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Abstract
Millimeter very long baseline interferometry will soon produce accurate
images of the closest surroundings of the supermassive compact object at the
center of the Galaxy, SgrA*. These images may reveal the existence of a
central faint region, the so-called shadow, which is often interpreted as the
observable consequence of the event horizon of a black hole. In this paper, we
compute images of an accretion torus around SgrA* assuming this compact
object is a boson star, i.e. an alternative to black holes within general relativity,
with no event horizon and no hard surface. We show that very relativistic
rotating boson stars produce images extremely similar to Kerr black holes,
showing in particular shadow-like and photon-ring-like structures. This result
highlights the extreme difficulty of unambiguously telling the existence of an
event horizon from strong-field images.

Keywords: black holes, accretion disks, relativistic processes

1. Introduction

Kerr black holes are characterized by the existence of an event horizon, a surface that
separates the innermost region of spacetime from which no photons can reach a distant
observer. The image of the vicinity of a Kerr black hole surrounded by an optically thin
accretion flow is characterized by two specific features. The central part of the image is dark
because the black hole has by definition no emitting surface and its event horizon captures
photons traveling in the most central parts of the spacetime. This dark central area is known as
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the black hole shadow [1] 4. This shadow is surrounded by a bright ring, the so-called photon
ring, made of photons winding for one or many orbits in the very strong-field region
extremely close to the black hole’s event horizon.

The shape and angular size of the photon ring (or, equivalently, that of the shadow)
contains very important information on the spacetime geometry because it depends on the
properties of the compact object. For a Kerr black hole, the shadow slightly changes with the
observer’s inclination angle and with the black hole spin parameter[2]. Many articles have
investigated whether alternative compact objects exhibit differences with respect to Kerr
predictions[3–9].

These two specific features of the Kerr black hole, the shadow and the photon ring, have
attracted considerable attention in the last few years because of the development of millimeter
very long baseline interferometry (VLBI). In particular, the Event Horizon Telescope(EHT,
[10]), which will become fully operational around 2020, will reach an angular resolution of

m»20 as. This is less than the angular size of the shadow of the central black hole in our
Galaxy, SgrA*, which is m»50 as, varying only slightly with the black hole spin. We note
that the first EHT data were able to constrain the intrinsic angular size of the emitting region
close to SgrA* to only m37 as[11]. The shadow of the central black hole of the Galaxy M87
has an angular size of roughly half the size of SgrA* and is also a target of the EHT. As a
consequence, very near-future observations might allow constraining the Kerr metric para-
meters and in particular the black hole spin from observing the size of the shadow of SgrA*

and M87. It might even be possible to constrain the actual theory of gravity in case the
observed shadow cannot be fitted by using the Kerr metric.

The capability of VLBI to demonstrate the existence of a shadow at SgrA* was first
advocated by Falcke et al [1], who put forward the fact that detecting a shadow would be a
proof of the existence of an event horizon. Since then many articles have investigated sha-
dows and photon rings in the perspective of the EHT (see the references given above). These
works generally follow one of three ways. They consider the observable predictions of strong-
field images:

• either of a specific alternative theory of gravity;
• or of some specific alternative compact object within general relativity;
• or of some parameterization of the non-Kerrness of spacetime.

The last way will probably be the most efficient when analyzing an important set of data
which is at stake. However the two first ones are very important as well in order to determine
how specific to the Kerr metric the EHT observables are and in particular the existence and
angular size of the black hole shadow and photon ring.

This paper aims at developing the second way put forward above. We are interested in
determining the observable predictions of strong-field images of accretion flows around boson
stars[12–14]. These are alternative compact objects within the classical theory of general
relativity. Boson stars are particularly interesting as far as the future EHT data are concerned
because these objects have no event horizon and no emitting hard surface. They are thus
perfect testbeds for examining whether shadows are indeed a probe of the existence of an
event horizon and for determining the potential changes of a strong-field image caused by the
absence of such an event horizon, but still without any emitting hard surface (which is an
important difference with respect to another well-studied alternative to black holes, the

4 The term silhouette is often used in place of shadow. We keep here the original word, which describes properly the
central fuzzy dark region of strong-field images.
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gravastar [15]). This paper focuses on the particular case of the accretion flow surrounding
SgrA* as we have been investigating this environment in a recent work[16].

This work is one step in a series of papers aimed at examining the physical and astro-
physical properties of boson stars[17, 18].

Section 2 presents boson stars and the accretion structure we consider. Section 3 gives
our main results consisting of images and spectra of accretion tori surrounding boson stars.
Section 4 provides conclusions.

2. Boson stars and accretion tori at SgrA*

2.1. Boson stars

Boson stars are localized stable bundles of energy in the form of an assembly of spin-0
bosons. The idea of a soliton-like distribution of energy kept together by their own grav-
itational field dates back to the mid-1950s with the so-called geons (a particle-like solution of
the coupled field equations of general relativity and electromagnetism) developed by
Wheeler[19]. What is now called a boson star was developed by [12–14] that considered the
Einstein–Klein–Gordon set of equations describing the gravitational field created by an
assembly of spin-0 bosons. Such boson stars are macroscopic quantum objects subject to the
Heisenberg uncertainty principle. It is this principle that is at the basis of the fact that boson
stars may not undergo complete gravitational collapse to form a black hole. A lot of work has
been devoted to these objects and to their stability and we redirect readers to reviews con-
taining the relevant references[20–22].

As of today, the only fundamental spin-0 boson is the Higgs boson detected recently by
the Large Hadron Collider[23, 24]. Should boson stars be made of Higgs bosons, we would
have to assume that the physical conditions inside these objects make it possible for the Higgs
decay processes and their reverse to reach an equilibrium, in much the same way as for the β
decay in neutron stars.

A boson star is described by the Lagrangian

( )= + FL L L 1gBS

where Lg is the Lagrangian of the gravitation field and LΦ is the Lagrangian of a massive
complex scalar field. Boson stars are objects described in the framework of classical general
relativity with minimal coupling of the scalar field. Accordingly

( )
p

= =L L
G

R
1

16
2g EH

is the standard Einstein–Hilbert Lagrangian, R being the Ricci scalar. The Lagrangian of the
scalar field reads
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where Φ is the complex scalar field. Boson stars are constructed by demanding it takes the
form

( ) ( ( )) ( )f q w jF = ´ -r i t k, exp 4

where f being its modulus, ω its frequency and the integer k its azimuthal number.
Throughout this paper, unless otherwise stated, we use quasi-isotropic coordinates
( )q jt r, , , . Note that although the scalar field is time-dependent, the spacetime metric of
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boson stars is stationary. This is allowed by the simple harmonic time dependence of the
scalar field and by the fact that its energy-momentum tensor only depends on the modulus
of Φ.

The parameter m is the mass of one individual boson which should not be confused with
the total mass of the boson star. In this framework, a boson-star spacetime is fully described
by two parameters, the frequency ω and the azimuthal number k. The boson mass m is simply
a scaling parameter, in much the same way as the Kerr black hole mass. It can be shown that
the pair ( )w k, should satisfy[17]

( )






w<

Î

m

k

0 ,

. 5

The closer ω is to m/ÿ, the less relativistic (i.e. compact) is the boson star[17]. At the limit of
w  m , the scalar field vanishes. The boson star’s angular momentum is directly

proportional to the azimuthal number[17, 25]

( ) =J k 6

where  is the total particle number of the boson star. Thus the angular momentum is simply
proportional to k. It is straightforward to compute a dimensionless spin parameter for a boson
star in exactly the same way as for a Kerr black hole5

( )=a
J

M
7

2

where M is the total ADM (Arnowitt–Deser–Misner) mass of the boson star. It is to be noted
that contrary to the Kerr black hole case, a is not restricted to be smaller than 1[17, 18, 26].
In the Kerr case, the horizon is no longer defined for >a 1 and the central singularity
becomes naked. As there is no event horizon nor a singularity for a boson star, nothing
particular occurs when >a 1.

We have not considered any self-interaction potential between the bosons, meaning that
our study is restricted to the so-called mini boson stars. We note that this restriction to mini
boson stars is important as far as astrophysical applications are concerned because the
maximum mass of a boson star is strongly dependent on the existence or non-existence of
interactions between bosons[27]. For a mini boson star with an azimuthal number of order a
few, the total mass M satisfies[17]

( )a< =M M
m

m
8

p
max

2

where α is a coefficient of order 1−10 and mp is the Planck mass. For a Higgs boson
(m = 125 GeV), the maximum mass is of order 

- M10 21 , which is of course unable to
account for any black hole-like astrophysical sources. In order to get a total mass of » M106

(of the order of the mass of Sgr A*), the individual bosons should have a mass of -10 16 eV.
We note again that much higher masses (consistent with supermassive black holes) can be
produced by taking self-interaction into account, without having to postulate the existence of
extremely light bosons[27]. However, for the sake of simplicity, we do not consider such an
interaction in this paper. We thus assume the existence of very light spin-0 bosons in order to
model SgrA* by a mini boson star. We also note that Amaro-Seoane et al [28] has provided
limits on m based on dark matter models, which are not compatible with the very small value

5 The Kerr spin parameter is a = J/M and has the dimension of M. In this article we will consider the dimensionless
quantity =a J M 2 and call it spin for simplicity.
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assumed here. However, we do not try in this paper to model self-consistently supermassive
black holes and dark matter with the same scalar field.

It is not obvious to model black hole candidates of very different masses with the same
boson. Once the parameter m is fixed, the total mass of the boson star is restricted between 0
and the maximum massMmax introduced above. As a consequence it may seem that if a boson
light enough to model the most massive supermassive black holes existed, it would be
possible to model with the same boson all black hole candidates, whatever their mass (from
stellar-mass to supermassive). However, this is not obvious because the total mass of the
boson star can become very small with respect to m mp

2 only in the limit of w  m , and as
ω grows towards this limit, the distribution of the scalar field becomes less and less compact
and the spacetime becomes less and less relativistic[17]. As a consequence it appears difficult
to model all black hole candidates with one common scalar field. It would probably be even
problematic to model all supermassive black hole candidates (with masses from » M106 to

» M1010 ) with one common boson given the large mass span. However, it is not very likely
that all black hole candidates in the Universe would be boson stars; it is very possible that
Kerr black holes would coexist with boson stars. In this article, we will not investigate this
question any further and we only consider one object, SgrA*, for which we chose the boson
mass m.

Varying the action constructed from the Lagrangian LBS with respect to the metric leads
to the usual Einstein field equations with the energy-momentum tensor of the scalar field.
Varying it with respect to the scalar field leads to the Klein–Gordon equation. This set of
equations is solved using the KADATH library[17, 29]. In this paper, we use the set of
metrics derived in [17]. We will consider only a few pairs of ( )wk, corresponding to a few of
the solutions illustrated in figure 6 of [17] and referenced in table 2. In particular, we will not
consider any boson-star spacetime containing an ergoregion as these solutions are unstable
[30] (however, the timescale of the instability is not known and may be high enough to allow
such configurations to exist [17]). We will consider rotating boson stars with azimuthal
number k = 1 and k = 4, corresponding to the smallest and highest angular momentum of
rotating boson stars computed in[17]. We will consider three values of the frequency,

w = m0.7, 0.8, 0.9 spanning the spectrum from very relativistic ( w = m0.7 ) to
mildly relativistic ( w = m0.9 ) solutions. For both k = 1 and k = 4, an ergoregion starts to
develop for values of w m0.65 . We consider also non-rotating boson stars with k = 0,
taking into account two values of the frequency w = m0.83, 0.9 . For smaller values of the
frequency, two solutions exist for the same value of ω[17] and we restrict ourselves to the
region of the parameter space with only one solution for one pair ( )wk, .

We note that two of these spacetimes are secularly unstable. Indeed, a curve ( )wM can be
plotted for all values of k (see figure 6 of [17]). At least for the smallest values of k, this curve
shows a maximum for some value ( )w kmax . A secular stability condition of the boson star is
that ( )w w> kmax [31]. As ( )w =k 4max is within the region of the ( )wM curve where an
ergoregion exists, the k = 4 spacetimes considered here are all stable. However,

( )w = »k 0 0.86max and ( )w = »k 1 0.77max , thus the ( )w= =k 0, 0.83 and
( )w= =k 1, 0.7 spacetimes are secularly unstable. We are still interested in investigating
them in order to obtain a broad range of boson-star images, with also very relativistic
configurations (i.e. with small values of frequency).

2.2. Accretion tori

The dynamical evolution of normal (baryonic) matter accreted onto a boson star has not been
much investigated in the past. Reference [32] dating back to more than 10 years ago seems to
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still contain the most developed discussion. It considers one of the most important questions,
which is the possibility that accreting matter, by concentrating at the center of the boson star,
would create a black hole there that could grow and ultimately encompass most of the scalar
field distribution below its horizon. Considering this problem, Torres [32] shows that if a
supermassive boson star is present at the Galactic center and accretes at the current rate during
the age of the Universe, it would still be two orders of magnitude less massive than SgrA*

(note that this computation uses a very high value of the accretion rate in the innermost
accretion flow— 

- -M10 yr6 1—so it should be considered as an upper limit). This is an
argument in favor of the fact that, should a supermassive boson star exist at SgrA*, it could
not have been turned into a black hole by accreting normal matter to its center. We also note
that it is not straightforward that matter would be able to accumulate at the center of the boson
star: it should in particular be able to fight against a strong angular momentum barrier.
Moreover,Torres et al [33] advocates the idea that stars accreted by a boson star at the
Galactic center would be fully disrupted by tidal effects and that the remaining matter would
end in unbound orbits, thus not accumulating at the center. However, more work is needed in
this area to get a clear picture of how accreted matter would behave and how likely it is to
form a black hole at the center of an accreting boson star. In this article, we consider a
stationary toroidal accretion configuration and we do not discuss its stability.

We model the accretion flow surrounding SgrA* by a constant-specific-angular-
momentum, circularly-orbiting, perfect-fluid, polytropic accretion torus. We have already
studied the properties of such accretion tori surrounding boson stars in [18]. We combine here
this work with our recent model of an accretion torus surrounding a Kerr black hole at
SgrA*[16]. Exactly the same model is used here, meaning that millimeter synchrotron
radiation is emitted by the optically thin accretion torus. We refer to [16] for more details. The

Table 1. Parameters used to compute accretion tori in the various boson-star spacetimes
considered here. M is the ADM mass given in units of = m mp

2 .

( )wk, M a rin

( )m0, 0.83 0.63 0.00 M4.39
( )m0, 0.9 0.60 0.00 M5.80
( )m1, 0.7 1.26 0.82 M2.72
( )m1, 0.8 1.31 0.80 M2.84
( )m1, 0.9 1.12 0.92 M4.90
( )m4, 0.7 3.90 1.13 M3.34
( )m4, 0.8 3.35 1.27 M2.92
( )m4, 0.9 2.52 1.64 M5.30

Table 2. Parameters (introduced in section 2.2) used to fit the spectral and imaging
constraints in the Kerr spacetime. We remind readers that a is the dimensionless spin
parameter, i is the observerʼs inclination angle, ℓ is the fluid angular momentum
- ju ut , rin is the torus inner radius, nc and Tc are the torus central density and
temperature, kp is the polytropic index and β is the ratio of gas to magnetic pressures.
Parameters in bold font will be kept fixed in the whole paper. Only the spin parameter
and the inner torus radius will vary.

a i ℓ rin nc Tc kp b

0.9 85 3.2 M 4.2M ´6.3 106 -cm 3 ´5.3 1010 K 5/3 10
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main difference between the Kerr case and the boson star case, as far as accretion tori are
concerned, is that there does not always exist a self-crossing equi-pressure line (a cusp) in a
boson-star spacetime (see [18]). In [16] we assumed that the inner radius of the torus is
located at the cusp (which always exists for a Kerr black hole). In a boson star spacetime, we
choose rather to let the inner radius be a free parameter. As a consequence, an accretion torus
surrounding a boson star is described by nine parameters (referenced in tables 1 and 2): the
boson-star parameters ( )w k, , the observer’s inclination i, the constant angular momentum
= - jℓ u ut (where u is the fluid 4-velocity), the polytropic index kp, the inner radius of the

torus rin, the torus central temperature Tc and number density nc, and the plasma β parameter
being the ratio of the gas to magnetic pressures.

3. Images and spectra

In the whole paper, images and spectra of accretion tori surrounding black holes and boson
stars are computed using the open-source6 GYOTO code[34]. Photons are traced backwards
in time from a distant observer by integrating the geodesic equation using a Runge–Kutta–
Fehlberg adaptive-step integrator at order 7/8 (meaning that the method is 8th order, with an
error estimation at 7th order). The integration is performed in the Kerr metric (section 3.1) or
in the numerical spacetime of a boson star computed by the KADATH library (section 3.2).
The equation of radiative transfer is integrated inside the optically thin torus to determine the
value of specific intensity reaching the observer in each direction on the sky (i.e. in each pixel
of the observer’s screen).

3.1. Accretion tori around a Kerr black hole

3.1.1. Reference Kerr image. This section is meant to define a ‘reference’ image of an
accretion torus surrounding a Kerr black hole, which will be used to interpret the subsequent
boson-star images. This setup is not the result of a proper fit, it is only a set of parameters
which allows us to reasonably account for the observable constraints that we currently have
on the angular size of the emitting region at l = 1.3 mm and on the millimeter spectrum
of SgrA*.

Typical spin parameters of boson stars are close to 1. The slowest-rotating (k = 1) boson
stars that we analyze here have spin parameters of the order »a 0.9 [18]. As a consequence,
we consider a Kerr spacetime with spin parameter a= 0.9. Table 1 shows the list of
parameters which allows us to get a reasonable fit in the Kerr spacetime. It leads to the1.3 mm
strong-field image and to the millimeter spectrum shown in figure 1. This figure also shows
the equi-pressure contours of the reference Kerr torus. We note in particular that the radial
extent of the torus is of the order M20 . We are interested in this paper in the modification of
the strong-field image when the spacetime is changed. As a consequence, we will keep fixed
to their Kerr values given in table 1 all the astrophysical parameters ( )bℓ n T k, , , ,c c p together
with the inclination parameter i. The inner radius must be varied because different boson-star
spacetimes lead to tori with different radial extension for the same value of rin, so that keeping
the same value of rin would have lead to very different looking images. We note that the total
mass of the accretion torus is by many orders of magnitude smaller than the mass of SgrA*

which justifies the fact that we do not consider its contribution to the metric.
At 1.3 mm, interstellar scattering is still important[37] and will degrade the image with

respect to what is shown in figure 1, essentially convolving it with a Gaussian of FWHM

6 Freely available at http://gyoto.obspm.fr.
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m»20 as. In this analysis, we assume that this effect can be fully corrected (see [38] for a
recent discussion).

Figure 1 illustrates the notions of shadow and the photon ring introduced earlier. The
photon ring is the bright nearly circular ring of light at the center of the image. It is nearly
exactly the outer limit of the black hole shadow, i.e. the locus of the directions on the
observer’s sky that asymptotically approach the event horizon when ray tracing backwards in
time7. Figure 2 gives a precise illustration of the location of the shadow. Comparing figures 1
and 2 shows that the locus of the shadow is still illuminated in some parts because some
radiation emitted by the accretion torus in between the compact object and the observer will
fall inside the shadow when projected on the sky. However, a strong gradient of specific
intensity should be visible at least in some parts of the photon ring (particularly away from the
equatorial plane and from the part of the image boosted by the relativistic beaming

Figure 1. The reference Kerr case. Upper left: image at l = 1.3 mm of an accretion
torus surrounding a Kerr black hole with the parameters given in table 1. The color bar
indicates the cgs value of the specific intensity. The dotted circles show the s1
confidence limit for the intrinsic (no scattering included) angular size of the emitting
zone[11]. The solid black contour encompasses the region of the accretion flow
emitting 50% of the total flux. Upper right: millimeter spectrum of the accretion torus,
with red data points from[35, 36]. Lower panel: equi-pressure contours of the accretion
torus in the (x, z) plane, z being along the rotation axis.

7 We note that geodesics ray traced backwards in time should never cross the event horizon as this would correspond
to geodesics escaping the horizon, which is of course impossible. There is a stop condition in our ray-tracing code to
prevent infinite integration when a photon approaches ‘too close’ to the horizon.
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effect [39]). In our model, matter is not emitted down to the event horizon: the inner edge of
the torus ( =r M4.2in ) is the closest region where radiation is emitted. This is a condition for
getting such a clear photon ring as illustrated in figure 1. However, even in case matter is
emitted all the way down to the event horizon, there is still a sharp transition between the
shadow and the outer region, as illustrated, for example, in figure 1 of [1]. As a consequence,
it is really the strong gradient at the limit of the shadow which is the observable of interest,
whatever the astrophysical model. Demonstrating the existence and measuring the angular
size of this shadow (and of the surrounding photon ring if visible) is the main target of the
EHT as far as strong-field gravity is concerned (see in particular [39]).

Figure 2. Shadow and photon ring. Left: same image as the left panel of figure 1, but
the directions on the observer’s sky that asymptotically approach the event horizon
when ray tracing backwards in time are marked in black. The black area at the center of
the image is the black hole shadow. Its exterior limit nearly coincides with the photon
ring. Right: zoom on the central region.

Figure 3. Integration in numerical spacetimes. Left: Kerr ‘reference’ image described in
section 3.1.1 computed by the GYOTO code using the usual analytic Kerr metric with
spin a = 0.9 in Boyer–Lindquist (BL) coordinates. Right: the same image computed by
GYOTO using a numerical Kerr spacetime with the same spin, in quasi-isotropic (QI)
coordinates. The two images have the same flux within a relative error of 0.02%.
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3.1.2. Ray tracing using an analytical or numerical Kerr metric. Imaging boson stars will
necessitate integrating geodesics in a numerical spacetime. In this section we compare the
accuracy of two computations of the ‘reference’ Kerr image. One image is integrated using
the usual analytical expression of the Kerr metric in Boyer–Lindquist coordinates with a spin
a = 0.9. The second image is integrated in a Kerr numerical spacetime (with a = 0.9 as well)
computed using the LORENE library8. This spacetime is described in quasi-isotropic
coordinates which differ from Boyer–Lindquist coordinates and will be used to describe all
boson-star spacetimes. Figure 3 shows the same strong-field image as already illustrated in the
left panel of figure 1 computed by the GYOTO code in both these spacetimes. These two
images are indistinguishable by eye, and their respective fluxes differ by no more than 0.02%
demonstrating that GYOTO is able to very accurately integrate geodesics in numerical
spacetimes. We insist on the fact that the analytical and numerical spacetimes are described in
very different coordinate systems (for instance the radial coordinate values at the horizon, rBL

and rQI for Boyer–Lindquist and quasi-isotropic coordinates, differ by a factor»4.6) and that
the observable, figure 3, is the same as it should be.

3.2. Accretion tori around a boson star

3.2.1. Tori setups. Accretion tori surrounding boson stars can be computed relatively easily,
in much the same way as in the more standard Kerr case. Our recent analysis[18] highlights
some of the main properties of these structures. In this section, we are interested in examining
the modification on strong-field images imposed by the change of spacetime. As a
consequence, we will keep fixed nearly all model parameters to the values given in table 1.
Fixing the inner radius fixes the radial extent of the torus in a given spacetime, but this radial
extent depends quite strongly on the spacetime. Therefore, we do not decide to keep the inner
radius fixed, but rather to choose the inner radius in order to get, for all spacetimes
considered, a radial extent of roughly M20 in the Boyer–Lindquist coordinates (which is the
radial extent of the reference torus in the Kerr metric described in section 3.1.1).

Table 2 gives the parameters used for all boson-star setups. All the parameters which are
not mentioned have the same value as in table 1. Note that the dimensionless spin parameter a
can become bigger than 1 as opposed to the Kerr black hole case. There is nothing particular
with a boson-star spacetime with a spin bigger than 1. In particular there is of course no naked
singularity (as would be the case in the Kerr spacetime with >a 1).

Figure 4 shows the contours of the equi-pressure surfaces of these tori together with the
contours of the scalar field modulus f. These panels highlight the fact that when the boson
star rotates, the scalar field distribution has a toroidal topology. The name boson ‘star’
(suggestive of a spherical topology) is thus misleading for such objects; however we keep
using it for historical reasons. While the contours of the torus remain rather similar for all
spacetimes (including the Kerr spacetime, see the right panel of figure 1), the scalar field
distribution is a bit more peaked for higher rotation and much more peaked for more
relativistic spacetimes. This will translate in more important lensing effects in the strong-field
region for very relativistic boson stars. We note also that the accretion torus and the scalar
field distribution overlap in regions where the scalar field is still far from 0 (i.e. rather close to
the center of the distribution), which does not lead to any physical effect as we assume that
there is no interaction between normal (baryonic) matter and the scalar field.

8 Available at http://www.lorene.obspm.fr.
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3.2.2. Images and spectra. Figure 5 shows the 1.3mm images of all the tori setups
surrounding boson stars given in table 2. For less-relativistic setups ( w = m0.9 ), which
are closer to empty space (remember that w = m corresponds to empty space, see
section 2.1), the images show a smooth distribution of specific intensity for all values of k,
with no strong gradient (no ‘hole’ at the center of these images). This is close to the image one
would get in a Newtonian spacetime of a thick torus seen edge-on. For all values of k also, a
region with a much lower intensity value (a ‘hole’) appears in the image as ω decreases. For
very relativistic spacetimes (w = 0.7) this ‘hole’ is accompanied by a bow-shape structure,
which is the equivalent of the Kerr photon ring.

Figure 4. Boson-star accretion tori contours. Equi-pressure contours of the accretion
torus (red) and contours of the scalar field distribution (black) for the various setups
described in table 2, in the (x, z) plane, where z is a coordinate along the rotation axis.
The axes are labeled in units of the boson star total mass M. Boson star rotation
increases from top to bottom (towards higher k), and the spacetime is more and more
relativistic from left to right (towards smaller ω).
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In order to understand these transitions, figure 6 (top row) shows again the torus pressure
and scalar field contours for k = 1 spacetimes, together with three geodesics projected in the
( )q q= =x r z rsin , cos plane. These panels show the increasing gravitational lensing
effects on null geodesics as ω decreases and the spacetime becomes more relativistic. When
the lensing effect is strong enough, a low-intensity region appears at the center of the images.
When this effect is even stronger, two geodesics corresponding to very similar directions on
the sky (within m»1 as) can have very different trajectories, leading to the development of the
bow-shape structure. The bottom panel of figure 6 shows that this is similar to what causes the

Figure 5. Boson-star images. Maps of specific intensity distribution for the various
boson-star setups given in table 2. The color bar at the top right is valid for all panels
and is graduated in cgs units. The dotted circles show the s1 confidence limit on the
angular size of the emitting region imposed by the first VLBI measurements[11]. They
are centered on the maximum of the intensity distribution. The solid black contour
encompasses the region emitting 50% of the total flux. The axes are labeled in μas, as
measured on the distant observer’s screen. Boson star rotation increases from top to
bottom (towards higher k), and the spacetime is more and more relativistic from left to
right (towards smaller ω).
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Figure 6. Light bending. Top row: the k = 1, w = m0.7 image with three blue dots
corresponding to the directions on the sky of the three geodesics represented in the
middle row panels. These three directions are separated by only m»3 as. Middle row:
same as figure 4 for k = 1 boson stars, with three photon geodesics over-plotted in blue
in each panel, corresponding to the three directions on the sky highlighted in the top
panel. The geodesics are integrated backwards in time from the distant observer. They
are computed in three space dimensions ( )q jr, , and are projected here in
( )q q= =x r z rsin , cos whateverj. Bear in mind that part of the geodesics curvature
on these plots is due to the projection from three to two space dimensions. The
difference in magnitude of the lensing effect depending on the value of ω appears
clearly. Bottom row: the same for the reference Kerr a = 0.9 case. The three geodesics
represented here do not correspond to the same directions on the sky as the previous
ones. They are associated with the vicinity of the Kerr photon ring, i.e. to the most
lensed geodesics in the Kerr spacetime. Note that the dashed geodesic asymptotically
approaches the event horizon.
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appearance of the Kerr photon ring. This bow-shape structure characteristic of very relativistic
boson stars was first highlighted very recently by [9]. Their figure 4, middle-right panel shows
an extremely similar structure to our k = 1, w = 0.7 image. This structure has a very
comparable angular size to that of the reference Kerr photon ring. The most distant part of the
Kerr photon ring from the center of the coordinates (to the right of the image) is located at

m»35.5 as, while the most distant part of the bow-shape structure for the
( )w= =k m1, 0.7 spacetime is located at m»34.5 as from the center of the coordinates.

The superposition of the low-flux central region and of this bow-shape structure is
extremely similar to the shadow + photon ring familiar structure in the Kerr spacetime. In
particular, it shows that detecting a shadow (i.e. a low-flux region surounded by a bright
portion of arc) is not sufficient to tell the existence of an event horizon, as suggested by [1]. It
is probable that after distortion by the instrument’s response function, it would be impossible
to differentiate a Kerr image from a very relativistic boson-star image.

We note here a particularity of the k = 4 images. All other spacetimes give rise to an
intensity distribution peaked more or less at the same point, to the left of the image in our
geometry. This location corresponds to the maximum of the relativistic beaming effect due to
the enhancement of radiation when the emitter is traveling towards the observer. However,
the maximum of the intensity distribution is somewhat shifted with respect to this maximum
beaming location for all k = 4 spacetimes. This is mainly due to the stronger bending of light
rays as explained in figure 7. This figure compares the two geodesics corresponding to the
location on the sky of the intensity maxima of the ( )w= =k m0, 0.9 and
( )w= =k m4, 0.9 spacetimes. It shows that the geodesic corresponding to the maximum
intensity location of the ( )w= =k m4, 0.9 spacetime (dashed blue, right panel) visits the
very central parts of the torus, which translates in a high intensity. On the contrary, the same
geodesic in the ( )w= =k m0, 0.9 spacetime (dashed blue, left panel) always stays rather
far from the innermost torus regions. Strong light bending thus somewhat changes the flux
distribution for k = 4 spacetimes.

Figure 7. Intensity maximum location. Contours of the w = m0.9 , k = 0 (left) and
k = 4 (right) spacetimes. In blue, two geodesics are over-plotted. The solid one
corresponds to the direction on the sky of the maximum of the intensity distribution of
the ( )w= =k m0, 0.9 setup (see figure 5, upper left panel). The dashed one
corresponds to the direction on the sky of the maximum of the intensity distribution of
the ( )w= =k m4, 0.9 setup (see figure 5, lower left panel).
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Figure 8 shows the corresponding millimeter spectra for all boson-star spacetimes as well
as for the Kerr reference case. It shows that different setups lead to different spectra.
However, it is not likely that spectra can provide a way to differentiate alternative compact
objects given how degenerate the different parameters are. Taking different values of the
astrophysical parameters like the central density and temperature will lead to very different
spectra while the angular size of the ‘shadow’ (be it the usual Kerr shadow or the faint central
region in highly relativistic boson-star spacetimes) will not differ as it is due to the lensing
effects which are independent of astrophysics. It is to be noticed still that the
( )w= =k m1, 0.7 spectrum (dotted green) is extremely similar to the Kerr reference
spectrum (solid black): both the image and the spectra are thus extremely similar to the Kerr
case for this spacetime.

3.2.3. Photon orbit, bow-shape structure and spacetime stability. The (k = 1, w = 0.7)
spacetime we highlighted in the previous section as able to generate a Kerr-similar strong-
field image may suffer from two stability issues.

First, this solution is located at ( )w w< =k 1max as already written in the introduction. It
is thus secularly unstable.

Second,[40] advocates the fact that all spacetimes with a stable photon–orbit and no
event horizon are unstable. The (k = 1, w = 0.7) spacetime indeed has a stable photon–orbit.
However, we believe that the statement of [40] is not sufficient to be able to conclude with
full confidence: a stability study of rotating boson-star spacetimes is thus very much needed.

Even if the ( )w= =k 1, 0.7 spacetime may not be astrophysically relevant, we consider
that the fact that a spacetime with no event horizon can mimic a Kerr strong-field image is
sufficiently interesting to be highlighted. However, in order to determine what the strong-field
image will look like for a stable spacetime, we have computed one more image for k = 1
boson stars, considering a frequency of w = 0.77 (corresponding to the maximum of the

Figure 8. Comparing millimeter spectra. The Kerr reference spectrum is in solid black.
Boson stars (BS) spectra are in cyan for k = 0, green for k = 1 and magenta for k = 4.
Dotted lines are for w = m0.7 , dashed lines for w = m0.8 and solid lines for

w = m0.9 ( w = m0.83 for the k = 0 case). We note the extreme similarity
between the Kerr reference spectrum (solid black) and the k = 1, w = m0.7 boson-
star spectrum (dotted green), corresponding to the very similar strong-field images
shown in figure 1, upper left panel, and figure 5, middle right panel.
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( )wM curve) which is secularly stable. Moreover, the (k = 1, w = 0.77) spacetime has no
photon–orbit and no ergoregion. There is thus to our knowledge no obvious reason to doubt
its stability. The spin parameter of this configuration being a = 0.8, it is also compatible with
a Kerr spacetime. Figure 9 shows a strong-field 1.3mm image for this spacetime. It still
displays the bow-shape structure typical of an extremely strong lensing effect. This bow-
shape structure, although smaller than in the (k = 1, w = 0.7) spacetime, is still similar to a
portion of a Kerr photon ring. In particular, it appears on the Doppler deboosted part of the
image, which is the primary target for detecting photon rings as highlighted by Psaltis
et al[39].

Figure 9 thus shows that strong-field images with a clear decrease of intensity in the
central parts (a ‘shadow’) and strong gradients of intensity (the bow-shape structure, similar to
a partly obscured photon ring) are not sufficient to tell an event horizon.

4. Conclusion

We have performed ray-tracing computations of accretion tori surrounding Kerr black holes
and different kinds of boson stars in order to produce 1.3mm images and spectra of the
accretion flow surrounding SgrA* in the perspective of future high-quality observations at
this wavelength by the EHT. Our goal is to determine how strong-field images differ from the
well-known Kerr case when considering boson stars, i.e. compact objects with no event
horizon and no hard surface.

The main result of our research is figure 5 and particularly its central right panel showing
the image of an accretion torus around a ( )w= =k m1, 0.7 boson star which is extre-
mely similar to a Kerr strong-field image. In particular, the image shows a faint central region
the angular size of which is very similar to that of the Kerr shadow for the same spin and
orientation. This finding questions the assumption of Falcke et al [1], and many other authors,
that detecting a shadow (i.e. a faint central region separated by a strong intensity gradient
from the exterior region) is proof of the existence of an event horizon. Moreover, a bow-shape

Figure 9. Bow-shape structure for a spacetime with no stability issue. Image at 1.3mm
for a k = 1, w = 0.77 boson star. This spacetime is most probably stable as it is on the
stable branch of the ( )wM curve, has no photon–orbit and no ergoregion. It still
displays a bow-shape structure, although it is smaller than in figure 5, middle right
panel.

Class. Quantum Grav. 33 (2016) 105015 F H Vincent et al

16



structure, due to very strong light bending close to the center of the scalar field distribution, is
visible in highly relativistic boson-star spacetimes and is very similar to the Kerr photon ring.

Quite a few caveats should be noticed in order to interpret this result.

• A first obvious remark is that our model is stationary and made of a compact distribution
of normal matter which is not extending down to r = 0 (which would be possible at least
in theory for a boson-star spacetime given that there is no event horizon nor any
singularity at r = 0). In case a long-lived accretion flow extending down to r = 0 and
emitting sufficiently would be viable, it would not exhibit the same shadow-like central
region. It is very difficult to predict what such a flow would look like and we are now
developing general relativistic magnetohydrodynamics numerical simulations of such
accretion structures in order to investigate this option.

• We are considering in this paper mini boson stars (with no self-interactions among
bosons), meaning that we have to assume the existence of extremely light (» -10 16 eV)
spin-0 bosons in order to model SgrA*. We plan to develop similar simulations as
presented in this paper for self-interacting boson stars that would allow modeling
supermassive compact objects with a much higher boson mass. We also note that Horvat
et al [41] studied boson stars non-minimally coupled to gravity. This is another direction
of generalization for the present work.

• Our model assumes the stability of an accretion flow made of normal matter and
surrounding a boson star (for the typical parameters given in table 2). We are not aware of
any work studying in detail the evolution of baryonic matter around rotating boson stars,
and in particular the possibility of forming a black hole by accreting matter to r = 0. This
is a very interesting area of research that we plan to investigate.

• Finally, we have been assuming that normal matter does not interact with bosons except
through gravitational interaction.

However, despite all these limiting remarks, we believe that our result highlights the
extreme difficulty of interpreting strong-field images. In particular it shows the importance,
for the future interpretation of EHT data, of studying the observable predictions of well-
established alternative compact objects, in parallel to developing parameterized non-Kerr
spacetimes. As highlighted by [9] it would be interesting to check whether these para-
meterized spacetimes can produce such structures as the bow-shape feature exhibited in
figure 5.

As a final remark, we would like to stress that the aim of this article is not to support the
case for a boson star at the center of the Galaxy, or as an alternative to black hole candidates
in general. Our aim is to investigate the simplest possible testbed of event-horizon-less
spacetime. We believe that this simplest testbed is the boson-star model. As a consequence,
boson stars are useful tools to investigate the power of experiments aimed at demonstrating
the existence of black holes. Such experiments should first demonstrate their ability to tell a
black hole from a boson star. This article shows that experiments based on the investigation of
the shadows of compact objects may not be valid tests of the existence of black holes because
it is not clear that they are able to unambiguously differentiate a black hole from a boson star.
It is possible, although not clear at the moment, that gravitational-wave tests could be a clean
way to differentiate a black hole from a boson star[26, 42, 43].
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