08908 0.39468 0.29072 1.04628
0.97162 0.45461 0.21535 82.4684 17.7059 0.37491 0.08049 0.13717 0.07819 0.07819 0.36306 0.28998 1.04200
0.97266 0.44458 0.20480 84.6180 15.5260 0.37619 0.06902 0.13775 0.06705 0.06705 0.32740 0.28926 1.03621

(Table continued)

GUSTAVO GARCÍA et al. PHYS. REV. D 107, 084047 (2023)

084047-24



TABLE VIII. (Continued)

ΩH=μ μMADM μ2J∞ MBHð%Þ MΨð%Þ μMBH μMΨ μ2JBH μ2JΨ μ2Q q κ=μ J∞=M2
ADM

0.97371 0.43432 0.19404 86.9081 13.1940 0.37746 0.05730 0.13837 0.05567 0.05567 0.28689 0.28855 1.02864
0.97475 0.42383 0.18305 89.3570 10.6957 0.37873 0.04533 0.13901 0.04404 0.04404 0.24057 0.28785 1.01899
0.97553 0.41579 0.17465 91.3115 8.7046 0.37966 0.03619 0.13949 0.03516 0.03516 0.20129 0.28733 1.01021
0.97632 0.40758 0.16610 93.3795 6.6060 0.38060 0.02692 0.13996 0.02615 0.02615 0.15743 0.28682 0.99989
0.97710 0.39920 0.15742 95.5735 4.3948 0.38153 0.01754 0.14038 0.01704 0.01704 0.10822 0.28632 0.98782
0.97746 0.39522 0.15331 96.6445 3.3227 0.38196 0.01313 0.14056 0.01275 0.01275 0.08316 0.28609 0.98151
0.97757 0.39407 0.15213 96.9562 3.0116 0.38208 0.01187 0.14061 0.01152 0.01152 0.07574 0.28602 0.97963
0.97767 0.39293 0.15095 97.2706 2.6984 0.38220 0.01060 0.14066 0.01029 0.01029 0.06819 0.28595 0.97770
0.97778 0.39178 0.14976 97.5877 2.3830 0.38232 0.00934 0.14070 0.00906 0.00906 0.06052 0.28589 0.97574
0.97788 0.39062 0.14858 97.9075 2.0656 0.38245 0.00807 0.14074 0.00783 0.00783 0.05272 0.28582 0.97373
0.97799 0.38946 0.14739 98.2297 1.7464 0.38257 0.00680 0.14079 0.00660 0.00660 0.04480 0.28576 0.97168
0.97809 0.38830 0.14619 98.5563 1.4226 0.38269 0.00552 0.14083 0.00536 0.00536 0.03668 0.28569 0.96959
0.97820 0.38713 0.14499 98.8849 1.0982 0.38282 0.00425 0.14087 0.00413 0.00413 0.02846 0.28563 0.96746
0.97830 0.38596 0.14380 99.2155 0.7726 0.38294 0.00298 0.14090 0.00290 0.00289 0.02013 0.28556 0.96529
0.97835 0.38538 0.14320 99.3810 0.6107 0.38300 0.00235 0.14092 0.00228 0.00228 0.01595 0.28553 0.96419
0.97840 0.38479 0.14259 99.5504 0.4424 0.38306 0.00170 0.14094 0.00165 0.00165 0.01159 0.28550 0.96305

TABLE IX. Global quantities and parameters associated with a sequence of hairy black holes with horizon at μrH ¼ 0.048574. The
description of columns are like in Table IV.

ΩH=μ μMADM μ2J∞ MBHð%Þ MΨð%Þ μMBH μMΨ μ2JBH μ2JΨ μ2Q q κ=μ J∞=M2
ADM

0.83330 1.07819 0.94723 14.3146 85.6853 0.15434 0.92385 0.03672 0.91051 0.91051 0.96123 0.61389 0.81482
0.83365 1.07215 0.93753 14.8114 85.1885 0.15880 0.91335 0.03940 0.89814 0.89814 0.95798 0.58745 0.81560
0.83540 1.05970 0.91812 15.8508 84.1491 0.16797 0.89173 0.04479 0.87334 0.87334 0.95122 0.54214 0.81759
0.83991 1.04067 0.88954 17.4979 82.5019 0.18210 0.85857 0.05286 0.83668 0.83668 0.94057 0.48880 0.82137
0.84441 1.02576 0.86791 18.8317 81.1682 0.19317 0.83259 0.05903 0.80889 0.80888 0.93199 0.45626 0.82486
0.84891 1.01229 0.84887 20.0589 79.9410 0.20305 0.80924 0.06442 0.78444 0.78444 0.92411 0.43200 0.82838
0.85342 0.99947 0.83114 21.2382 78.7617 0.21227 0.78720 0.06937 0.76177 0.76177 0.91654 0.41247 0.83202
0.85792 0.98691 0.81412 22.3971 77.6028 0.22104 0.76587 0.07400 0.74012 0.74012 0.90910 0.39608 0.83586
0.86243 0.97440 0.79748 23.5519 76.4481 0.22949 0.74491 0.07840 0.71908 0.71908 0.90169 0.38196 0.83993
0.86843 0.95753 0.77548 25.1039 74.8960 0.24038 0.71715 0.08399 0.69149 0.69149 0.89170 0.36576 0.84580
0.87444 0.94021 0.75336 26.6885 73.3116 0.25093 0.68928 0.08930 0.66405 0.66405 0.88146 0.35182 0.85222
0.88044 0.92225 0.73085 28.3226 71.6775 0.26121 0.66105 0.09440 0.63645 0.63645 0.87084 0.33962 0.85927
0.88645 0.90349 0.70774 30.0227 69.9778 0.27125 0.63224 0.09930 0.60844 0.60844 0.85970 0.32881 0.86703
0.89246 0.88377 0.68386 31.8058 68.1949 0.28109 0.60268 0.10402 0.57984 0.57984 0.84789 0.31914 0.87557
0.89846 0.86296 0.65903 33.6912 66.3101 0.29074 0.57223 0.10859 0.55045 0.55045 0.83524 0.31041 0.88497
0.90447 0.84091 0.63311 35.7010 64.3009 0.30021 0.54072 0.11300 0.52011 0.52011 0.82152 0.30248 0.89531
0.91047 0.81749 0.60592 37.8620 62.1404 0.30952 0.50799 0.11726 0.48866 0.48866 0.80648 0.29524 0.90667
0.91648 0.79254 0.57732 40.2074 59.7955 0.31866 0.47390 0.12139 0.45594 0.45593 0.78974 0.28861 0.91913
0.92148 0.77046 0.55227 42.3316 57.6685 0.32615 0.44431 0.12473 0.42754 0.42754 0.77416 0.28348 0.93037
0.92549 0.75187 0.53136 44.1639 55.8324 0.33206 0.41979 0.12734 0.40402 0.40402 0.76035 0.27962 0.93993
0.92949 0.73240 0.50960 46.1347 53.8553 0.33789 0.39444 0.12990 0.37970 0.37970 0.74509 0.27597 0.95001
0.93350 0.71197 0.48691 48.2675 51.7133 0.34365 0.36818 0.13241 0.35451 0.35451 0.72806 0.27249 0.96058
0.93750 0.69048 0.46324 50.5920 49.3782 0.34933 0.34095 0.13487 0.32837 0.32837 0.70885 0.26919 0.97163
0.94150 0.66783 0.43848 53.1460 46.8158 0.35493 0.31265 0.13727 0.30121 0.30121 0.68694 0.26606 0.98313
0.94551 0.64390 0.41253 55.9783 43.9848 0.36044 0.28322 0.13959 0.27295 0.27295 0.66164 0.26307 0.99500
0.94951 0.61852 0.38528 59.1528 40.8329 0.36587 0.25256 0.14178 0.24351 0.24351 0.63203 0.26024 1.00709
0.95352 0.59156 0.35659 62.7514 37.2895 0.37122 0.22059 0.14379 0.21280 0.21280 0.59677 0.25754 1.01898
0.95602 0.57385 0.33786 65.2614 34.8317 0.37450 0.19988 0.14495 0.19291 0.19291 0.57097 0.25593 1.02596
0.95802 0.55919 0.32238 67.4383 32.7025 0.37711 0.18287 0.14583 0.17655 0.17655 0.54765 0.25468 1.03098
0.96002 0.54408 0.30645 69.7850 30.4025 0.37969 0.16541 0.14669 0.15977 0.15976 0.52134 0.25345 1.03522
0.96202 0.52852 0.29003 72.3226 27.9006 0.38224 0.14746 0.14755 0.14248 0.14248 0.49126 0.25226 1.03830

(Table continued)
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