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Null and timelike equatorial orbits are investigated in a family of hairy black holes in the cubic Galileon
theory. These include rotating generalizations of static black hole metrics supporting a time-dependent
scalar field. Depending on the coupling and rotation, the properties of the geodesics expectedly deviate
from general relativity. In particular, it is found that stable circular geodesics only exist below a critical
coupling, which is related to the existence of an outermost stable circular orbit. Focusing on the strong-field
region, images of an accretion disk are also produced to highlight tendencies that would constrain the
model given further accurate observations of supermassive black holes.
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I. INTRODUCTION

Trajectories of stars and images of accretion disks
orbiting black holes provide some of the main observables
to test strong-field gravity [1,2]. Such observational data
are collected by complex instruments like the interferom-
eter GRAVITY [3] and the Event Horizon Telescope (EHT)
[4], which mainly focus on the supermassive black holes
Sgr A* and M87* [5–8]. The theoretical predictions for
these observables have been worked out within more or less
exotic frameworks: Kerr black holes (e.g., [9]), rotating
black holes dressed with a complex scalar hair [10,11],
boson stars [9,12–14], alternative black holes [15–24],
wormholes [9,25], naked singularities [26], and binary
systems [27,28]. Eventually, such analyses help constrain

the nature of the observed objects [2], but also the theory of
gravity within which they are modeled [29–31].
It must be noted though that unequivocally excluding a

given model is a complex endeavor in most cases. Current
instrumental limitations and extremely large parameter
spaces (describing e.g., the emission flow or sources of
noise) require one to rely on simplifying prescriptions [32]
to realize and interpret observations, such as the EHT
reconstructed image. This leaves too much uncertainty to
draw definitive conclusions today, and extensive studies are
needed to explore significant parts of the parameter spaces
and guess which observations could be decisive in dis-
criminating some given models. But the understanding of
astrophysical black holes gradually progresses by improv-
ing current instruments and analysis tools, and developing
ideas for future enhanced observations.
In this context, the present paper focuses on the

characteristic features and preliminary constraints arising
from the strong-field observables of a family of black hole
spacetimes within the cubic Galileon theory. The (“covar-
iant generalized”) Galileons are scalar-tensor theories
which coincide with Horndeski theories in four dimensions,
meaning that they are the most general scalar-tensor
theories leading to second-order field equations [33–38].
Galileons thus provide a relevant framework to search for
observable deviations from general relativity (GR), as most
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signatures of alternative theories are expected to be well
described by scalar-tensor theories at least in some effective
range. In particular, the cubic Galileon emerges from
effective formulations of higher-dimensional theories,
either in the decoupling limit of braneworld models such
as the popular five-dimensional Dvali-Gabadadze-Porrati
(DGP) model [34,39–42], or from Kaluza-Klein compac-
tification of Lovelock theory [43,44]. Explicitly, its vacuum
action writes

S½g;ϕ�¼
Z

½ζðR−2ΛÞ−ηð∂ϕÞ2þγð∂ϕÞ2□ϕ�
ffiffiffiffiffiffiffiffiffiffiffiffi
jdetgj

p
d4x;

ð1Þ

where ð∂ϕÞ2 ≡∇μϕ∇μϕ and ζ, η, and γ are coupling
constants.
It is the simplest of Galileons with higher-order deriv-

atives, and it is compatible with the observed speed of
gravitational waves [45–48]. As a well-motivated, consis-
tent theory, the cubic Galileon has been investigated in
various contexts, from laboratory tests [49] to cosmology
[50–54]. Besides current observations of supermassive
black holes, further interest in the characteristics of cubic
Galileon black holes comes from the fact that, together
with most shift-symmetric1 Horndeski theories, the cubic
Galileon is subject to a “no-scalar-hair” theorem: In the
asymptotically flat framework, the only static, spherically
symmetric black hole metric and scalar field are the
Schwarzschild metric together with a trivial scalar field
[55–58] (see also [59] for an extension to slow rotation and
[60] for stars). Consequently, modified gravity effects can
only occur in systems breaking one of these hypotheses.
Indeed, one does obtain non-GR metrics coupled to non-
trivial scalar hair when enforcing all hypotheses except the
stationarity of the scalar field. Such a minimal violation of
the hypotheses is possible when the scalar field features a
linear time dependence [61]

ϕ ¼ qtþ Ψ; ð2Þ

where q is a nonzero constant and Ψ is time independent.
The shift symmetry is what makes a linear time depend-

ence compatible with a static and spherically symmetric
metric. Such a configuration was considered in various
contexts such as cosmology, and the linear time depend-
ence was physically interpreted as a first-order approxi-
mation to a slowly evolving scalar field [53,54,62,63].
Besides, using ansatz (2) (withΨ depending not only on the
radial but also the angular coordinate), previous numerical
work [64] produced rotating generalizations of hairy static
and spherically symmetric solutions derived in the cubic
Galileon theory [65]. At the level of the metric, these

rotating black holes significantly deviate from Kerr space-
time, implying possibly observable modified gravity effects
in black hole environments.
Such hairy configurations were constructed as circular

spacetimes, meaning that they were assumed to admit a
quasi-isotropic coordinate system with respect to which the
line element writes

ds2¼−N2dt2þA2ðdr2þr2dθ2ÞþB2r2sin2θðdφ−ωdtÞ2:
ð3Þ

Circular spacetimes represent a large subclass of sta-
tionary and axisymmetric spacetimes, and their quasi-
isotropic coordinates are well suited to study geodesics.
Yet the compatibility of a circular metric (3) with a linear
time dependence (2) is exact only in the nonrotating case,
while errors arise as rotation increases and could become
significant at high rotation. This is why these spacetimes are
only considered at low and moderate rotation such that the
errors on the solutions are negligible [64]. Despite such a
restriction, these configurations allow us to observe non-
perturbative effects of rotation (examples of which are still
not so abundant in modified gravity, although relevant for
astrophysical black holes which are expected to rotate).
The metrics were constructed to be asymptotically flat,

as it is a natural hypothesis of the no-scalar-hair theorem.
Yet this is realized by taking η ¼ Λ ¼ 0 in the cubic
Galileon model (1), leaving the scalar field ruled by the
nonstandard “DGP term” ð∂ϕÞ2□ϕ. This induces a non-
standard asymptotic behavior of the metric which yields a
vanishing Komar mass at infinity. This theoretical fact is
unusual, but astrophysically, it does not forbid the hole to
feature an effective mass on finite distances. More pre-
cisely, we will see that there do exist stable orbits, yet only
up to an OSCO (outermost stable circular orbit). OSCOs
are not so unusual even in GR in the presence of a positive
cosmological constant, and they can emerge on short
enough scales to be astrophysically relevant (for instance,
using the Schwarzschild–de Sitter metric outside of a
galaxy, the OSCO is of the order of the intergalactic
distance [66]). In the cubic Galileon case, studying the
geodesics of the asymptotically flat hairy black holes will
show that the OSCO actually emerges on an even shorter
scale when the remaining parameters of the model are
chosen so as to generate non-negligible metric deviations
in the strong-field region. The asymptotically flat model
itself is then strongly constrained by requiring stability of
all the orbits that would be dominantly ruled by a central
supermassive black hole.
Note however that nonzero couplings η and Λ lead to

Schwarzschild–de Sitter asymptotics in the static case [65],
which generically restore a large OSCO compatible with
observations. Despite different asymptotic properties, mod-
els with nonzero η and Λ, and asymptotically flat solutions,
might present analogous dependences on the DGP coupling

1Shifting the scalar field by a constant (ϕ → ϕþ constant)
preserves action (1).
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and on rotation, and share common observable character-
istics in the strong-field region. This is why images of an
accretion disk orbiting the asymptotically flat black holes
are also presented below, while future work will construct
asymptotically de Sitter solutions to assess such similarities
(and more generally to identify degeneracies of the observ-
ables within the cubic Galileon model).
If some strong-field characteristics of the asymptotically

flat configurations turned out particularly interesting with-
out being preserved for any nonzero η and Λ, one might
deal with the unusual large distance properties of the
asymptotically flat model by relying on convenient mech-
anisms or fields, such as a second, “screened” scalar field χ.
Screened scalar fields are commonly invoked in cosmol-
ogy, in different realizations of massive gravity and hence
in Galileon theories [41] to recover the successful pre-
dictions of GR on short scales, e.g., solar system scales,
while providing new relevant cosmological phenomenol-
ogy in regard to dark energy. In standard screening
mechanisms (Chameleon [67,68], Symmetron [69,70],
and Vainshtein [42,71–73]), the mass of χ or its coupling
to matter effectively decrease in regions of high matter
density. Such processes are realized through nonstandard
kinetic terms and/or appropriate couplings to standard
model matter, such as Dirac spinors, Higgs scalars, or
other fundamental fields [69]. Although the idea has not
been considered elsewhere, these mechanisms might be
adapted to the present asymptotically flat case, e.g., by
introducing analogous interactions that suitably couple χ to
the black hole hair ϕ (rather than to standard matter): χ
would be screened where ϕ adopts its strong-field profile,
i.e., the immediate vicinity of the black hole, while it would
modify the geometry on larger distances, and in particular

the location of the OSCO. Thus, the asymptotically flat
case may provide an effective description of the strong-field
region of more complete models that feature more standard
weak-field properties thanks to a standard kinetic term
for ϕ, a cosmological constant Λ, or alternative fields or
mechanisms.
The plan of the article is as follows. The properties of the

equatorial timelike circular geodesics and photon rings
(location, stability, and deviation from Kerr spacetime)
are studied in the static, spherically symmetric case in
Sec. II A, and the rotating case in Sec. II B. This leads us to
compute the images of an accretion disk orbiting the static,
spherically symmetric black holes in Sec. III C, and the
rotating black holes in Sec. III C. Notations and general
results on equatorial geodesics in quasi-isotropic coordi-
nates are summarized in the Appendix.

II. ORBITS AROUND CUBIC GALILEON
BLACK HOLES

A. Static and spherically symmetric case

To study the geodesics of the cubic Galileon static and
spherically symmetric black holes obtained in [64,65], the
procedure is to first characterize the circular geodesics. As
detailed in the Appendix, regions of positive discriminant
D (A10) are first checked in Fig. 1(a) for different values
of γ̄ ¼ q3rHγ=ζ, where rH is the radial coordinate of
the event horizon.2 FunctionD appears positive everywhere

(a) (b)

FIG. 1. Radial profiles of D and the resulting velocities of circular geodesics in the static, spherically symmetric case (i.e., vanishing
dimensionless angular velocity of the event horizon Ω̄H ¼ rHΩH) for various couplings (γ̄ ¼ 0 corresponding to Schwarzschild
spacetime). The lapse N and its derivative are positive everywhere [see Fig. 2(a) of [64] ], so that D > 0 implies that the denominator
in (A11) is positive. Therefore, Vþ > 0 (prograde orbits) and V− ¼ −Vþ < 0 (retrograde orbits).

2Recall that γ̄ is the only remaining dimensionless coupling
parametrizing deviations because η and Λ are set to 0; the values
of γ̄ considered in Fig. 1(a) are picked in the range leading to non-
negligible metric deviations from GR [64].
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down to the horizon, where it diverges because of division
by the lapse N which cancels at the horizon. Therefore,
circular geodesics a priori exist everywhere for all cou-
plings, but they necessarily become superluminal near the
horizon according to (A11).
This is what Fig. 1(b) confirms: For each coupling γ̄, the

velocity diverges at the horizon so that there exists a photon
ring (marked with a vertical line from 0 to 1), only beyond
which timelike circular geodesics exist. AlthoughD does not
vary much with the coupling in Fig. 1(a), the velocities more
strongly depend on γ̄ because function B in the denominator
of (A11) does vary [see Fig. 2(b) of [64], knowing that
B ¼ A everywhere in spherical symmetry]. More precisely,
at fixed radius, the velocity of the circular geodesic decreases
with increasing coupling. As a consequence, the photon ring
gets closer to the horizon as γ̄ increases.
These results are related to the following facts men-

tioned in the Introduction. The metric functions N and

A ¼ B converge faster to Minkowski at infinity as γ̄
increases [64]. Therefore, at fixed radius away from
the strong-field region, gravitation gets naively
weaker as γ̄ increases, so that the velocity of the circular
geodesic must be smaller. In addition, for any γ̄ ≠ 0,
convergence to Minkowski spacetime is always much
faster than that of Schwarzschild spacetime: N and A ¼ B
converge to 1 as 1=r4 rather than 1=r, yielding a vanishing
Komar mass at infinity [64]. As a result, velocities
given by (A11) converge to zero like r−α=2 with α ¼ 1
in Schwarzschild spacetime and α ¼ 4 in Galileon
spacetimes.
Such asymptotic behaviors are highlighted in Fig. 2. In

all cases, the Lorentz factor displayed in Fig. 2(a) logically
converges to 1. However, according to (A12), the Killing
angular momentum per unit mass L̄ displayed in Fig. 2(b)
behaves like rV ≃ r1−α=2; hence the divergence in
Schwarzschild spacetime and convergence to zero for

(a)

(b) (c)

FIG. 2. Radial profiles of kinematic quantities measured by the zero angular momentum observer (ZAMO) for the timelike circular
geodesics in the static, spherically symmetric case for various couplings. They all diverge at the photon ring (yet asymptotes are only
plotted for the Lorentz factor).
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any γ̄ ≠ 0.3 Finally, Ē ¼ ΓN converges to 1 in all cases in
Fig. 2(c), which will hold true in the rotating case since
function ω will converge to 0 like 1=r3 regardless of
whether γ̄ is zero or not. At the photon ring, all the
kinematic quantities displayed in Fig. 2 naturally diverge.
Figure 3 assesses the stability of circular orbits for various

couplings based on the functions V 00
� given by (A14). As

explained in the Appendix, their sign at a given radial
coordinate r0 is the same as V 00ðr0; 1; Ē�ðr0Þ; L̄�ðr0ÞÞ
respectively. It appears that for any nonzero γ̄, both an
innermost stable circular orbit (ISCO) and OSCO exist. They
respectively correspond to the smallest and greatest r0 such
that V 00

�ðr0Þ ¼ 0. Since V 00
� globally decreases as γ̄ increases,

the ISCO radius increases while the OSCO decreases from
infinity (where it is formally located in the Schwarzschild
case γ̄ ¼ 0). In particular, the photon ring is always unstable
because its location decreases when γ̄ increases [Fig. 1(b)],
so that it remains below the ISCO as in Schwarzschild
spacetime.
The ISCO and OSCO eventually merge for a critical

coupling γ̄c ≃ 2.2 × 10−2, beyond which no stable circular
orbit exists anywhere. Therefore, the mere existence of
stars orbiting black holes such as Sgr A* in a seemingly
stable way requires γ̄ ≪ γ̄c for the present static Galileon
black hole to be viable. The existence of a particularly close
OSCO further constrains the model since e.g., the well-
known star S2 lies beyond 2500M, whereM ≃ 4 × 106 M⊙
is the observed mass of Sgr A*. Although its orbit is
noncircular, it indicates that a stable circular orbit exists
between its apsides, and hence the OSCO must lie beyond.
For instance, this further requires γ̄ ≪ 10−3.

Note though that a perturbation δ away from a circular
orbit at some radius r0 > rOSCO obeys equation

δ̈þ V 00ðr0; 1; Ē�ðr0Þ; L̄�ðr0ÞÞδ ¼ 0; ð4Þ

so that the instability timescale is

τðr0Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−V 00ðr0; 1; Ē�ðr0Þ; L̄�ðr0ÞÞ

q
: ð5Þ

Since V 00 asymptotically goes to zero as r−6, τ diverges and
rapidly becomes larger than the age of the Universe (e.g.,
around 30rOSCO for rH of the order of the Schwarzschild
radius of Sgr A* and for γ̄ ∼ 10−2). Although this does
not render the model viable,4 such an instability is weaker
than in the standard cases featuring an OSCO (in
Schwarzschild–de Sitter spacetime, τ converges to a finite
value fixed by the cosmological constant). This goes along
with the fact that this close OSCO is a singular artifact of
the marginal combination η ¼ Λ ¼ 0, and corroborates the
idea that a much larger stability region would be restored
with any additional Lagrangian terms or mechanism
mentioned in the Introduction. With this in mind, the next
section focuses on the effects of rotation on the orbits.

B. Rotating case

Rotation breaks spherical symmetry so that the “þ” and
“−” quantities are no longer equal or opposite, as shown in
Fig. 4 (in which solid lines correspond to the analog
quantities in Kerr spacetime). Yet all these quantities have
the same behavior at the boundaries as in the static,
spherically symmetric case.
Figure 4(a) shows that Vþ > 0 and V− < 0 still hold

everywhere. However Vþ ¼ −V− no longer does, so that
there exist a prograde photon ring and a distinct retrograde
one for each angular velocity Ω̄H ¼ rHΩH. As in Kerr
spacetime, prograde and retrograde velocities decrease as
Ω̄H increases, so that the prograde (resp. retrograde) ring
radius decreases (resp. increases). The dependence on Ω̄H
yet seems stronger in Kerr spacetime, meaning e.g., that the
prograde ring radius decreases faster than for any nonzero
γ̄. Since the photon ring of the static, spherically symmetric
Galileon spacetime is below that of Schwarzschild space-
time, the relative positions of the Kerr and Galileon
prograde rings are inverted for some Ω̄H (≃0.03 for
γ̄ ¼ 10−2). On the contrary, the Kerr retrograde ring grows
away from its Galileon counterpart.
The fact that the dependence on Ω̄H is qualitatively the

same in Kerr and Galileon spacetimes, but stronger in the
former, also applies to L̄ [Fig. 4(b)], Ē [Figs. 4(c) and 4(d)],

FIG. 3. Radial profile of V 00
�; positivity determines the stability

of the geodesics.

3The numerical solutions contain information at infinity
confirming this fact even for small couplings like γ̄ ¼ 10−3

whose convergence to zero becomes apparent very far from the
horizon.

4This would not allow us to observe today distant bounded
eccentric orbits like S2, but only quasicircular orbits very slowly
drifting away which would have never experienced any strong
radial perturbation.
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and V 00
� [Figs. 4(e) and 4(f)]. Besides, V 00þ (resp. V 00

−)
globally increases (resp. decreases) as Ω̄H increases.
Therefore, both the prograde ISCO and retrograde
OSCO (resp. prograde OSCO and retrograde ISCO) radii
decrease (resp. increase) with rotation. Interestingly, since

the ISCO radius of static, spherically symmetric Galileon
black holes is beyond Schwarzschild’s ISCO, and Kerr’s
retrograde ISCO increases faster with Ω̄H, the relative
positions of the Kerr and Galileon retrograde ISCOs are
inverted for some Ω̄H (≃0.06 for γ̄ ¼ 10−2).

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Kinematic quantities measured by the ZAMO and stability of the timelike circular geodesics for different angular velocities
Ω̄H ¼ rHΩH at fixed coupling γ̄ ¼ 10−2 < γ̄c. For comparison, the profile in Kerr spacetime is plotted as a solid line with the same color
for any fixed Ω̄H.
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Furthermore, sufficiently high Ω̄H makes it possible for
V 00þ to become positive even for γ̄ greater than the critical
coupling γ̄c ≃ 2.2 × 10−2; this is illustrated in Fig. 5(a) for
γ̄ ¼ 1 > γ̄c. Therefore, for each coupling γ̄ > γ̄c, there is a
minimal angular velocity beyond which stable orbits
reappear, yet only prograde ones. On the contrary, as
Ω̄H increases, the Galileon retrograde ISCO and OSCO
eventually merge for a critical angular velocity Ω̄c

H (≃0.09
for γ̄ ¼ 10−2), beyond which no stable retrograde orbit
exists anywhere. Therefore, the fact that stars stably orbit
Sgr A* in both directions5 leads to even tighter constraints
than γ̄ ≪ γ̄c if Sgr A* is modeled as a rotating black hole.

III. IMAGES OF CUBIC GALILEON
BLACK HOLES

A. Principle of ray tracing

In the present section, images of an accretion disk orbiting
the black holes are computed numerically. This is again
motivated by the idea that the present model may capture the
significant characteristics of more complete, better-behaved
models. Computations are performed by the free, open-
source ray-tracing code GYOTO [74], which features an
efficient approach to integrate the geodesic equations from
the knowledge of the 3þ 1 quantities decomposing a
numerical metric [75]. In our case, the shift β and spatial
metric 3g corresponding to the quasi-isotropic metric (3) are

β ¼ −ω∂ϕ; ð6Þ
3g ¼ diagðA2; A2r2; B2r2sin2θÞ: ð7Þ

Images are computed in the following way. An explicit
model of accretion flow is set around the black hole.6

A telescope set in the numerical metric mimics the observing
wavelength (1.3 mm), the distance (16.9 Mpc), field of view
(120 μas), and orientation of the Event Horizon Telescope
with respect to M87* (the black hole being set at the origin
and the disk lying in the equatorial plane θ ¼ 90°, the
colatitude of Earth is θ ¼ 160°, while the vertical axis of
the screen of the EHT is rotated by 110° clockwise from the
projection on the screen of the spin axis of the disk). Each
pixel of its focal screen corresponds to a spatial direction,
which uniquely defines the initial tangent vector of a null
affinely parametrized geodesic. The latter is integrated back-
ward in time until a stopping condition ismet; e.g., the photon
gets too close to the event horizon, or definitely leaves the
strong-field region. Otherwise, every time the geodesic
crosses the accretion disk, the radiative transfer equations
ruling the specific intensity are integrated along the segment
lying within the disk. The cumulated specific intensity is
eventually plotted on the initial pixel. Yet, determining the
nature and properties of a compact object based on the image
of its accretion flow is a very degenerate inverse problem
[19,26,76]. This is for instance evidenced in Ref. [13] in
which the same model of the accretion disk is set around a
boson star and a black hole: The deviations between the
resulting images are very subtle although the natures of
the accreting objects are very different. Furthermore, the
resolution of present and future instruments like the EHT
is limited, making it even harder to distinguish subtle
features.7

Then, the purpose of numerical images is not system-
atically to check whether the image constructed by the EHT
[8] can be reproduced for different accreting compact
objects. This indeed requires costly general relativistic
magnetohydrodynamics (GRMHD) simulations, together
with a model of the EHT itself. Instead, strong efforts are
made to propose fairly simple and yet realistic models

(a) (b)

FIG. 5. Rotation restores prograde stable orbits.

5The spin direction of Sgr A* is unknown.
6Rough estimates confirmed by simple exact models of accre-

tion disks show that the gravitational influence of an accretion disk
is usually completely negligible with respect to the black hole.
Thus, thevacuumblack holemetrics are still valid in the presence of
an accretion disk. See Sec. 6.5 of [1] for quantitative arguments.

7Regarding the particular problem of distinguishing boson
stars from black holes, see [14] for possibly detectable deviations
arising from dynamical effects revealed by 3D general relativistic
magnetohydrodynamics simulations.
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of accretion disks [9,77–79]. In particular, such models are
assumed to be good approximations of stable steady
solutions of the GRMHD equations. Comparing the result-
ing images for different compact objects provides a more
efficient and still relevant method to evaluate how degen-
erate the problem is. The hope is that such an approach
should help isolate the causes of differences between
images, e.g., being able to guess the nature and amplitudes

of the modifications that result from changing the
accretion model or the theory used to describe the whole
system.
As a result, a simple model of the accretion disk, recently

introduced in [9], is used in the sections below. Like
Sgr A*, supermassive black hole M87* features a very low-
luminosity accretion flow, revealing an inefficient radiative
cooling and hence a high temperature. It is consistently

(a) (b)

(c) (d)

FIG. 6. Images at 1.3 mm produced by a thick accretion disk orbiting black holes for various couplings γ̄ and angular velocity Ω̄H
(fixed horizon radius rH ¼ MM87�=2). The field of view equals 120 μas. The linear scale of the specific intensity Iν is provided in
Systeme International (SI) units (Iν ¼ 4 × 107 SI corresponds to a brightness temperature ∼25 × 109 K).

VAN AELST, GOURGOULHON, and VINCENT PHYS. REV. D 104, 124034 (2021)

124034-8



modeled as a low accretion rate, geometrically thick,
optically thin disk8 [80]. Besides these properties, only
the thermal synchrotron emission is computed, following a
method exposed in [81]. In the end, the complete model is
described by very few input parameters: the opening angle
and inner edge of the disk (which is set at the ISCO in our
case), the magnetization parameter (which determines the
ambient magnetic field strength), and the electron density
and temperature at the inner edge (which determine the
density and temperature profiles).

B. Static and spherically symmetric case

To connect with Sec. II, the black holes in Fig. 6 all have
the same radius, namely the Schwarzschild radius of M87*
(in quasi-isotropic coordinates, i.e., rH ¼ MM87�=2 where
MM87� ≃ 6.5 × 109 M⊙). It is actually more natural to
manipulate the horizon radius than any notion of mass:
Because of the non-Schwarzschild asymptotics of the
Galileon black holes recalled in Sec. II A, there is no
relevant mass parameter that can be extracted from star
trajectories (through Kepler’s law) or surface integrals
(such as the Komar or Arnowitt-Deser-Misner masses) in
the weak-field region, since its value could not be compared
in any meaningful way to that of a Schwarzschild black
hole (recall for instance that these Galileon black holes
feature a vanishing Komar mass at spatial infinity, and yet
admit stable orbits). It is thus equally legitimate to make
comparisons based on parameters specific to the strong-
field region such as the horizon, light ring and ISCO radii,
and the characteristics of the images described below.
In the nonrotating case, Figs. 6(a) and 6(b) compare the

Schwarzschild limit γ̄ ¼ 0 to a static and spherically
symmetric Galileon black hole below the critical coupling.
In both cases, the ISCO radius is read from Fig. 3. The
asymmetries within each image come from the configura-
tion of the EHT with respect to the accretion disk. More
precisely, the 110° clockwise rotation of the vertical axis of
the screen from the projected spin axis of the disk explains
the position on the images of the brighter spot that results
from the relativistic beaming and blueshift affecting the
part of the disk rotating toward the screen. Besides, the
inside luminous ring corresponds to the secondary- and
higher-order images, which asymptotically accumulate in
the direction of the light ring. Rather than being centered
within the primary image of the disk, this ring appears
shifted toward the top of the spin axis because of the
inclination angle θ ¼ 160° of the EHT observer (the disk is
almost seen from below).
This ring gets smaller with respect to the primary image

as γ̄ increases because the ISCO radius increases (Fig. 3)
while the light ring decreases [Fig. 1(b)]. Explicitly, in the

Schwarzschild case, the internal diameter of the primary
image is D ≃ 50 μas while the diameter of the secondary
ring is d ≃ 42 μas, which is compatible with the EHT
image [8]. In the Galileon case, D ≃ 46 μas while
d ≃ 34 μas. Besides, the image is globally brighter as γ̄
increases. This is consistent with the fact that asymptotic
convergence to Minkowski is faster as γ̄ increases (as
recalled in Sec. II A). In other terms, the strong-field region
shrinks as γ̄ increases, so that most light rays undergo a
weaker gravitational redshift. Therefore, if one considered a
Galileon black hole with e.g., a 1.12 times greater radius, so
as to fit the internal and secondary diameters close enough
to the Schwarzschild values (the deviation of their ratio
being possibly undetectable by the resolution of the EHT9),
the corresponding image would get even brighter than
Fig. 6(b). One could accordingly reduce the density
parameter to avoid tension with the observed luminosity.
Yet the fact would remain that the ISCO radius would
be even greater than it already is with respect to its
Schwarzschild analog when the horizon radii are the same
[Fig. 3]. It is hardly conceivable that the ISCO radius of
M87* could be estimated by other means than EHT-type
observations, so that no incompatibility related to this
parameter could be exhibited. On the other hand, if images
of Sgr A* were obtained, tensions about the ISCO location
should arise based on the high precision astrometric
observations made by the instrument GRAVITY which
detected “flares” [6] close to Schwarzschild ISCO, know-
ing that such bright spots are expected to materialize near
the inner edge of the accretion disk of Sgr A*.

C. Rotating case

Figures 6(c) and 6(d) compare a Kerr black hole to a
rotating Galileon black hole sharing the same angular
velocity. In both cases, the inner edge of the disk is set
at the prograde ISCO, which is read from Fig. 4(e).
Besides, the inside ring intersects the primary image,
meaning that the ISCO is close enough to the light ring
to allow photons to cross the disk at least a second time.
This is consistent with the fact that the prograde ISCO
decreases [Fig. 4(e)] faster than the prograde light ring
[Fig. 4(a)] as Ω̄H increases. As in the static case, the image
is globally brighter as γ̄ increases. But at a fixed γ̄, the
images get darker as Ω̄H increases because the strong-field
region expectedly expands with rotation.
As illustrated by Fig. 7, such tendencies leave room for a

black hole with moderately low rotation, and radius greater

8An accretion disk is geometrically (resp. optically) thin when
the opening angle (resp. optical depth) is smaller than 1. It is
geometrically (resp. optically) thick otherwise.

9Actually, in order to reproduce even more closely the
diameters, and hence their ratio, one could fine-tune the dimen-
sion of the internal diameter of the primary image by considering
a more realistic scenario involving accreting matter on non-
circular trajectories below the ISCO. In this sense, the secondary
ring is more reliable as an observable of the gravitational field as
it weakly depends on the boundaries and physical properties of
the accretion process.
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than MM87�=2, to closely mimic Schwarzschild Fig. 6(a) in
terms of dimensions and brightness. Yet regarding the
ISCO radius, the fit is expectedly not so good with respect
to Schwarzschild (9% and 50% deviation on the prograde
and retrograde ISCO respectively). Of course, clearing
away degenerate tendencies and exhibiting significant
incompatibilities would only be possible if images and
more precise spin measurements of Sgr A* were available.

IV. CONCLUSION

Investigating the geodesics of asymptotically flat cubic
Galileon black holes exhibits nonviable characteristics
when the coupling γ̄ is in a range leading to non-negligible
metric deviations from GR. As such, the model would be
constrained to a negligible coupling γ̄ for the OSCO to lie
far enough to be compatible with distant stars observed
around Sgr A*. Yet it is thought that constraints only based
on the OSCO might be dismissed by restoring terms in
Lagrangian (1), or invoking other appropriate fields, which
would preserve the tendencies and strong-field character-
istics of the asymptotically flat model. This is why images
of accretion disks have also been computed, as these allow
us to probe the close environment of a supermassive black
hole. The dependence of this observable on coupling
and rotation may lead to deviations from GR in terms of
global brightness and relative dimensions of the luminous
structures. Yet these may often be compensated by adjust-
ing density and the horizon radius.

Proper constraints will hopefully arise from future
images and precise measurements of the spin and ISCO
location of Sgr A*. The latter being one of the main targets
of the EHT, knowledge about this system will keep
increasing in the coming years. Besides probing the inner
accretion flow [82,83], the observations from the EHTwill
contribute to evaluating its spin (while former estimations
are based e.g., on quasiperiodic oscillations of the radio
emission [84]). Indeed, EHT data were already used to
establish bounds on the spin of M87* [85,86], and this will
improve with further observations from the EHT [31].
Information on the spin may also be extracted from
instruments of the Very Large Telescope such as the
interferometer GRAVITY which can monitor faint stars
very close to Sgr A* [87]. From a broader point of view,
GRAVITYalso contributes to a better understanding of the
astrophysics of massive black holes [88], and such general
knowledge will also improve in future decades thanks to the
space-based gravitational-wave observatory LISA [89,90],
which will extract precious and precise information from
stellar-mass compact objects spiraling around massive
black holes. On an even longer term, Ref. [91] proposes
a space-based very long baseline interferometry experiment
which would characterize the ring-shaped structures in
images of black hole accretion flows with extremely high
precision, measuring the diameter size to 0.04% accuracy,
while the EHT is limited to approximately 10% accuracy.
This highlights again the fact that constraining theories
of gravity with massive black holes is a long-term
enterprise, as determining the parameters of black holes
and their accretion flow is a degenerate problem con-
ditioned by instrumental accuracy and modeling limita-
tions [92–94]. It is in particular delicate to predict when
and which opportune combination of observations will
provide inflexible constraints or could at least strongly
disfavor a model.
The models considered in the present paper are not free of

simplifications either, both in the metric and the model of the
disk, which could be addressed in later work. As explained
in the Introduction, the circular metric (3) is only exact in the
static case. Reproducing the rotating solutions in a non-
circular framework would allow us to reach accurate rapidly
rotating solutions (possibly up to an extremal case). Such a
general framework would also be used to construct the
asymptotically de Sitter configurations corresponding to
nonzero η and Λ, and perform similar study and compar-
isons. Furthermore, in order to make precise quantitative
comparisons between actual images and numerical predic-
tions in a consistent way, more realistic models of a disk such
as ion tori could be considered. The latter are also geomet-
rically thick and optically thin structures, yet featuring more
complex density and temperature profiles derived from first
principles, as well as isotropic [77] or toroidal [79] magnetic
fields, hence allowing us to explore other parts of the
parameter space describing accretion disks.

FIG. 7. Caseðγ̄; Ω̄HÞ ¼ ð10−2; 0.03Þ suchthatrH¼1.2MM87�=2.
To compare with Fig. 6(a).

VAN AELST, GOURGOULHON, and VINCENT PHYS. REV. D 104, 124034 (2021)

124034-10



ACKNOWLEDGMENTS

K. V. and E. G. acknowledge support from the CNRS
program 80PRIME-TNENGRAV.

APPENDIX: EQUATORIAL GEODESICS IN
QUASI-ISOTROPIC COORDINATES

The present Appendix recalls useful results on particles
freely moving in the equatorial plane of a circular
spacetime described in terms of the quasi-isotropic coor-
dinates (3) (see [95–97] and Secs. 4.6 and 4.7 of [98]
for closely related discussions). Based on the unique
parametrization

C∶ λ ↦ ðxμðλÞÞ ¼ ðtðλÞ; rðλÞ; π=2;ϕðλÞÞ ðA1Þ

such that the 4-momentum of the particle is pμ ¼ _xμ

(where a dot denotes differentiation with respect to the
parameter λ), the geodesic equation

∇pp ¼ 0 ðA2Þ

implies that

E ¼ −pt is conserved along C; ðA3Þ

L ¼ pϕ is conserved along C; ðA4Þ

θ ¼ π=2 is conserved along C; ðA5Þ

_r2

2
þ Vðr;m; E; LÞ ¼ 0; ðA6Þ

where m ¼
ffiffiffiffiffiffiffiffiffi
−p2

p
defines the mass of the particle, and the

effective potential V is defined as

Vðr;m;E;LÞ¼ 1

2A2

�
m2−

�
E−ωL

N

�
2

þ
�
L
Br

�
2
�
: ðA7Þ

Equation (A6) is merely an explicit version of the
mass conservation equation (m is conserved along C)
taking advantage of the three other conservation
equations (A3)–(A5). Thus, these four conservation equa-
tions are four necessary conditions for a curve C to describe
an equatorial trajectory of a free particle. For noncircular
orbits (i.e., _r ≠ 0 almost everywhere), they are sufficient
and have a unique solution provided that the initial sign of _r
is fixed and the initial coordinates ðt0; r0; π=2;ϕ0Þ, the
Killing energy E, the Killing angular momentum L, and the
mass m satisfy Vðr0; m; E; LÞ < 0 and E − ωðr0ÞL > 0 (to
guarantee that the trajectory is initially causal, i.e., future
oriented). For a circular geodesic at radial coordinate r0,

one has _r ¼ 0 so that Vðr0; m; E; LÞ ¼ 0. Yet, as detailed
in [97], the additional condition

V 0ðr0; m; E; LÞ ¼ 0 ðA8Þ

is required besides Eqs. (A3)–(A5) to realize a geodesic
instead of an arbitrary (possibly accelerated) circular orbit.
Rather than E and L, this constraint is usually formulated in
terms of the spatial velocity V measured by the ZAMO10 as

�
B0

B
þ 1

r

�
V2 −

Brω0

N
V −

N0

N
¼ 0: ðA9Þ

Roots exist if and only if the discriminant

D ¼
�
Brω0

N

�
2

þ 4N0

N

�
B0

B
þ 1

r

�
ðA10Þ

is non-negative, in which case one has

V�ðrÞ ¼
Brω0
N � ffiffiffiffi

D
p

2ðB0
B þ 1

rÞ
: ðA11Þ

A timelike circular geodesic (resp. photon ring) exists at
r when V� are defined at r and at least one of them belongs
to ð−1; 1Þ (resp. f−1; 1g) since the ZAMO necessarily
measures a subluminal (resp. luminal) velocity. The cor-
responding Killing energy and angular momentum of the
geodesic are

L� ¼ EBrV�; ðA12Þ

E� ¼ EðN þ BrωV�Þ; ðA13Þ

where E is the energy measured by the ZAMO: For a
massive particle, E ¼ Γm where Γ is the Lorentz factor of
the particle with respect to the ZAMO, while for a massless
particle, E ¼ hν where ν is the frequency measured by the
ZAMO.
Finally, the radial equation (A6) expectedly provides

stability criteria for circular geodesics based on convexity:
For any perturbation to be bounded in some neighborhood
of a geodesic at r, V 00ðr;m; E; LÞ must be positive. Since
the values of E and L for a circular geodesic at r are
necessarily given by relations (A12) and (A13), one only
has to study the sign of the two functions

V 00
�∶ r ↦ V 00ðr;m; E�ðrÞ; L�ðrÞÞ ðA14Þ

on the set on which the discriminant D is non-negative.
Actually, the expressions V 00

�ðrÞ are homogeneous with

10The ZAMOs are characterized by a 4-velocity collinear
to ∇t.
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respect to E, so that their sign does not depend on Γ�m in
the massive case or on hν in the massless case. Therefore,
the stability of the causal circular geodesics only depends
on the sign of the two functions (A14) and corresponds to
massive particles where V�ðrÞ ∈ ð−1; 1Þ and massless

ones where V�ðrÞ ¼ �1, regardless of whether the expres-
sions used for E� and L� apply to a massive or a massless
particle. These are therefore the two functions that are
plotted in Sec. II to study the stability of circular geodesics
in the cubic Galileon spacetimes.
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