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Abstract
Numerical solutions for asymptotically flat rotating black holes in the cubic 
Galileon theory are presented. These black holes are endowed with a nontrivial 
scalar field and exhibit a non-Schwarzschild behaviour: faster than 1/r 
convergence to Minkowski spacetime at spatial infinity and hence vanishing 
of the Komar mass. The metrics are compared with the Kerr metric for various 
couplings and angular velocities. Their physical properties are extracted and 
show significant deviations from the Kerr case.
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1. Introduction

Increasingly strong regimes of gravity are tested by modern, highly accurate instruments. 
Over the last five years, the detectors of the LIGO/Virgo collaboration [1], the instrument 
GRAVITY [5] and the event horizon telescope [8] have collected data from objects involved in 
high energy gravitational processes: coalescing compact objects [2, 3], stars and flares orbit-
ing Sgr A* [6, 7], accretion disks and shadows of supermassive black holes [9, 10]. So far, all 
these observations are consistent with the black hole model of general relativity (GR), adding 
to the successes of the latter in weaker gravitational regimes [11, 12].

Yet, many alternative theories of gravitation are being investigated [13–16] and this is 
important for at least two reasons. Firstly, identifying all the modifications that lead to theor-
etical pathologies or observational incompatibilies is a relevant approach to understand better 
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why GR is successful. Secondly, GR actually suffers from several shortcomings or unresolved 
questions: on galactic and cosmological scales, it does not provide satisfactory explanations 
to the issues of dark matter and dark energy [15, 17], while it is expected to break down in 
the high energy or strong curvature regimes in view of its inadequacy to unify with the other 
fundamental interactions [14, 18, 19].

Modified gravity theories aim to provide answers or alternative solutions to such ques-
tions or shortcomings of GR in the ultra-violet and infra-red sectors of gravity. But then, the 
actual applicability of any modified theory of gravity is assessed from its compatibility with 
existing observational constraints and theoretical viability, e.g. well-posedness and stability. 
For example, regarding observational constraints in the dark energy sector, the gravitational 
wave detection GW170817 and its electromagnetic counterpart GRB170817A set uptight 
constraints on the speed of gravitational waves [4] (see also [20] for a critical approach on 
the interpretation of these constraints). Consequently, only restricted families of many modi-
fied theories of gravity turned out to be explicitly compatible with these constraints [21]. 
Regarding the theoretical analysis, the so-called ‘no-hair’ theorems [22, 23] provide another 
kind of argument to appraise the relevance of a given modified theory. Such theorems state 
the equivalence between a modified theory and GR relative to black hole solutions. In other 
terms, these theorems single out conditions under which the black holes of a modified theory 
are as ‘hairless’ as those of GR, i.e. belong to the Kerr–Newman family. A typical example is 
that of Brans–Dicke gravity that has identical black hole solutions to GR (see [24] and more 
recently [25] and references within).

Horndeski theories are the most general scalar-tensor theories leading to second-order field 
equations, which, as shown in [26], coincide with the generalized covariant Galileon in four 
dimensions [27–30]). Within this context, the cubic Galileon theory is of particular interest 
among Horndeski theories [31]. For a start, it is the simplest of Galileons with higher order 
derivatives. The cubic Galileon is also well-known for being related to the Dvali–Gabadadze–
Porrati (DGP) braneworld model [32], from which all (flat) Galileon theories originate  
[27, 30, 33]. More precisely, the DGP model is a 5-dimensional (5D) theory of gravity such 
that all non-gravitational fields are restricted to a 4-dimensional (4D) subspace (the usual 
spacetime), on which gravity is induced by a continuum of massive gravitons [34]. In this 
framework, an effective formulation of gravity on the 4D spacetime generates the scalar term 
corresponding to the cubic Galileon theory in the decoupling limit [35]. The DGP term, along 
with other covariant Galileons, also arises from Kaluza–Klein compactification of higher 
dimensional metric theories of gravity (see for example [36, 37]).

On the observational side, the cubic Galileon is compatible with the observed speed of 
gravitational waves [21, 38–40]. Regarding cosmology, the cubic Galileon enters the family 
of theories featuring ‘kinetic gravity braiding’ [41], which inherit infrared modifications of 
gravity from the DGP model. These provide self-accelerating scenarios whose cosmological 
viability has been investigated in several studies, either assuming convergence of the Galileon 
to a common ‘tracker’ solution [42, 43] or more agnostic scenarios [44–46]. These analyses 
highlighted strong tensions between the dark energy models of the cubic Galileon and obser-
vational data including e.g. the ISW effect. Note though that the standard ΛCDM model may 
be recovered in the cubic Galileon, in which case these conclusions do not apply, in particular 
when the canonical kinetic term is not included.

On the theoretical side, various issues have been tackled within the framework of the cubic 
Galileon theory or larger theories including it: accretion onto a black hole [47, 48], types 
of coupling to matter [49], laboratory tests [50], cosmological dynamics [51, 52], structure 
formation [53], stability of cosmological perturbations [54, 55], well-posedness [56–59]. 
Finally, it was found in [60] (with important precisions given in [61–63]) that shift-symmetric 
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Horndeski theory along with the cubic Galileon is subject to a no-hair theorem in the static 
and spherically symmetric case (see also [64] for an extension to slow rotation and [65] for 
stars). This could have removed the interest for black holes in this theory, but instead it was 
rapidly shown that slightly violating one of the hypotheses of the no-hair of [60], namely the 
stationarity of the scalar field [66], allowed to obtain static and spherically symmetric black 
holes different from GR solutions [67]. This indicated that rotating black holes in the cubic 
Galileon theory might significantly deviate from the Kerr solution, which motivated the work 
reported here.

In fact, several other cases, constructed by breaking one of the hypotheses of the no-hair 
theorem, were found for different sectors of Horndeski theory and beyond (see for example 
[61, 62, 68]). Although these hairy solutions, with non trivial scalar field, are obtained for 
different higher order Horndeski terms, they can be separated in two generic classes: those in 
which spacetime is very close to that of GR, characterized by an additional parity symmetry 
of the action for the scalar (φ ↔ −φ) and often dubbed as stealth solutions; and those with no 
parity symmetry and significant departures from GR metrics. For the former case a rotating 
stealth black hole was recently analytically constructed [69] making use of an analogy with 
geodesic congruences of Kerr spacetime [70]. In the latter class, on the other hand, belong 
the DGP and the Gauss–Bonnet black holes (see for example the recent works [71, 72] and 
references within). In this paper we will concentrate on the case of rotating black holes for the 
DGP Galileon finding significant deviations from the GR Kerr spacetime.

The structure of the paper is as follows. Firstly, the field equations of the cubic Galileon 
theory are introduced in section 2.1 below. Based on these equations, the no-scalar-hair theo-
rem which the cubic Galileon is subject to, and the minimal way to circumvent it, are reviewed 
in section 2.2. This method provided the ansatz used for the scalar field in the rotating case. 
It is described in section 3.1 along with the circular ansatz used for the metric. The rest of the 
numerical setup is presented in sections 3.2–3.5. The numerical solutions are presented and 
analysed in sections 4 and 5.

2. The cubic Galileon model

2.1. Dynamics

The vacuum action of the cubic Galileon involves the Einstein–Hilbert term (with a cosmo-
logical constant Λ) and the usual scalar kinetic term for the scalar field φ along with an addi-
tional nonstandard term:

S [g,φ] =
∫ [

ζ(R − 2Λ)− η(∂φ)2 + γ(∂φ)2�φ
]√

| det g|d4x, (1)

where (∂φ)2 ≡ ∇µφ∇µφ and ζ, η and γ  are coupling constants.
The scalar part of (1) is known to emerge from an effective formulation of the DGP model 

[32]. In the DGP model, the usual spacetime is a timelike hypersurface of a 5D spacetime on 
which a metric alone is defined. But the effective dynamics of gravity on the 4D spacetime 
involves scalar terms including those appearing in (1) [73], which actually become the only 
relevant contributions in some physically consistent decoupling limit [35].

As an additional legacy from the DGP model, the cubic Galileon is subject to the Vainshtein 
mechanism [74, 75], like all Galileon models which were originally designed to possess this 
property [27]. This mechanism is based on nonlinear terms of the scalar Lagrangian that 
screen the non GR degrees of freedom on scales smaller than a certain ‘Vainshtein’ radius 
around a spherical matter source. It has been studied in different contexts such as massive 
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gravity [76, 77] and Galileons [78, 79]. For instance in the cubic Galileon theory, the dimen-
sion of the Solar System is smaller than the Vainshtein radius of the Sun, below which GR 
is recovered. Hence in generic situations, local solar system experiments and PPN methods 
cannot set constraints on the parameters of the theory [80].

For the case of the cosmological galileon however, note that there are some subtleties due 
to kinetic gravity braiding, which is the fact that both scalar and metric equations involve sec-
ond-derivatives of both g and φ in any conformal frame (see for instance cubic Galileon equa-
tions (2) and (4) below). More precisely, the higher order nature of the Galileon operators, and 
in particular the presence of curvature in the scalar field equation, can invoke local constraints 
as explained in the careful analysis of [52]. Yet these are evaded in the framework in which 
the work exposed below is set, notably due to asymptotic flatness (see sections 3.3 and 4.1).

Explicitly, the metric equations in the cubic Galileon theory take the form

Gµν + Λgµν = 8πT(φ)
µν (2)

where

8πT(φ)
µν =

η

ζ

(
∂µφ∂νφ− 1

2
gµν(∂φ)2

)

+
γ

ζ

(
∂(µφ∂ν)(∂φ)

2 −�φ∂µφ∂νφ− 1
2

gµν∂ρφ∂ρ[(∂φ)
2]

) 
(3)

does contain second derivatives of φ.
The scalar field equation actually coincides with the current conservation associated with 

the shift-symmetry φ → φ+ constant3 of action (1):

∇µJµ = 0, (4)

where

Jµ = ∂µφ (γ�φ− η)− γ

2
∂µ (∂φ)

2 , (5)

which does generate second derivatives of the metric in (4).

2.2. No-scalar-hair theorem and hairy solutions

One of the first no-scalar-hair theorems was proven by Hawking in 1972 for stationary black 
holes in Brans–Dicke theory [24]. It was extended to a larger family of scalar-tensor theories 
by Faraoni and Sotiriou in 2012 using asymptotic flatness [25, 81]. The result by Hui and 
Nicolis established in 2013 applies to another large family of scalar-tensor theories (shift-
symmetric covariant Galileons) intersecting the former and including the cubic Galileon [60]. 
But this theorem applies to a case more restricted than stationarity and asymptotic flatness, as 
is reviewed below.

Prior to this, one can see from the field equations (2) and (4) that any solution of vacuum 
GR along with a constant scalar field4 is a solution to the cubic Galileon theory (see [82] 
for general results on the theories featuring this property and their relations with other shift-
symmetric theories).

3 Such symmetry is a remnant of the more general ‘Galilean’ symmetry enjoyed by the action (1) on Minkowski 
space [27]: φ → φ+ constant, ∇φ → ∇φ+ constant vector.
4 This is equivalent to cancel everywhere due to the shift-symmetry of the theory.
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The no-scalar-hair theorem stated in [60] establishes the converse result in the case of an 
asymptotically flat, static, spherically symmetric black hole metric and a scalar field featuring 
the same symmetries and a standard kinetic term (i.e. η �= 0 in (1)): under such hypotheses, 
the solutions to the cubic Galileon theory can only be those of GR with a constant scalar 
field. The proof, and an extension to the case η = 0 (relevant for the work presented here, as 
detailed in section 3.3), are given in appendix A in the restricted case of the cubic Galileon.

Yet the attractiveness of a given modified theory is to feature deviations away from GR at 
least in some circumstances, otherwise there would be no interest in studying its black holes. 
The solutions exhibited in [67] showed that such deviations exist in the cubic Galileon theory 
whenever the staticity of the scalar field is replaced by a linear time-dependence:

φ = qt +Ψ(R), (6)

where q is a constant, t a time coordinate and R a radial coordinate. The structure (6) actually 
arises in a cosmological context from the assumption of a slow cosmological dynamics [83], 
and it has been considered in several contexts [47, 51, 52] due to the following interesting 
properties.

Recall that the scalar field only contributes to the cubic Galileon action through its deriva-
tives (hence the shift-symmetry). As a result, the linear time-dependence of (6) does not bring 
any actual time-dependence into action (1) and the field equations (2) and (4), in which only 
the constant q appears. This explains why Ansatz (6) is harmless in regard of instabilities that 
generically come with ever-growing fields: the perpetual increase with time cannot appear in 
any physical quantity. Moreover, it is thus rigorously possible for the metric to be static and 
spherically symmetric and yet dressed with a scalar field not sharing all these symmetries.

Furthermore, the ansatz (6) does not spoil the self-consistency of the field equations in the 
static and spherically symmetric case; this means that one is left with as many unknown func-
tions as independent ordinary differential equations [67], suited for numerical integration by a 
shooting method. Last but not least, it has been shown for cases where analytical expressions 
are known, [63, 66], that the linear time dependence (6) renders the scalar field regular at the 
event horizon by precisely cancelling out the radial divergence in Ψ(R). The existence of black 
hole solutions different from GR provided a path to hairy rotating solutions, whose numerical 
construction is now presented.

3. Numerical setup

3.1. Ansätze and assumptions

The goal is to construct stationary, rotating (i.e. axisymmetric with a nonzero angular veloc-
ity), asymptotically flat black hole spacetimes. In addition, a simplifying assumption is made: 
the spacetime geometric structure is assumed to be circular, or ‘t,ϕ-orthogonal’ (see [84–89] 
for further details on the statements reported in this section). The accuracy of this hypothesis 
will be evaluated in section 3.5.

Denoting ξ and χ the Killing vectors associated with stationarity and axisymmetry respec-
tively, circularity amounts to requiring that there exists a coordinate system (t, x1, x2,ϕ) such 
that ξ = ∂t, χ = ∂ϕ and the transformation (t,ϕ) �→ (−t,−ϕ) leaves the metric unchanged. 
This is equivalent to complete integrability of the codistribution (dt, dϕ), i.e. the existence of 
a foliation of spacetime by 2-surfaces (called meridional surfaces) everywhere orthogonal to 
ξ and χ. Using Frobenius theorem, this property takes the form

dξ ∧ ξ ∧ χ = dχ ∧ ξ ∧ χ = 0, (7)
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where the vectors are identified with their corresponding 1-form by metric duality.
Since the surfaces of transitivity (i.e. the orbits of the combined actions of ξ and χ) are 

orthogonal to the meridional surfaces, the metric components (tx1), (tx2), (ϕx1) and (ϕx2) 
vanish in coordinate systems having the aforementioned properties. A judicious choice of 
coordinates (x1, x2) within the meridional surfaces allows to cancel gx1x2 as well so that the 
metric reads5

ds2 = −N2dt2 + A2 (dr2 + r2dθ2)+ B2r2 sin2 θ (dϕ− ωdt)2 , (8)

where N, A, B and ω  are only functions of the coordinates r and θ. Such a coordinate system 
is naturally called quasi-isotropic. In the case of spherical symmetry, the four functions only 
depend on r, while ω = 0 and A  =  B (so that the coordinates are merely called isotropic).

In a circular spacetime, Ricci-circularity holds, i.e.

Ric(ξ) ∧ ξ ∧ χ = Ric(χ) ∧ ξ ∧ χ = 0, (9)

where Ric is the Ricci tensor. In stationary, axisymmetric, asymptotically flat spacetimes, the 
converse result is true, i.e. (9) ⇒ (7). Then, within GR, the Einstein equations allow to substi-
tute the Ricci tensor with the energy-momentum tensor T6, so that an asymptotically flat black 
hole is circular if and only if the following holds (generalized Papapetrou theorem):

T(ξ) ∧ ξ ∧ χ = T(χ) ∧ ξ ∧ χ = 0. (10)

This indicates that circularity may be interpreted in terms of the physical dynamics of mat-
ter rather than purely geometric statements. More precisely, the relations (10) indicate that the 
source of the gravitational field has purely rotational motion about the symmetry axis and no 
momentum currents in the meridional planes. Hence assuming circularity is very standard in 
numerical relativity to handle rapidly rotating stars since such objects have negligible convec-
tive meridional flows compared to rotation-induced circulation [90]. For instance, circularity 
allowed to model rotating proto-neutron stars in GR [91]. In the case of a scalar field, circular 
rotating boson stars were also constructed numerically [92]. Finally, circularity is very rel-
evant to describe rotating black holes: the Kerr solution is circular7 and numerical metrics of 
rotating black holes were successfully computed in Einstein–Yang–Mills theory [94, 95] and 
in the dilatonic Einstein–Gauss–Bonnet theory [72, 96] based on circularity.

Regarding the scalar field, the successful ansatz (6) is rehashed, with a mere additional 
angular dependence, in order to connect with the solutions of [67] in the non-rotating limit:

φ = qt +Ψ(r, θ). (11)

3.2. Equations in quasi-isotropic gauge

Injecting the ansätze (8) and (11) into the metric equation (2) yields eight nontrivial equa-
tions rather than ten since the components (r,ϕ) and (θ,ϕ) of the three tensors appearing in 
(2) all separately vanish. These eight metric equations are combined to form four coupled, 
independent equations adding to the scalar equation (4) to solve for the four metric functions 
N, A, B, ω  and the scalar function Ψ.

5 When such a choice is made, x1 and x2 are rather denoted r and θ respectively.
6 Because one always has g(ξ) ∧ ξ ∧ χ = g(χ) ∧ ξ ∧ χ = 0.
7 The transformation from the usual Boyer–Lindquist coordinates to quasi-isotropic coordinates can be established 
explicitly [93].
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Every quantity is then made dimensionless using the free parameters of the theory, which 
are the scalar velocity q, the cosmological constant Λ, the coupling constants ζ, η and γ , and 
the event horizon radial coordinate rH (in quasi-isotropic coordinates, the event horizon is 
always located at a constant radial coordinate):

Λ̄ ≡ Λr2
H, η̄ ≡ −q2r2

H
η

ζ
, γ̄ ≡ q3rH

γ

ζ
, (12)

r̄ ≡ r
rH

, ω̄ ≡ rHω, Ψ̄ ≡ Ψ

qrH
, (13)

and all the functions are manipulated as functions of ̄r .
Eventually, the four metric equations schematically take the form

N2∆3N = SN , (14)

N3∆2[NA] = SA, (15)

N2∆2[NBr̄ sin θ] = SB, (16)

N∆3[ω̄r̄ sin θ] = Sω̄ , (17)

where the right-hand side terms are explicitly given in appendix B and the following notations 
are used:

∆2 = ∂2
r̄r̄ +

1
r̄
∂r̄ +

1
r̄2 ∂

2
θθ, (18)

∆3 = ∂2
r̄r̄ +

2
r̄
∂r̄ +

1
r̄2 ∂

2
θθ +

1
r̄2 tan θ

∂θ, (19)

∆̃3 = ∆3 −
1

r̄2 sin2 θ
. (20)

Once again, recall that the cubic Galileon theory features the shift-symmetry φ → φ+ 
constant, meaning that only the first derivatives of φ are physically meaningful. The numer-
ical approach presented in section 3.4 below concretely makes use of this fact: within the 
numerical code, the scalar field is only manipulated through its first derivatives Ψ̄′ ≡ ∂r̄Ψ̄ and 
Ψ̄θ ≡ ∂θΨ̄. More precisely, Ψ̄′ and Ψ̄θ are first introduced as independent functions, just like 
N, A, B and ω̄ . The fact that these functions actually arise from a common scalar field is then 
implemented through imposing ∂θΨ̄′ = ∂r̄Ψ̄θ (symmetry of second-derivatives) in addition to 
the equations {(14)–(17) and (4)}.

The complete set of equations to solve then is

N2∆3N = SN , (21)

N3∆2[NA] = SA, (22)

N2∆2[NBr̄ sin θ] = SB, (23)

N∆3[ω̄r̄ sin θ] = Sω̄ , (24)

K Van Aelst et alClass. Quantum Grav. 37 (2020) 035007
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∂θΨ̄
′ = ∂r̄Ψ̄θ, (25)

∇µJ̄µ = 0, (26)

where the explicit expression of the scalar equation (26) is also given in appendix B.
Of course, if a circular black hole exists in the cubic Galileon theory, then it satisfies the 

system (21)–(26). But any solution to this system does not necessarily satisfy all the metric 
equations of motion (2) since only four independent combinations of the latter are solved 
instead of eight. Hence each numerical solution to (21)–(26) was reinjected into the whole set 
of metric equation (2) to assess the relevance of the circularity hypothesis a posteriori (see 
section 3.5).

3.3. Boundary conditions

Equations (21)–(26) form a system of first (equation (25)) and second order coupled partial 
differential equations (PDE) involving the six functions N, A, B, ω̄ , Ψ̄′ and Ψ̄θ. It must then be 
provided with boundary conditions suitable for the search for black hole solutions with non-
trivial scalar hair. More precisely, the system is defined on a meridional surface (all of them 
are equivalent due to circularity) between the intersections of the latter with the black hole 
event horizon and spacetime infinity. As mentioned in section 3.2, the event horizon is located 
at r̄ = 1, while spacetime infinity corresponds with the limit r̄ → ∞. Boundary conditions 
must then be prescribed for both limits.

First, in quasi-isotropic coordinates, the function N must vanish on the event horizon (see 
for instance [93] for the case of Kerr). This induces an important alteration of the nature of the 
equations (21)–(24) since all the second-order operators acting on the metric functions thus 
cancel at r̄ = 1. This kind of degeneracy actually reduces the required number of boundary 
conditions.

The other crucial condition at the horizon is the value of the function ω̄ . The weak rigidity 
theorem states the existence of a constant ΩH such that ξ +ΩHχ is (a Killing vector field) 
normal to the horizon [85, 86]. On the horizon, the function ω̄  necessarily equals the constant 
Ω̄H ≡ rHΩH, called the dimensionless angular velocity of the horizon.

Regarding conditions at infinity, the only case considered in this paper is asymptotic flat-
ness. This is not meant to fit with observations of the Universe based on which a small positive 
value is credited to an effective cosmological constant, which is usually modeled by asymp-
totically de Sitter models such as the dark energy scenarios of the Galileons mentioned in the 
introduction. Rather, the prime objective of the present work is to construct the strong-field 
region of rotating black holes in the simplest Galileon with higher-order derivatives. This 
actually prepares for later investigation of their geodesics and the imaging of an emitting 
accretion torus surrounding them, which concerns scales much smaller than a potential cos-
mological horizon. Furthermore, asymptotic flatness is a standard hypothesis made to study 
isolated black holes and establish no-hair theorems [25]. In particular, it leads to construct 
hairy black holes that escape the no-hair theorem of [60] in a minimal way.

Yet, in the cubic Galileon theory, imposing asymptotic flatness in static and spherical sym-
metry is incompatible with Ansatz (6) unless η = Λ = 0. To picture this, it is easier to con-
sider the Schwarzschild-like coordinates (t, R, θ,ϕ) used in [67], with respect to which the 
static and spherically symmetric line element takes the form

ds2 = −h(R)dt2 +
1

f (R)
dR2 + R2 (dθ2 + sin2 θdϕ2) . (27)

K Van Aelst et alClass. Quantum Grav. 37 (2020) 035007
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Using the scalar ansatz (6), all the relevant equations are the following (the (tR) equation8, 
a combination of the (tR) and (RR) equations, and a combination of the (tR), (RR) and (tt) 
equations respectively):

γ(R4h)′fhΨ′2 − γq2R4h′ − 2ηR4h2Ψ′ = 0, (28)

η

2ζ
( fhΨ′2 − q2) +

fh′

R
+ h

(
f − 1

R2 + Λ

)
= 0, (29)

fΨ′2

[
ηR2

√
h
f
− γ

(
R2

√
fhΨ′

)′
]
= 2ζRh

(√
f
h

)′

, (30)

where a prime denotes differentiation with respect to the unique variable R.
As mentioned in section 2.2, one can note that the Schwarzschild-(Anti-)de Sitter metric 

along with Ψ′ = 0 and q  =  0 (i.e. φ = constant) must be a solution to the system (28)–(30) 
since it is a static and spherically symmetric vacuum solution of GR:

h(R) = f (R) = 1 − µ

R
− Λ

3
R2, (31)

where µ appears as an integration constant
According to [67], injecting asymptotic expansions in powers of 1/R for h, f  and Ψ into 

(28)–(30) yields the following asymptotic behaviours if η �= 0:

h(R) = −Λeff

3
R2 + 1 + O

(
1
R

)
, (32)

f (R) = −Λeff

3
R2 + c + O

(
1
R

)
, (33)

h(R)Ψ′(R) =
ηR
3γ

+
c′

R
+ O

(
1

R2

)
, (34)

where c and c′ are some fixed constants and Λeff  is an effective cosmological constant made 
from a combination of the bare cosmological constant Λ and the kinetic coupling η.

Therefore, if Λeff �= 0, spacetime is asymptotically (anti-)de Sitter. Asymptotic flatness 
thus requires Λeff = 0, which is impossible whenever η �= 0 (see the relations (4.10) of [67]).

Then, setting η to 0 in (29) yields

f
(

h′

Rh
+

1
R2

)
=

1
R2 − Λ, (35)

while asymptotic flatness (i.e. vanishing Riemann tensor when R → ∞) requires the follow-
ing asymptotic behaviours:

h′

h
= o

(
1
R

)
, (36)

f −→ 1, (37)

so that Λ must be 0 as well as η.

8 In this context, the (tR) equation implies the scalar equation [67].
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As mentioned in section 2.2, it is shown in appendix A that, for the cubic Galileon, the 
no-hair theorem still holds if η = 0. Therefore, the asymptotically flat, static, spherically sym-
metric hairy solutions constructed in [67] with η = Λ = 0 evade the no-hair theorem in a 
minimal fashion since only the staticity of the scalar field is abandoned.

It is reasonable to think that asymptotic flatness requires vanishing η and Λ even in the 
rotating case, although there is no proof of such a claim. Regardless of the actual answer, η 
and Λ are set to zero in the numerical work exposed in this paper in order to connect with the 
solutions of [67] in the non-rotating limit.

3.4. Numerical treatment

The numerical approach to solve the above problem comprises two steps implemented within 
the library Kadath [97]. First, the system (21)–(26) is discretized within the framework of 
spectral methods. This amounts to project each function N, A, B, ω̄ , Ψ̄′ and Ψ̄θ onto a set of 
basis functions defined as the products of (Legendre or Chebyshev) polynomials Ti with trigo-
nometric functions, e.g. for the function A:

A(r, θ) =
mr∑

i=0

mθ∑
j=0

ÃijTi(r) cos(2jθ), (38)

where mr and mθ are integers defining the resolution of the discretization9. All the information 
about the unknown function A is then encoded into the spectral coefficients Ãij. Moreover, the 
projection of any of its partial derivative is also given in terms of these coefficients. Applying 
this procedure to each unknown function N, A, B, ω̄ , Ψ̄′ and Ψ̄θ in the system (21)–(26) trans-
forms the latter into a nonlinear algebraic system S, whose unknowns are suitable combina-
tions of the spectral coefficients ensuring regularity conditions [97].

Secondly, the discretized system S is solved with a Newton-Raphson algorithm. The vector 
X̃  gathering all the relevant combinations of the spectral coefficients should satisfy S(X̃) = 0. 
Starting with an initial guess X̃(0) and denoting X̃(n) the vector gathering the coefficients at 
step n, X̃(n+1) is built as the solution to S(X̃(n)) + dSX̃(n)(X̃(n+1) − X̃(n)) = 0, which requires 
inverting the Jacobian matrix dSX̃(n).

Under appropriate conditions, such an iterative process converges towards the exact solu-
tion of S. In particular, a good initial guess is an important condition of success. This merely 
means that the closest to the exact solution the process starts, the more chance it has to conv-
erge to the solution (while starting too far away from it induces risks to leave the neighbour-
hood of the solution after a few iterations and eventually diverge). This is the reason why the 
existence of the static and spherically symmetric black hole solutions of [67] is particularly 
useful since reconstructing these solutions numerically (for a fixed choice of the coupling 
constants) provides ideal initial guesses to reach slowly rotating solutions, which in turn serve 
as initial guesses to reach slighlty more rapidly rotating solutions and so on.

Finally, let us mention that, in the rotating cases, an additional condition was implemented 
in order to avoid a conical singularity [87]. It consists in imposing A  =  B on the symmetry axis 
θ = 0,π/210, which guarantees that the metric could be regularly well-defined on an open 
chart containing the axis. For instance, this condition was also imposed in [72, 96] to construct 

9 For class C∞ functions, the convergence of the spectral series towards the original function is exponential in the 
resolution.
10 In the static and spherically symmetric cases, A spontaneously equals to B everywhere (as it should in spherical 
symmetry) through the numerical process without being imposed anywhere.
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rotating black holes in the dilatonic Einstein–Gauss–Bonnet theory, but for rotating bosons 
stars [92], the field equations alone imply A  =  B on the symmetry axis.

3.5. Accuracy of the code

As explained in section 3.2, all the numerical solutions to the system (21)–(26) were reinjected 
into the whole set of metric equation (2) in order to assess the validity of the code. Writing the 
metric equation (2) as Eµν = 0, the error on each equation corresponds to its maximum spec-
tral coefficent (in absolute value). Six out of the eight nontrivial11 metric equations feature a 
fast decrease of the error as the resolution increases, which confirms that these equations are 
properly solved numerically. Figure 1(a) illustrates this fact in the case of equation  Erθ for 
various angular velocities at fixed coupling γ̄ = 1.

On the other hand, the error on the two metric equations Etr and Etθ is independent of the 
resolution, as illustrated on figure 1(b), revealing that there exists an actual violation of non 
numerical origin. The cause of this violation can be identified a bit more precisely. In quasi-

isotropic coordinates, the components (tr) and (tθ) of both the metric and Ricci tensors are 

zero. As a result, the metric equations  Etr = Etθ = 0 reduce to T(φ)
tr = T(φ)

tθ = 0. Actually, 
these last two equations coincide with the two nontrivial circularity conditions provided by 
the generalized Papapetrou theorem (10). The latter can be applied to T(φ) because the metric 
equations Eµν = 0 have an Einstein-like structure. This yields

(
T(φ)(∂t) ∧ ∂t ∧ ∂ϕ

)
trϕ

= T(φ)
t[t (∂t)r (∂ϕ)ϕ] ∝ T(φ)

tr , (39)

(
T(φ)(∂t) ∧ ∂t ∧ ∂ϕ

)
tθϕ

= T(φ)
t[t (∂t)θ (∂ϕ)ϕ] ∝ T(φ)

tθ . (40)

Therefore the errors on Etr and Etθ estimate the validity of the circularity hypothesis. 

More precisely, in the expression (3) of T(φ)
tr  (resp. T(φ)

tθ ), the only nontrivial terms are those 

Figure 1. Errors on the metric equations with respect to the resolution mr = mθ. The 
error is measured in horizon units (r̄ = 1). (a) Validation of equation  Erθ (the error 
decreases with the resolution). (b) Violation of equation Etr (the error is independent of 
the resolution).

11 See section 3.2.
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proportional to ∂tφ∂rφ (resp. ∂tφ∂θφ) and ∂(tφ∂r)(∂φ)
2 (resp. ∂(tφ∂θ)(∂φ)

2) which are 
nonzero only if φ depends on both t and r (resp. t and θ). This means that non circularity is 
caused by combined time and radial, or time and angular, dependences of the scalar field. Yet 
the ansatz (6) used in [67] to derive static and spherically symmetric solutions does feature 
both time and radial dependences. But these solutions were obtained taking advantage of the 
fact that EtR (in the Schwarzschild-like coordinates (27)) implies the scalar equation. Thus, 
solving EtR  =  0 instead of the scalar equation automatically fulfilled the circularity condition 

(39) since EtR ∝ T(φ)
tR ∝ T(φ)

tr  (where the last relation holds because the transformation (51) 

from Schwarzschild-like coordinates to quasi-isotropic coordinates relates only the coordi-
nates R and r in spherical symmetry).

But as soon as one looks for rotating solutions and thus adds an angular dependence to 
all functions, including the scalar field according to the ansatz (11), the equations  are too 
complex to benefit from a similar simplification. Therefore the system (21)–(26) based on the 
circular metric (8) and the ansatz (11) is not exactly self-consistent. Yet, the violation of circu-
larity in the dimensionless setup is less than 10−2, meaning that it is fairly small with respect 
to the scale given by the radial coordinate rH of the event horizon in a dimensional physical 
configuration. In addition, figure  1(b) expectedly confirms that the violation continuously 
goes to zero with the angular velocity (since in this limit the solutions are exactly circular), so 
that it seems reasonable to believe that the solutions presented in the next sections still provide 
precise approximations to rotating black hole solutions of the cubic Galileon theory.

4. Black hole solutions

4.1. Static and spherically symmetric black holes

First, the existing static, spherically symmetric black hole solutions reported in [67] have been 
reconstructed in the quasi-isotropic gauge (instead of the Schwarzschild-like coordinates used 
in [67]) in order to later serve as initial guesses to compute rotating solutions. As mentioned 
in section 2.2, these solutions were obtained in [67] by numerical integration of the ordinary 
differential equations (28)–(30). In addition, the value of h′ was prescribed at the horizon in 
order to obtain the desired asymptotic behaviour (shooting method). In this paper, these solu-
tions are generated with the numerical treatment presented in section 3.4, i.e. as solutions to 
the PDE system (21)–(26). In addition, boundary conditions are prescribed both at infinity and 
at the horizon; in particular, staticity is imposed by setting the dimensionless angular veloc-
ity Ω̄H to zero. The resulting numerical solutions feature spherical symmetry (A  =  B, ω̄ = 0 
everywhere, and no angular dependence) although such symmetry is not imposed anywhere 
in the numerical process.

As explained in section 3.4, the numerical process requires initial guesses. Conveniently, 
the test-field solution given in [67] (relations (4.12)–(4.13)) provides the very first of them. 
This configuration merely comes out from solving the scalar equation (4) on a Schwarzschild 
background metric with the scalar ansatz (6), which physically amounts to neglecting the 
back-reaction of the scalar field onto the metric, i.e. taking the limit γ → 0 (η being already 
set to zero).

Actually, only the expression of Ψ′ is given for this test-field solution:

Ψ′(R) =
±q

(
1 − RH

R

)√ 4R
RH

− 3
, (41)
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where RH is the Schwarzschild radius. As stated earlier, this is sufficient because, due to the 
shift-symmetry of the theory, only the first derivatives of φ are meaningful (and hence only Ψ′ 
in static and spherical symmetry).

One can see from the action (1) that flipping the sign of both γ  and φ of a given solution 
provides another solution to the theory. This fact holds true in the limit γ → 0, which is why 
equation (41) offers two test-field solutions with opposite signs. Moreover, it is thus sufficient 
to seek solutions for positive γ  only.

Once the Schwarzschild metric and the test scalar field (41) are reexpressed in terms of the 
quasi-isotropic coordinates, the numerical process may converge to a solution of the system 
(21)–(26) in which the coupling γ̄  is set to a slightly nonzero value. In turn, such solution 
serves as an initial guess to reach a solution with a slightly greater coupling γ̄  and so on. Note 
that due to the Vainshtein mechanism (see section 2.1) and the absence of kinetic term (see 
section 3.3), no constraint can be inferred on the values of the parameters of the problem either 
from Solar System tests or cosmological arguments. Therefore the values of γ̄  picked for the 
graphs displayed in the present and later sections are only chosen so as to highlight with suf-
ficient clarity how the results depend on γ̄ .

Figure 2. Radial profiles in the static and spherically symmetric case (Ω̄H = 0) for 
values of γ̄  ranging from 0 to 1. When it is not zero, the limit at infinity is represented 
by a black, solid, horizontal asymptote. (a) Metric function N. (b) Metric function A. (c) 
Regular scalar radial derivative Z ≡ NΨ̄′.
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The resulting solutions are displayed in figure  2. Due to spherical symmetry, one has 
B  =  A, ω̄ = 0 and Ψ̄θ = 0 everywhere, so that only the radial profiles of N, A and Ψ̄′ are non 
trivial. Actually, Z ≡ NΨ̄′ is plotted instead of Ψ̄′ because the former is finite on the horizon 
contrary to the latter.

For the function N (figure 2(a)), the boundary values N  =  0 at the horizon and N  =  1 at 
infinity are enforced according to section 3.3. On the contrary, the values of A and Z on the 
horizon are not imposed due to the degeneracy of the equations. Yet, it can be seen from the 
right-hand side (B.6) of equation (22) that this degeneracy spontaneously imposes A2 = Z2 on 
the horizon, which is manifest on figures 2(b) and (c) (and confirmed numerically).

One can also note that the greater the coupling γ̄  is, the faster the funtions N, A and Z conv-
erge towards their respective limits which correspond to a flat spacetime. Then, when travel-
ling from the horizon towards infinity, spacetime looks flat more rapidly for stronger coupling 
values γ̄ . In other terms, the more the scalar field back-reacts on the metric, the more it hides 
the deformations induced by the black hole. This fact is further examined in section 5.1 below 
when discussing the extraction of a mass for these black hole solutions.

4.2. Rotating black holes

The Kerr metric is usually parametrized by two parameters M (the mass) and a (the reduced 
angular momentum). The radial coordinate rH of the event horizon may then be expressed in 
terms of these two parameters:

rH =
M
2

√
1 −

( a
M

)2
. (42)

Once rH is used to make all the quantities dimensionless and all the metric components are 
expressed in terms of r̄ ≡ r/rH, the dimensionless Kerr solution is only parametrized by one 
quantity, which can be chosen to be Ω̄H. Of course, one such quantity might not be enough 
to parametrize the whole set of black hole solutions of the cubic Galileon theory with a scalar 
field structured as (11). Yet, the numerical approach employed here only reaches the solutions 
that continuously connect to Schwarzschild, by increasing γ̄  first and then Ω̄H. This is why, 
once γ̄  is fixed, Ω̄H is also the only quantity that parametrizes the solutions presented here.

Figure 3 displays the radial profiles of all six functions N, A, B, ω̄ , Ψ̄′ and Ψ̄θ at fixed γ̄ = 1 
for various values of Ω̄H. For Ω̄H = 0 and 0.07, the corresponding dimensionless Kerr solu-
tion is plotted for comparison: in the case of N, A and B, the Kerr curve has the same color and 
linestyle as the Galileon curve corresponding to the same parameter Ω̄H, and in the case of ω̄ , 
it is the thick dotted curve having the same value at the horizon with its Galileon analog. As 
for Z and Ψ̄θ, no Kerr analog is displayed since no test-field solutions are known in the rotating 
case (i.e. solutions to the scalar equation (4) on a Kerr background with the scalar ansatz (11)) 
and such solutions could not be obtained numerically.

For the other values of Ω̄H (0.12 and 0.18), the Galileon solutions displayed in figure 3 do 
not admit a Kerr analog. The reason is that the cubic Galileon admits solutions with dimen-
sionless angular velocities greater than the maximum Ω̄H that can be obtained from the Kerr 
metric. More precisely, at fixed mass M, the angular velocity ΩH of the Kerr black hole can-
cels at a/M  =  0 and monotonically increases towards a finite value at a/M  =  1, while the 
radial quasi-isotropic coordinate rH of the event horizon is finite at a/M  =  0 and monotoni-
cally decreases towards 0 at a/M  =  1 according to equation (42). Then, Ω̄H = rHΩH is a posi-
tive function of the dimensionless ratio a/M ∈ [0, 1] cancelling both at 0 and 1:
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Figure 3. Radial profiles at fixed coupling γ̄ = 1 and different Ω̄H. When it is not 
zero, the limit at infinity is represented by a black, solid, horizontal asymptote. (a) 
Metric function N at θ = π/2. (b) Metric function A at θ = π/2. (c) Metric function 
B at θ = π/2. (d) Metric function ω̄  at θ = π/2. (e) Regular scalar radial derivative 
Z ≡ NΨ̄′ at θ = π/2. (f) Scalar angular derivative Ψ̄θ at θ = π/4.
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Ω̄H =
1
4

a
M

1 +
(

1 −
( a

M

)2
)− 1

2
,

 (43)

which is plotted on figure 4. In particular, this function has a maximum value Ω̄H,max � 0.075 
at a/M � 0.8, which actually turns out to be possible to exceed in the cubic Galileon theory. 
This will appear clearly in section 5 when extracting the angular momentum and the surface 
gravity of these black hole solutions.

Going back to figure 3, one first notes that, although the global behaviours are the same, 
there are non negligible gaps near the horizon between the Galileon solution and Kerr for 
any fixed dimensionless angular velocity. Naturally, for both the Galileon and Kerr, increas-
ing Ω̄H tends to slow the convergence towards the asymptotic values (at fixed radial coordi-
nate, it is expected that spacetime looks less flat if the hole is rotating). One last remark to 
make is that, although these solutions feature quite rapid rotation (Ω̄H = 0.07 corresponds to 

Figure 4. Ω̄H with respect to a/M for Kerr black holes.

Figure 5. Angular profile of A at the horizon.
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a/M � 0.65 for Kerr), the angular variations of the various functions are quite moderate for 
both the Galileon and Kerr; this is manifest on figure 5 which displays the angular profile of 
the function A on the horizon.

5. Physical properties

5.1. Mass

The general definition of the Komar mass of an asymptotically flat stationary spacetime, 
equipped with a foliation (Σt)t∈R by spacelike hypersurfaces, is [87, 98]

MKomar ≡ − 1
8π

∫

S
∗dξ, (44)

where ξ is the stationary Killing vector here identified with its metric dual form, ∗ is the Hodge 
star and S ⊂ Σt0 (for some t0 ∈ R) is a closed spacelike 2-surface containing the intersection 
of Σt0 with the support of the energy-momentum tensor. In GR, the Einstein equations guaran-
tee that the Komar mass does not depend on the choice of such 2-surface S .

In practice, one then usually uses a 2-surface S  lying at spatial infinity. In particular, in 
quasi-isotropic coordinates, the Komar mass may be computed from the following integral:

MKomar =
1
2

lim
r→∞

∫ π

0
∂rN r2 sin θdθ. (45)

Therefore, if N has the following asymptotic behaviour:

N = 1 +
N1

r
+ o

(
1
r

)
, (46)

where N1 is a constant, then

MKomar = −N1. (47)

In the cubic Galileon theory, the contribution from the scalar field into equation (2) does 
not allow to guarantee that the expression (44) is independent of the 2-surface S . Yet, as is 
usually done, one may try to extract a mass from the relation (47). This can be done explicitly 
in the static and spherically symmetric case.

To do so, it is simpler to first switch back to the Schwarzschild-like coordinates (27) used 
in section 3.3 to extract the asymptotic behaviours (32)–(34) when η �= 0. Repeating the same 
procedure in the case of asymptotic flatness, i.e. injecting expansions in 1/R into (28)–(30) 
with η = Λ = 0, one finds the following asymptotic behaviours:

h(R)Ψ′(R) =
d
R2 + O

(
1

R5

)
, (48)

h(R) = 1 − d2

q2R4 + O
(

1
R7

)
, (49)

f (R) = 1 − 4d2

q2R4 + O
(

1
R7

)
, (50)

where d is some fixed constant. Note here that the test field approximation (41) gives a 
wrong indication about the asymptotic behavior of Ψ′(R) since it behaves as 1/

√
R although, 
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according to equation (48), it behaves as 1/R2 as soon as the coupling γ  is nonzero, no matter 
how small. Yet this did not prevent the test-field solution from being useful as an initial guess 
in the numerical procedure.

Now, the change of coordinates from the Schwarzschild-like coordinates (t, R, θ,ϕ) to the 
quasi-isotropic coordinates (t, r, θ,ϕ) is merely given by the positive function R(r) defined on 
[rH,+∞) such that

rR′(r) = R(r)
√

f (R(r)). (51)

From this, one can infer the same types of asymptotic behaviours as (48)–(50) for the func-
tions Z, N and A:

Z(r) =
e
r2 + o

(
1
r2

)
, (52)

N(r) = 1 +
e′

r4 + o
(

1
r4

)
, (53)

A(r) = 1 +
e′′

r4 + o
(

1
r4

)
, (54)

where e, e′ and e′′ are some fixed constants.
One concludes that there is no term to the first inverse power of r in the expansion (53) 

of N, meaning that the Komar mass is zero according to the relation (47). This fact may be 
checked numerically by extracting the asymptotic slope of 1  −  N in a log–log graph (figure 
6(a)), which corresponds to the asymptotically dominant power of r; the resulting numerical 
value is perfectly consistent with  −4. The function A  −  1 does have a very similar log–log 
graph, and one may check on figure  6(b) that, for the function Z, the asymptotic slope is 
numerically consistent with  −2.

Such asymptotic behaviours seem to be maintained in the rotating case although the domi-
nant power for N might not be exactly  −4, but still smaller than  −3.5, hence no mass term 
can be extracted either. One is thus led to conclude that the presence of a scalar field with 
structure (11) in the cubic Galileon theory generically hides the mass of an asymptotically flat 
black hole from infinity. Note that this could not be the case whenever asymptotic flatness is 

Figure 6. Asymptotic behaviours in the static and spherically symmetric case. (a) Log–
log graph of 1  −  N. (b) Log–log graph of Z ≡ NΨ̄′.
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abandoned, i.e. nonzero Λ and/or η, since the asymptotic expansions (4.17) of [67] require a 
standard mass term from the first inverse power of r.

5.2. Angular momentum

Similarly to the definition (44), the Komar angular momentum of an asymptotically flat axi-
symmetric spacetime is defined as

JKomar ≡
1

16π

∫

S
∗dχ, (55)

where ξ is the axisymmetric Killing vector.
Using the quasi-isotropic coordinates, the definition (55) reexpresses as

JKomar = −1
8

lim
r→∞

∫ π

0
∂rω r4 sin3 θdθ. (56)

Therefore, if ω  has the following asymptotic behaviour:

ω =
ω1

r3 + o
(

1
r3

)
, (57)

where ω1 is a constant, then

JKomar =
ω1

2
. (58)

Again, one may try to extract a Komar angular momentum from the asymptotic expansion 
of ω  although, in the cubic Galileon theory, such a value would have no reason to be com-
mon to all other 2-surfaces S . Figure 7(a) confirms that ω̄  has the asymptotic behaviour (57) 
(asymptotic slope equal to  −3) so that the Komar angular momentum is nonzero.

Since only dimensionless quantities are processed numerically, one has

ω̄ ≡ rHω ∼ 2J̄Komar

r̄3 , (59)

Figure 7. Angular momentum extracted from the asymptotic behaviour of ω̄ . (a) Log–
log graph of function ω̄ . (b) Angular velocity with respect to angular momentum.

K Van Aelst et alClass. Quantum Grav. 37 (2020) 035007



20

where J̄ is the dimensionless Komar angular momentum:

J̄Komar =
JKomar

r2
H

. (60)

The values of J̄Komar extracted for all the Ω̄H that were reached for γ̄ = 10−2 and 1 are 
marked in figure 7(b). The relation between Ω̄H and J̄Komar can be expressed explicitly in the 
case of the Kerr family, and it is represented by the solid red curve to highlight the deviations 
from GR.

As mentioned in section 4.2, rH tends to zero for the extremal Kerr solutions while JKomar 
tends to the finite value M2. Therefore Ω̄H goes to zero while J̄Komar diverges according to the 
relation (60). This is why the curve corresponding to Kerr in figure 7(b) is defined all over 
R+ and converges to zero at infinity. Since Ω̄H = 0 for J̄Komar = 0 and Ω̄H is positive, it must 
also have a maximum which is reached for J̄Komar � 8 according to figure 7(b). One can see 
that some cubic Galileon solutions exceed this maximum value, which clearly shows why it 
was not possible to provide a Kerr analog for the metric functions in figure 3 for γ̄ = 0.12 
and 0.18.

Yet the existence of a maximum value for Ω̄H in the Kerr case reveals that this quanti ty 
does not provide a bijective parametrization of the families of dimensionless black hole 
solutions. This represents a numerical difficulty: the solutions are gradually constructed by 
increasing the parameter Ω̄H starting from the static and spherically symmetric solution 
(Ω̄H, J̄Komar) = (0, 0) (left part of the curve, i.e. located before the maximum). The algorithm 
no longer converges when the maximum value is reached. From then on, Ω̄H should be low-
ered to explore more and more rapidly rotating solutions (right part of the curve). But numer-
ically, using the ‘maximum’ solution as initial guess to reach a solution with a smaller value 
of Ω̄H will actually yield the less rapidly rotating solution (i.e. going backward on the left part 
of the curve) rather than the more rapidly rotating solution that has the same dimensionless 
angular velocity Ω̄H but located to the right of the maximum.

Finding a way to ‘jump’ over the maximum in order to explore the right part of the curve 
is a nontrivial issue: one must use another quantity, easily handled numerically, which does 
parametrize the black hole solutions in a bijective way at least in a neighborhood of the maxi-
mum, unlike Ω̄H. Attempts using the dimensionless surface gravity (discussed in the following 

Figure 8. Angular velocity with respect to surface gravity.
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section) and other parameters fulfilling this condition were unsuccessful so far. This is why 
the highest points marked on figure 7(b) for γ̄ = 0.12 and 0.18 represent the last solutions that 
could be reached, beyond which the numerical algorithm does not converge anymore, reveal-
ing the proximity of a maximum value.

5.3. Surface gravity

In a circular spacetime, the zeroth law of black hole mechanics holds [85, 86], i.e. the surface 
gravity is homogeneous on the horizons of stationary black holes. To check this for the solu-
tions presented here, the dimensionless quantity κ̄ corresponding to surface gravity κ was 
extracted according to the following formula:

κ̄ ≡ rHκ =
1
A
∂r̄N|1 . (61)

In all solutions, the relative variations of κ̄ on the horizon are smaller than 10−6, confirming 
that the surface gravity is numerically homogeneous on the horizon.

The relation between κ̄ and Ω̄H is represented on figure 8. For each γ̄ , the static and spheri-
cally symmetric case corresponds to the only point such that Ω̄H = 0 but κ̄ �= 0, while the 
origin of the graph, i.e. (Ω̄H, κ̄) = (0, 0) corresponds to extremal cases. The explicit case of 
Kerr is again represented by a solid red curve for comparison with GR.

5.4. Ergoregion

Locating the ergoregions of the rotating solutions provides another evidence of deviations 
from GR. Figure 9(a) displays the ergoregions corresponding to various angular velocities Ω̄H 
at fixed coupling γ̄ = 1 and figure 9(b) compares two of them with Kerr (same color meaning 
same angular velocity). On both figures, the ergoregions are plotted in terms of Cartesian-
like coordinates yet based on the quasi-isotropic coordinates: (x̄, z̄) = (r̄ sin θ, r̄ cos θ). This 
explains the irregularities observed at the poles even in the case of Kerr, although none is 
observed in the familiar Boyer–Lindquist coordinates: the change of coordinates from Boyer–
Lindquist to quasi-isotropic coordinates is not regular at the poles.

Figure 9. Location of the ergoregion. (a) Ergoregions of the cubic Galileon solutions. 
(b) Comparison with Kerr.
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The ergoregions of the cubic Galileon solutions generically have the same shape as Kerr: 
they coincide with the horizon at the poles and get thicker towards the equator. They grow as 
Ω̄H increases, yet they are thinner than Kerr for a given angular velocity.

6. Conclusions

Numerical configurations describing asymptotically flat hairy rotating black holes in the cubic 
Galileon theory have been presented. They are based on a scalar ansatz involving a linear 
time-dependence and a circular approximation of the metric. To realize asymptotic flatness, 
these Galileon solutions correspond to the special case of vanishing bare cosmological con-
stant and kinetic coupling; they are thus dominated by the DGP term (∂φ)2�φ. The remaining 
coupling γ  induces significant deviations from the Kerr metric on different physical quantities 
such as surface gravity and angular momentum. In addition, these asymptotically flat solutions 
feature convergence towards Minkowski faster than Schwarzschild, which can be understood 
as a vanishing Komar mass at infinity.

Extreme angular velocities (and possibly extremal cases) were not reached yet but could 
be handled in future work, along with the search for asymptotically (anti-)de Sitter solutions 
(meaning nonzero Λ and/or η) and the integration of the null and timelike geodesics around 
such black holes. The key to approach the first problem would be to find an initial guess for 
rapid rotation. One possible approach would be to take a Kerr background with a scalar stem-
ming from the geodesic analogy similar to [69]. Investigation on the latter point would allow 
to determine whether closed orbits are possible (and up to what distance to the black hole) 
in spite of the non-Schwarzschild asymptotics. Integration of the null geodesics would simu-
late the astrophysical imaging of an emitting accretion torus surrounding the Galileon black 
holes, to be compared with results obtained for other types of compact objects [99–101]. Such 
investigations now have a clear astrophysical relevance in regards of the observations from 
GRAVITY [6, 7] and the event horizon telescope [9, 10] and we hope to be reporting on these 
issues in the near future.
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Appendix A. No-scalar-hair theorem for the cubic Galileon

A static and spherically symmetric spacetime admits coordinates (t, R, θ,ϕ) with respect to 
which the metric can be written as (27).

If the Galileon field features the same symmetries, it only depends on the radial coordinate 
R, and the (tR) metric equation (i.e. equation (28) in which q is set to 0) reads

φ′
[

fφ′
(

h′

h
+

4
R

)
− 2η

γ

]
= 0. (A.1)

The general no-hair theorem [60, 64] assumes the Galileon Lagrangian to contain a stand-
ard kinetic term, i.e. η �= 0. Yet, for the cubic Galileon, the case η = 0 can be included in the 
theorem, or yields a nontrivial hairy solution if asymptotic flatness is abandoned (see below).
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A.1. Case η �= 0

The metric equation (29) in which q is set to 0 gives

φ′2 = −2ζ
η

[
h′

Rh
+

1
f

(
f − 1

R2 + Λ

)]
. (A.2)

Then, the asymptotic flatness requirements (36) and (37) imply that φ′2 −→ −2ζΛ/η. In 
particular, φ′ is bounded at infinity, so that

fφ′
(

h′

h
+

4
R

)
−→ 0. (A.3)

If the latter term was nonzero at some point, its absolute value would get smaller than e.g. 
η/γ at some other point while remaining strictly positive, which would require φ′ �= 0. This 
would contradict (A.1), in which one could simplify the overall factor φ′ while having no 
chance for fφ′(h′/h + 4/R) = 2η/γ to hold.

Therefore, fφ′(h′/h + 4/R) must vanish everywhere and equation  (A.1) finally implies 
that φ is trivial (up to a meaningless constant shift).

A.2. Case η = 0

A hairy solution would feature nonzero φ′ on some interval I, which can be assumed to either 
extend to infinity, or to be such that φ′ is zero beyond some upper bound. According to (A.1) 
with η = 0, one would have

h =
h1

R4 over I, (A.4)

where h1 is an integration constant (whose sign must be the same as f  on I for the metric to 
be Lorentzian). Yet the expression (A.4) does not meet with the asymptotic behaviour (36) so 
that I cannot extend to infinity. This can also be seen from the metric equation (29) in which 
η is set to 0:

f =

(
1

R2 − Λ

)(
h′

Rh
+

1
R2

)−1

=
ΛR2 − 1

3
over I, (A.5)

which does not meet with the asymptotic behaviour (37) either.
Therefore φ′ should vanish at some point R0 and remain zero up to infinity; whether this 

is possible to realize in a smooth way or not relies on the equation (A.10) which provides the 
expression of φ′ on I. But anyway, beyond R0, h and f  would become Schwarzschild, with no 
chance to match (A.4) and (A.5) at R0 in a smooth way:

h = f = 1 − 4R0

3R
, R � R0, (A.6)

so that only the Schwarzschild behaviour outside the event horizon located at R  =  4R0/3 and 
a trivial Galileon remain meaningful.

A.3. Solutions with η = 0

Abandoning asymptotic flatness allows us to use the expressions (A.4) and (A.5) everywhere 
up to infinity, and thus inject them into equation (30) in which q and η are set to 0. The result-
ing equation takes the form
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[(
R2

√
fhφ′

)3
]′

=
2ζ
γ

G′
Λ, (A.7)

where

G′
Λ =

(
2

R2 − 3Λ
)√

3h3
1

ΛR2 − 1
, (A.8)

which integrates into

GΛ =




√
3h3

1

[
2
√

ΛR2−1
R − 3

√
Λarcosh

(√
ΛR

)]
if Λ > 0, R > 1√

Λ
and hence h1 > 0,

−
√

3|h1|3
[

2
√

1−ΛR2

R + 3
√
Λarcsin

(√
ΛR

)]
if Λ > 0, R < 1√

Λ
and hence h1 < 0,

√
3|h1|3

[
− 2

√
1−ΛR2

R + 3
√
|Λ|arsinh

(√
|Λ|R

)]
if Λ � 0 and hence h1 < 0.

 (A.9)
In any case, one finally has

φ′ =

√
3

h1 (ΛR2 − 1)

(
2γ
ζ

GΛ + α

)1/3

, (A.10)

where α is an integration constant.
If Λ � 0, then t is a spacelike coordinate and R is timelike, so that the expressions (A.4), 

(A.5) and (A.10) describe a time-dependent metric and a homogeneous, time-dependent sca-
lar field. It is also the case if Λ > 0 and R < 1/

√
Λ, so that the time coordinate R is bounded, 

like the interior Schwarzschild solution. Finally, if Λ > 0, the expressions (A.4), (A.5) and 
(A.10) describe the exterior domain of a hairy black hole spacetime with an event horizon 
located at R = 1/

√
Λ. Asymptotically, φ′ converges to zero as ln(R)/R .

Appendix B. Source terms and scalar equation

The explicit expressions of the source terms and the scalar equation  exposed below are 
justified in a Jupyter notebook based on the free software SageMath12. The notebook is 
available at the following url: https://share.cocalc.com/share/6cfa5f27-1564-4bd8-9b0c-
fcb3c7d0f325/2019-09-29-155358/metric_and_scalar_equations_cubic_Galileon.ipynb.

In the explicit expressions, the following notations are used for any functions f , g and h of 
r̄  and θ:

∂f∂g = ∂r̄ f ∂r̄g +
1
r̄2 ∂θf ∂θg, (B.1)

12 www.sagemath.org, https://sagemanifolds.obspm.fr
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H(0)
f [g, h] =

(
∂r̄g

1
r̄ ∂θg

)T (
∂2

r̄r̄ f
1
r̄ ∂

2
r̄θf

1
r̄ ∂

2
r̄θf 1

r̄2 ∂
2
θθf

)(
∂r̄h

1
r̄ ∂θh

)
, (B.2)

H(1)
f [g, h] =

( 1
r̄ ∂θg
−∂r̄g

)T (
∂2

r̄r̄ f
1
r̄ ∂

2
r̄θf

1
r̄ ∂

2
r̄θf 1

r̄2 ∂
2
θθf

)( 1
r̄ ∂θh
−∂r̄h

)
, (B.3)

H(2)
f [g, h] =

(
∂r̄g

1
r̄ ∂θg

)T (
∂2

r̄r̄ f
2
r̄ ∂

2
r̄θf

2
r̄ ∂

2
r̄θf 1

r̄2 ∂
2
θθf

)(
∂r̄h

1
r̄ ∂θh.

)
. (B.4)

Then, the right-hand side terms of equations (21)–(24) read

SN =
N (Br̄ sin θ)2

2
∂ω̄∂ω̄ − N2

B
∂N∂B − NA2 (η̄ + Λ̄N2)

− γ̄

2

(
1 +

N2∂Ψ̄∂Ψ̄

A2

)(
N∆3Ψ̄ + ∂Ψ̄∂N +

N∂Ψ̄∂B
B

)
,

 (B.5)

SA =
N4

A
∂A∂A + 2N3∂A∂N +

3A(NBr̄ sin θ)2

4
∂ω̄∂ω̄

+
η̄N2A

2
(
N2∂Ψ̄∂Ψ̄− A2)− Λ̄A3N4

− γ̄

(
NA∂Ψ̄∂N − N4∂Ψ̄∂Ψ̄ ∂Ψ̄∂A

A2

+
1
A

[
N4H(0)

Ψ̄
[Ψ̄, Ψ̄]− N4∂rΨ̄

r̄3

(
∂θΨ̄

)2
])

,

 

(B.6)

SB = −Br̄ sin θ
[
NA2 (η̄ + 2Λ̄N2)

+
γ̄N2∂Ψ̄∂Ψ̄

A2

(
N∆3Ψ̄ + ∂Ψ̄∂N +

N∂Ψ̄∂B
B

)]
,

 
(B.7)

Sω̄ =
Nω̄

r̄ sin θ
+ r̄ sin θ

(
∂ω̄∂N − 3N

B
∂ω̄∂B

)
 (B.8)

and the scalar equation takes the form
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0 = −η̄N3A2
(

N∆3Ψ̄ + ∂Ψ̄∂N +
N∂Ψ̄∂B

B

)

+ γ̄

{
A2

(
N∆3N +

N
B
∂N∂B − 2∂N∂N

)

+ 2N
(

N∆3Ψ̄ + ∂Ψ̄∂N +
N∂Ψ̄∂B

B

)(
N2∂Ψ̄∂A

A
− N∂Ψ̄∂N

)

− 2
(

N2∆2Ψ̄ +
N2∂Ψ̄∂B

B

)(
N2∆3Ψ̄− N2∂r̄Ψ̄

r̄

)

+
2N2

r̄2 ∂2
θθΨ̄

(
N2∆2Ψ̄− N2∂Ψ̄∂A

A

)

− N3∂Ψ̄∂Ψ̄

(
N
A

[
∆3A − 4

r̄
∂r̄A

]
+

N
B
∆2B +

∂N∂A
A

− 3N
A2 ∂A∂A +

N
AB

∂A∂B
)

+ 2
(
N∂Ψ̄∂N

)2

− N3 H(0)
N [Ψ̄, Ψ̄]

+
N4H(1)

B [Ψ̄, Ψ̄]

B

−
2N4H(2)

Ψ̄
[Ψ̄, A]

A

+ 2

([
N2∂2

r̄r̄Ψ̄
]2

+

[
N2

r̄2 ∂θΨ̄− N2∂r̄θΨ̄

r̄

]2
)

− 2N2∂r̄Ψ̄∂r̄A
A

(
N2∂2

r̄r̄Ψ̄ +
2N2∂r̄Ψ̄

r̄
− N2

r̄2 ∂2
θθΨ̄

)

− N4(∂r̄Ψ̄)2

r̄
∂r̄B
B

+
N2

r̄3 ∂θΨ̄
(
2N∂r̄Ψ̄∂θN − N∂θΨ̄∂r̄N

)}
.

 (B.9)

The function N could be factored out in many places but instead it is explicitly left every-
where it is needed to counterbalance divergences on the horizon. More precisely, it appears 
as a factor in front of all the quantities that involve the radial derivative of Ψ̄, in order to form 
terms that remain finite on the horizon.
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