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Chapter 1

Introduction

The 3+1 formalism is an approach to general relativity and to Einstein equations that re-
lies on the slicing of the four-dimensional spacetime by three-dimensional surfaces (hypersur-
faces). These hypersurfaces have to be spacelike, so that the metric induced on them by the
Lorentzian spacetime metric [signature (−,+,+,+)] is Riemannian [signature (+,+,+)]. From
the mathematical point of view, this procedure allows to formulate the problem of resolution of
Einstein equations as a Cauchy problem with constraints. From the pedestrian point of view, it
amounts to a decomposition of spacetime into “space” + “time”, so that one manipulates only
time-varying tensor fields in the “ordinary” three-dimensional space, where the standard scalar
product is Riemannian. Notice that this space + time splitting is not an a priori structure of
general relativity but relies on the somewhat arbitrary choice of a time coordinate. The 3+1
formalism should not be confused with the 1+3 formalism, where the basic structure is a con-
gruence of one-dimensional curves (mostly timelike curves, i.e. worldlines), instead of a family
of three-dimensional surfaces.

The 3+1 formalism originates from works by Georges Darmois in the 1920’s [105], André
Lichnerowicz in the 1930-40’s [176, 177, 178] and Yvonne Choquet-Bruhat (at that time Yvonne
Fourès-Bruhat) in the 1950’s [127, 128] 1. Notably, in 1952, Yvonne Choquet-Bruhat was able
to show that the Cauchy problem arising from the 3+1 decomposition has locally a unique
solution [127]. In the late 1950’s and early 1960’s, the 3+1 formalism received a considerable
impulse, serving as foundation of Hamiltonian formulations of general relativity by Paul A.M.
Dirac [115, 116], and Richard Arnowitt, Stanley Deser and Charles W. Misner (ADM) [23]. It
was also during this time that John A. Wheeler put forward the concept of geometrodynamics
and coined the names lapse and shift [267]. In the 1970’s, the 3+1 formalism became the basic
tool for the nascent numerical relativity. A primordial role has then been played by James W.
York, who developed a general method to solve the initial data problem [274] and who put the
3+1 equations in the shape used afterwards by the numerical community [276]. In the 1980’s
and 1990’s, numerical computations increased in complexity, from 1D (spherical symmetry) to

1These three persons have some direct filiation: Georges Darmois was the thesis adviser of André Lichnerowicz,
who was himself the thesis adviser of Yvonne Choquet-Bruhat
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3D (no symmetry at all). In parallel, a lot of studies have been devoted to formulating the
3+1 equations in a form suitable for numerical implementation. The authors who participated
to this effort are too numerous to be cited here but it is certainly worth to mention Takashi
Nakamura and his school, who among other things initiated the formulation which would become
the popular BSSN scheme [193, 192, 233]. Needless to say, a strong motivation for the expansion
of numerical relativity has been the development of gravitational wave detectors, either ground-
based (LIGO, VIRGO, GEO600, TAMA) or in space (LISA project).

Today, most numerical codes for solving Einstein equations are based on the 3+1 formalism.
Other approaches are the 2+2 formalism or characteristic formulation, as reviewed by Winicour
[269], the conformal field equations by Friedrich [134] as reviewed by Frauendiener [129], or the
generalized harmonic decomposition used by Pretorius [206, 207, 208] for his recent successful
computations of binary black hole merger.

These lectures are devoted to the 3+1 formalism and theoretical foundations for numerical
relativity. They are not covering numerical techniques, which mostly belong to two families:
finite difference methods and spectral methods. For a pedagogical introduction to these tech-
niques, we recommend the lectures by Choptuik [84] (finite differences) and the review article
by Grandclément and Novak [150] (spectral methods).

We shall start by two purely geometrical2 chapters devoted to the study of a single hypersur-
face embedded in spacetime (Chap. 2) and to the foliation (or slicing) of spacetime by a family
of spacelike hypersurfaces (Chap. 3). The presentation is divided in two chapters to distinguish
clearly between concepts which are meaningful for a single hypersurface and those who rely on
a foliation. In some presentations, these notions are blurred; for instance the extrinsic curvature
is defined as the time derivative of the induced metric, giving the impression that it requires a
foliation, whereas it is perfectly well defined for a single hypersurface. The decomposition of the
Einstein equation relative to the foliation is given in Chap. 4, giving rise to the Cauchy prob-
lem with constraints, which constitutes the core of the 3+1 formalism. The ADM Hamiltonian
formulation of general relativity is also introduced in this chapter. Chapter 5 is devoted to the
decomposition of the matter and electromagnetic field equations, focusing on the astrophysi-
cally relevant cases of a perfect fluid and a perfect conductor (MHD). An important technical
chapter occurs then: Chap. 6 introduces some conformal transformation of the 3-metric on each
hypersurface and the corresponding rewriting of the 3+1 Einstein equations. As a byproduct,
we also discuss the Isenberg-Wilson-Mathews (or conformally flat) approximation to general
relativity. Chapter 7 details the various global quantities associated with asymptotic flatness
(ADM mass and ADM linear momentum, angular momentum) or with some symmetries (Komar
mass and Komar angular momentum). In Chap. 8, we study the initial data problem, present-
ing with some examples two classical methods: the conformal transverse-traceless method and
the conformal thin sandwich one. Both methods rely on the conformal decomposition that has
been introduced in Chap. 6. The choice of spacetime coordinates within the 3+1 framework is
discussed in Chap. 9, starting from the choice of foliation before discussing the choice of the
three coordinates in each leaf of the foliation. The major coordinate families used in modern
numerical relativity are reviewed. Finally Chap. 10 presents various schemes for the time inte-
gration of the 3+1 Einstein equations, putting some emphasis on the most successful scheme to

2by geometrical it is meant independent of the Einstein equation
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date, the BSSN one. Two appendices are devoted to basic tools of the 3+1 formalism: the Lie
derivative (Appendix A) and the conformal Killing operator and the related vector Laplacian
(Appendix B).
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2.1 Introduction

The notion of hypersurface is the basis of the 3+1 formalism of general relativity. This first
chapter is thus devoted to hypersurfaces. It is fully independent of the Einstein equation, i.e.
all results are valid for any spacetime endowed with a Lorentzian metric, whether the latter is
a solution or not of Einstein equation. Otherwise stated, the properties discussed below are
purely geometric, hence the title of this chapter.

Elementary presentations of hypersurfaces are given in numerous textbooks. To mention
a few in the physics literature, let us quote Chap. 3 of Poisson’s book [205], Appendix D of
Carroll’s one [79] and Appendix A of Straumann’s one [251]. The presentation performed here
is relatively self-contained and requires only some elementary knowledge of differential geometry,
at the level of an introductory course in general relativity (e.g. [108]).

2.2 Framework and notations

2.2.1 Spacetime and tensor fields

We consider a spacetime (M,g) where M is a real smooth (i.e. C∞) manifold of dimension 4
and g a Lorentzian metric on M, of signature (−,+,+,+). We assume that (M,g) is time

orientable, that is, it is possible to divide continuously over M each light cone of the metric g
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in two parts, past and future [156, 265]. We denote by ∇ the affine connection associated with
g, and call it the spacetime connection to distinguish it from other connections introduced
in the text.

At a given point p ∈ M, we denote by Tp(M) the tangent space, i.e. the (4-dimensional)
space of vectors at p. Its dual space (also called cotangent space) is denoted by T ∗

p (M) and
is constituted by all linear forms at p. We denote by T (M) (resp. T ∗(M)) the space of smooth
vector fields (resp. 1-forms) on M 1.

When dealing with indices, we adopt the following conventions: all Greek indices run in
{0, 1, 2, 3}. We will use letters from the beginning of the alphabet (α, β, γ, ...) for free indices,
and letters starting from µ (µ, ν, ρ, ...) as dumb indices for contraction (in this way the tensorial
degree (valence) of any equation is immediately apparent). Lower case Latin indices starting
from the letter i (i, j, k, ...) run in {1, 2, 3}, while those starting from the beginning of the
alphabet (a, b, c, ...) run in {2, 3} only.

For the sake of clarity, let us recall that if (eα) is a vector basis of the tangent space Tp(M)
and (eα) is the associate dual basis, i.e. the basis of T ∗

p (M) such that eα(eβ) = δα
β, the

components T
α1...αp

β1...βq
of a tensor T of type

(
p
q

)

with respect to the bases (eα) and (eα) are

given by the expansion

T = T
α1...αp

β1...βq
eα1 ⊗ . . . ⊗ eαp ⊗ eβ1 ⊗ . . . ⊗ eβq . (2.1)

The components ∇γT
α1...αp

β1...βq
of the covariant derivative ∇T are defined by the expansion

∇T = ∇γ T
α1...αp

β1...βq
eα1 ⊗ . . . ⊗ eαp ⊗ eβ1 ⊗ . . . ⊗ eβq ⊗ eγ . (2.2)

Note the position of the “derivative index” γ : eγ is the last 1-form of the tensorial product
on the right-hand side. In this respect, the notation T

α1...αp

β1...βq;γ instead of ∇γ T
α1...αp

β1...βq

would have been more appropriate . This index convention agrees with that of MTW [189] [cf.
their Eq. (10.17)]. As a result, the covariant derivative of the tensor T along any vector field u

is related to ∇T by
∇uT = ∇T ( ., . . . , .

︸ ︷︷ ︸

p+q slots

,u). (2.3)

The components of ∇uT are then uµ∇µT
α1...αp

β1...βq
.

2.2.2 Scalar products and metric duality

We denote the scalar product of two vectors with respect to the metric g by a dot:

∀(u,v) ∈ Tp(M) × Tp(M), u · v := g(u,v) = gµνuµvν . (2.4)

We also use a dot for the contraction of two tensors A and B on the last index of A and the
first index of B (provided of course that these indices are of opposite types). For instance if A

1 The experienced reader is warned that T (M) does not stand for the tangent bundle of M (it rather corre-
sponds to the space of smooth cross-sections of that bundle). No confusion may arise since we shall not use the
notion of bundle.
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is a bilinear form and B a vector, A · B is the linear form which components are

(A · B)α = AαµBµ. (2.5)

However, to denote the action of linear forms on vectors, we will use brackets instead of a dot:

∀(ω,v) ∈ T ∗
p (M) × Tp(M), 〈ω,v〉 = ω · v = ωµ vµ. (2.6)

Given a 1-form ω and a vector field u, the directional covariant derivative ∇u ω is a 1-form and
we have [combining the notations (2.6) and (2.3)]

∀(ω,u,v) ∈ T ∗(M) × T (M) × T (M), 〈∇u ω,v〉 = ∇ω(v,u). (2.7)

Again, notice the ordering in the arguments of the bilinear form ∇ω. Taking the risk of insisting
outrageously, let us stress that this is equivalent to say that the components (∇ω)αβ of ∇ω with
respect to a given basis (eα ⊗ eβ) of T ∗(M) ⊗ T ∗(M) are ∇βωα:

∇ω = ∇βωα eα ⊗ eβ, (2.8)

this relation constituting a particular case of Eq. (2.2).
The metric g induces an isomorphism between Tp(M) (vectors) and T ∗

p (M) (linear forms)
which, in the index notation, corresponds to the lowering or raising of the index by contraction
with gαβ or gαβ . In the present lecture, an index-free symbol will always denote a tensor with
a fixed covariance type (e.g. a vector, a 1-form, a bilinear form, etc...). We will therefore use
a different symbol to denote its image under the metric isomorphism. In particular, we denote
by an underbar the isomorphism Tp(M) → T ∗

p (M) and by an arrow the reverse isomorphism
T ∗

p (M) → Tp(M):

1. for any vector u in Tp(M), u stands for the unique linear form such that

∀v ∈ Tp(M), 〈u,v〉 = g(u,v). (2.9)

However, we will omit the underlining on the components of u, since the position of the
index allows to distinguish between vectors and linear forms, following the standard usage:
if the components of u in a given basis (eα) are denoted by uα, the components of u in
the dual basis (eα) are then denoted by uα [in agreement with Eq. (2.1)].

2. for any linear form ω in T ∗
p (M), ~ω stands for the unique vector of Tp(M) such that

∀v ∈ Tp(M), g(~ω,v) = 〈ω,v〉. (2.10)

As for the underbar, we will omit the arrow over the components of ~ω by denoting them
ωα.

3. we extend the arrow notation to bilinear forms on Tp(M): for any bilinear form T :

Tp(M)×Tp(M) → R, we denote by ~T the (unique) endomorphism T (M) → T (M) which
satisfies

∀(u,v) ∈ Tp(M) × Tp(M), T (u,v) = u · ~T (v). (2.11)

If Tαβ are the components of the bilinear form T in some basis eα ⊗ eβ , the matrix of the

endomorphism ~T with respect to the vector basis eα (dual to eα) is Tα
β.
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2.2.3 Curvature tensor

We follow the MTW convention [189] and define the Riemann curvature tensor of the
spacetime connection ∇ by2

4Riem : T ∗(M) × T (M)3 −→ C∞(M, R)

(ω,w,u,v) 7−→
〈

ω, ∇u∇vw − ∇v∇uw

−∇[u,v]w

〉

,

(2.12)

where C∞(M, R) denotes the space of smooth scalar fields on M. As it is well known, the
above formula does define a tensor field on M, i.e. the value of 4Riem(ω,w,u,v) at a given
point p ∈ M depends only upon the values of the fields ω, w, u and v at p and not upon their
behaviors away from p, as the gradients in Eq. (2.12) might suggest. We denote the components
of this tensor in a given basis (eα), not by 4Riemγ

δαβ , but by 4Rγ
δαβ . The definition (2.12) leads

then to the following writing (called Ricci identity):

∀w ∈ T (M), (∇α∇β −∇β∇α) wγ = 4Rγ
µαβ wµ, (2.13)

From the definition (2.12), the Riemann tensor is clearly antisymmetric with respect to its last
two arguments (u,v). The fact that the connection ∇ is associated with a metric (i.e. g) implies
the additional well-known antisymmetry:

∀(ω,w) ∈ T ∗(M) × T (M), 4Riem(ω,w, ·, ·) = −4Riem(w, ~ω, ·, ·). (2.14)

In addition, the Riemann tensor satisfies the cyclic property

∀(u,v,w) ∈ T (M)3,
4Riem(·,u,v,w) + 4Riem(·,w,u,v) + 4Riem(·,v,w,u) = 0 . (2.15)

The Ricci tensor of the spacetime connection ∇ is the bilinear form 4R defined by

4R : T (M) × T (M) −→ C∞(M, R)
(u,v) 7−→ 4Riem(eµ,u,eµ,v).

(2.16)

This definition is independent of the choice of the basis (eα) and its dual counterpart (eα).
Moreover the bilinear form 4R is symmetric. In terms of components:

4Rαβ = 4Rµ
αµβ . (2.17)

Note that, following the standard usage, we are denoting the components of both the Riemann
and Ricci tensors by the same letter R, the number of indices allowing to distinguish between
the two tensors. On the contrary we are using different symbols, 4Riem and 4R, when dealing
with the ‘intrinsic’ notation.

2the superscript ‘4’ stands for the four dimensions of M and is used to distinguish from Riemann tensors that
will be defined on submanifolds of M
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Finally, the Riemann tensor can be split into (i) a “trace-trace” part, represented by the
Ricci scalar 4R := gµν4Rµν (also called scalar curvature), (ii) a “trace” part, represented
by the Ricci tensor 4R [cf. Eq. (2.17)], and (iii) a “traceless” part, which is constituted by the
Weyl conformal curvature tensor, 4C:

4Rγ
δαβ = 4Cγ

δαβ +
1

2

(
4Rγ

α gδβ − 4Rγ
β gδα + 4Rδβ δγ

α − 4Rδα δγ
β

)

+
1

6
4R
(

gδα δγ
β − gδβ δγ

α

)

. (2.18)

The above relation can be taken as the definition of 4C. It implies that 4C is traceless:

4Cµ
αµβ = 0 . (2.19)

The other possible traces are zero thanks to the symmetry properties of the Riemann tensor.
It is well known that the 20 independent components of the Riemann tensor distribute in the
10 components in the Ricci tensor, which are fixed by Einstein equation, and 10 independent
components in the Weyl tensor.

2.3 Hypersurface embedded in spacetime

2.3.1 Definition

A hypersurface Σ of M is the image of a 3-dimensional manifold Σ̂ by an embedding Φ : Σ̂ →
M (Fig. 2.1) :

Σ = Φ(Σ̂). (2.20)

Let us recall that embedding means that Φ : Σ̂ → Σ is a homeomorphism, i.e. a one-to-one
mapping such that both Φ and Φ−1 are continuous. The one-to-one character guarantees that Σ
does not “intersect itself”. A hypersurface can be defined locally as the set of points for which
a scalar field on M, t let say, is constant:

∀p ∈ M, p ∈ Σ ⇐⇒ t(p) = 0. (2.21)

For instance, let us assume that Σ is a connected submanifold of M with topology R3. Then
we may introduce locally a coordinate system of M, xα = (t, x, y, z), such that t spans R and
(x, y, z) are Cartesian coordinates spanning R3. Σ is then defined by the coordinate condition
t = 0 [Eq. (2.21)] and an explicit form of the mapping Φ can be obtained by considering
xi = (x, y, z) as coordinates on the 3-manifold Σ̂ :

Φ : Σ̂ −→ M
(x, y, z) 7−→ (0, x, y, z).

(2.22)

The embedding Φ “carries along” curves in Σ̂ to curves in M. Consequently it also “carries
along” vectors on Σ̂ to vectors on M (cf. Fig. 2.1). In other words, it defines a mapping between
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Figure 2.1: Embedding Φ of the 3-dimensional manifold Σ̂ into the 4-dimensional manifold M, defining the
hypersurface Σ = Φ(Σ̂). The push-forward Φ∗v of a vector v tangent to some curve C in Σ̂ is a vector tangent
to Φ(C) in M.

Tp(Σ̂) and Tp(M). This mapping is denoted by Φ∗ and is called the push-forward mapping ;
thanks to the adapted coordinate systems xα = (t, x, y, z), it can be explicited as follows

Φ∗ : Tp(Σ̂) −→ Tp(M)
v = (vx, vy, vz) 7−→ Φ∗v = (0, vx, vy, vz),

(2.23)

where vi = (vx, vy, vz) denotes the components of the vector v with respect to the natural basis
∂/∂xi of Tp(Σ) associated with the coordinates (xi).

Conversely, the embedding Φ induces a mapping, called the pull-back mapping and de-
noted Φ∗, between the linear forms on Tp(M) and those on Tp(Σ̂) as follows

Φ∗ : T ∗
p (M) −→ T ∗

p (Σ̂)

ω 7−→ Φ∗ω : Tp(Σ̂) → R

v 7→ 〈ω,Φ∗v〉.
(2.24)

Taking into account (2.23), the pull-back mapping can be explicited:

Φ∗ : T ∗
p (M) −→ T ∗

p (Σ̂)

ω = (ωt, ωx, ωy, ωz) 7−→ Φ∗ω = (ωx, ωy, ωz),
(2.25)

where ωα denotes the components of the 1-form ω with respect to the basis dxα associated with
the coordinates (xα).

In what follows, we identify Σ̂ and Σ = Φ(Σ̂). In particular, we identify any vector on Σ̂
with its push-forward image in M, writing simply v instead of Φ∗v.
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The pull-back operation can be extended to the multi-linear forms on Tp(M) in an obvious
way: if T is a n-linear form on Tp(M), Φ∗T is the n-linear form on Tp(Σ) defined by

∀(v1, . . . ,vn) ∈ Tp(Σ)n, Φ∗T (v1, . . . ,vn) = T (Φ∗v1, . . . ,Φ∗vn). (2.26)

Remark : By itself, the embedding Φ induces a mapping from vectors on Σ to vectors on M
(push-forward mapping Φ∗) and a mapping from 1-forms on M to 1-forms on Σ (pull-
back mapping Φ∗), but not in the reverse way. For instance, one may define “naively”
a reverse mapping F : Tp(M) −→ Tp(Σ) by v = (vt, vx, vy, vz) 7−→ Fv = (vx, vy, vz),
but it would then depend on the choice of coordinates (t, x, y, z), which is not the case of
the push-forward mapping defined by Eq. (2.23). As we shall see below, if Σ is a space-
like hypersurface, a coordinate-independent reverse mapping is provided by the orthogonal
projector (with respect to the ambient metric g) onto Σ.

A very important case of pull-back operation is that of the bilinear form g (i.e. the spacetime
metric), which defines the induced metric on Σ :

γ := Φ∗g (2.27)

γ is also called the first fundamental form of Σ. We shall also use the short-hand name
3-metric to design it. Notice that

∀(u,v) ∈ Tp(Σ) × Tp(Σ), u · v = g(u,v) = γ(u,v). (2.28)

In terms of the coordinate system3 xi = (x, y, z) of Σ, the components of γ are deduced from
(2.25):

γij = gij . (2.29)

The hypersurface is said to be

• spacelike iff the metric γ is definite positive, i.e. has signature (+,+,+);

• timelike iff the metric γ is Lorentzian, i.e. has signature (−,+,+);

• null iff the metric γ is degenerate, i.e. has signature (0,+,+).

2.3.2 Normal vector

Given a scalar field t on M such that the hypersurface Σ is defined as a level surface of t [cf.
Eq. (2.21)], the gradient 1-form dt is normal to Σ, in the sense that for every vector v tangent
to Σ, 〈dt,v〉 = 0. The metric dual to dt, i.e. the vector ~∇t (the component of which are
∇αt = gαµ∇µt = gαµ(dt)µ) is a vector normal to Σ and satisfies to the following properties

• ~∇t is timelike iff Σ is spacelike;

• ~∇t is spacelike iff Σ is timelike;

3Let us recall that by convention Latin indices run in {1, 2, 3}.
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• ~∇t is null iff Σ is null.

The vector ~∇t defines the unique direction normal to Σ. In other words, any other vector
v normal to Σ must be collinear to ~∇t: v = λ~∇t. Notice a characteristic property of null
hypersurfaces: a vector normal to them is also tangent to them. This is because null vectors are
orthogonal to themselves.

In the case where Σ is not null, we can re-normalize ~∇t to make it a unit vector, by setting

n :=
(

± ~∇t · ~∇t
)−1/2

~∇t, (2.30)

with the sign + for a timelike hypersurface and the sign − for a spacelike one. The vector n is
by construction a unit vector:

n · n = −1 if Σ is spacelike, (2.31)

n · n = 1 if Σ is timelike. (2.32)

n is one of the two unit vectors normal to Σ, the other one being n′ = −n. In the case where
Σ is a null hypersurface, such a construction is not possible since ~∇t · ~∇t = 0. Therefore there
is no natural way to pick a privileged normal vector in this case. Actually, given a null normal
n, any vector n′ = λn, with λ ∈ R∗, is a perfectly valid alternative to n.

2.3.3 Intrinsic curvature

If Σ is a spacelike or timelike hypersurface, then the induced metric γ is not degenerate. This
implies that there is a unique connection (or covariant derivative) D on the manifold Σ that is
torsion-free and satisfies

D γ = 0 . (2.33)

D is the so-called Levi-Civita connection associated with the metric γ (see Sec. 2.IV.2 of
N. Deruelle’s lectures [108]). The Riemann tensor associated with this connection represents
what can be called the intrinsic curvature of (Σ,γ). We shall denote it by Riem (without
any superscript ‘4’), and its components by the letter R, as Rk

lij . Riem measures the non-
commutativity of two successive covariant derivatives D, as expressed by the Ricci identity,
similar to Eq. (2.13) but at three dimensions:

∀v ∈ T (Σ), (DiDj − DjDi)v
k = Rk

lij vl. (2.34)

The corresponding Ricci tensor is denoted R: Rij = Rk
ikj and the Ricci scalar (scalar curvature)

is denoted R: R = γijRij. R is also called the Gaussian curvature of (Σ,γ).
Let us remind that in dimension 3, the Riemann tensor can be fully determined from the

knowledge of the Ricci tensor, according to the formula

Ri
jkl = δi

kRjl − δi
lRjk + γjlR

i
k − γjkR

i
l +

1

2
R(δi

lγjk − δi
kγjl). (2.35)

In other words, the Weyl tensor vanishes identically in dimension 3 [compare Eq. (2.35) with
Eq. (2.18)].
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2.3.4 Extrinsic curvature

Beside the intrinsic curvature discussed above, one may consider another type of “curvature”
regarding hypersurfaces, namely that related to the “bending” of Σ in M. This “bending”
corresponds to the change of direction of the normal n as one moves on Σ. More precisely, one
defines the Weingarten map (sometimes called the shape operator) as the endomorphism
of Tp(Σ) which associates with each vector tangent to Σ the variation of the normal along that
vector, the variation being evaluated via the spacetime connection ∇:

χ : Tp(Σ) −→ Tp(Σ)
v 7−→ ∇v n

(2.36)

This application is well defined (i.e. its image is in Tp(Σ)) since

n · χ(v) = n · ∇v n =
1

2
∇v(n · n) = 0, (2.37)

which shows that χ(v) ∈ Tp(Σ). If Σ is not a null hypersurface, the Weingarten map is uniquely
defined (modulo the choice +n or −n for the unit normal), whereas if Σ is null, the definition
of χ depends upon the choice of the null normal n.

The fundamental property of the Weingarten map is to be self-adjoint with respect to the
induced metric γ :

∀(u,v) ∈ Tp(Σ) × Tp(Σ), u · χ(v) = χ(u) · v , (2.38)

where the dot means the scalar product with respect to γ [considering u and v as vectors of
Tp(Σ)] or g [considering u and v as vectors of Tp(M)]. Indeed, one obtains from the definition
of χ

u · χ(v) = u · ∇v n = ∇v (u · n
︸ ︷︷ ︸

=0

) − n · ∇v u = −n · (∇u v − [u,v])

= −∇u (n · v
︸︷︷︸

=0

) + v · ∇u n + n · [u,v]

= v · χ(u) + n · [u,v]. (2.39)

Now the Frobenius theorem states that the commutator [u,v] of two vectors of the hyperplane
T (Σ) belongs to T (Σ) since T (Σ) is surface-forming (see e.g. Theorem B.3.1 in Wald’s textbook
[265]). It is straightforward to establish it:

~∇t · [u,v] = 〈dt, [u,v]〉 = ∇µt uν∇νv
µ −∇µt vν∇νu

µ

= uν [∇ν(∇µt vµ

︸ ︷︷ ︸

=0

) − vµ∇ν∇µt] − vν [∇ν(∇µt uµ

︸ ︷︷ ︸

=0

) − uµ∇ν∇µt]

= uµvν (∇ν∇µt −∇µ∇νt) = 0, (2.40)

where the last equality results from the lack of torsion of the connection ∇: ∇ν∇µt = ∇µ∇νt.

Since n is collinear to ~∇t, we have as well n · [u,v] = 0. Once inserted into Eq. (2.39), this
establishes that the Weingarten map is self-adjoint.
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The eigenvalues of the Weingarten map, which are all real numbers since χ is self-adjoint,
are called the principal curvatures of the hypersurface Σ and the corresponding eigenvectors
define the so-called principal directions of Σ. The mean curvature of the hypersurface Σ
is the arithmetic mean of the principal curvature:

H :=
1

3
(κ1 + κ2 + κ3) (2.41)

where the κi are the three eigenvalues of χ.

Remark : The curvatures defined above are not to be confused with the Gaussian curvature
introduced in Sec. 2.3.3. The latter is an intrinsic quantity, independent of the way the
manifold (Σ,γ) is embedded in (M,g). On the contrary the principal curvatures and mean
curvature depend on the embedding. For this reason, they are qualified of extrinsic.

The self-adjointness of χ implies that the bilinear form defined on Σ’s tangent space by

K : Tp(Σ) × Tp(Σ) −→ R

(u,v) 7−→ −u · χ(v)
(2.42)

is symmetric. It is called the second fundamental form of the hypersurface Σ. It is also called
the extrinsic curvature tensor of Σ (cf. the remark above regarding the qualifier ’extrinsic’).
K contains the same information as the Weingarten map.

Remark : The minus sign in the definition (2.42) is chosen so that K agrees with the con-
vention used in the numerical relativity community, as well as in the MTW book [189].
Some other authors (e.g. Carroll [79], Poisson [205], Wald [265]) choose the opposite
convention.

If we make explicit the value of χ in the definition (2.42), we get [see Eq. (2.7)]

∀(u,v) ∈ Tp(Σ) × Tp(Σ), K(u,v) = −u · ∇vn . (2.43)

We shall denote by K the trace of the bilinear form K with respect to the metric γ; it is the
opposite of the trace of the endomorphism χ and is equal to −3 times the mean curvature of Σ:

K := γijKij = −3H. (2.44)

2.3.5 Examples: surfaces embedded in the Euclidean space R3

Let us illustrate the previous definitions with some hypersurfaces of a space which we are very
familiar with, namely R3 endowed with the standard Euclidean metric. In this case, the di-
mension is reduced by one unit with respect to the spacetime M and the ambient metric g is
Riemannian (signature (+,+,+)) instead of Lorentzian. The hypersurfaces are 2-dimensional
submanifolds of R3, namely they are surfaces by the ordinary meaning of this word.

In this section, and in this section only, we change our index convention to take into account
that the base manifold is of dimension 3 and not 4: until the next section, the Greek indices run
in {1, 2, 3} and the Latin indices run in {1, 2}.
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Figure 2.2: Plane Σ as a hypersurface of the Euclidean space R3. Notice that the unit normal vector n stays
constant along Σ; this implies that the extrinsic curvature of Σ vanishes identically. Besides, the sum of angles of
any triangle lying in Σ is α + β + γ = π, which shows that the intrinsic curvature of (Σ, γ) vanishes as well.

Example 1 : a plane in R3

Let us take for Σ the simplest surface one may think of: a plane (cf. Fig. 2.2). Let us
consider Cartesian coordinates (Xα) = (x, y, z) on R3, such that Σ is the z = 0 plane.
The scalar function t defining Σ according to Eq. (2.21) is then simply t = z. (xi) =
(x, y) constitutes a coordinate system on Σ and the metric γ induced by g on Σ has the
components γij = diag(1, 1) with respect to these coordinates. It is obvious that this metric
is flat: Riem(γ) = 0. The unit normal n has components nα = (0, 0, 1) with respect
to the coordinates (Xα). The components of the gradient ∇n being simply given by the
partial derivatives ∇βnα = ∂nα/∂Xβ [the Christoffel symbols vanishes for the coordinates
(Xα)], we get immediately ∇n = 0. Consequently, the Weingarten map and the extrinsic
curvature vanish identically: χ = 0 and K = 0.

Example 2 : a cylinder in R3

Let us at present consider for Σ the cylinder defined by the equation t := ρ−R = 0, where
ρ :=

√

x2 + y2 and R is a positive constant — the radius of the cylinder (cf Fig. 2.3). Let
us introduce the cylindrical coordinates (xα) = (ρ, ϕ, z), such that ϕ ∈ [0, 2π), x = r cos ϕ
and y = r sinϕ. Then (xi) = (ϕ, z) constitutes a coordinate system on Σ. The components
of the induced metric in this coordinate system are given by

γij dxi dxj = R2dϕ2 + dz2. (2.45)

It appears that this metric is flat, as for the plane considered above. Indeed, the change of
coordinate η := R ϕ (remember R is a constant !) transforms the metric components into

γi′j′ dxi′ dxj′ = dη2 + dz2, (2.46)
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Figure 2.3: Cylinder Σ as a hypersurface of the Euclidean space R3. Notice that the unit normal vector n stays
constant when z varies at fixed ϕ, whereas its direction changes as ϕ varies at fixed z. Consequently the extrinsic
curvature of Σ vanishes in the z direction, but is non zero in the ϕ direction. Besides, the sum of angles of any
triangle lying in Σ is α + β + γ = π, which shows that the intrinsic curvature of (Σ, γ) is identically zero.

which exhibits the standard Cartesian shape.

To evaluate the extrinsic curvature of Σ, let us consider the unit normal n to Σ. Its
components with respect to the Cartesian coordinates (Xα) = (x, y, z) are

nα =

(

x
√

x2 + y2
,

y
√

x2 + y2
, 0

)

. (2.47)

It is then easy to compute ∇βnα = ∂nα/∂Xβ . We get

∇βnα = (x2 + y2)−3/2





y2 −xy 0
−xy x2 0

0 0 0



 . (2.48)

From Eq. (2.43), the components of the extrinsic curvature K with respect to the basis
(xi) = (ϕ, z) are

Kij = K(∂i,∂j) = −∇βnα (∂i)
α (∂j)

β, (2.49)

where (∂i) = (∂ϕ,∂z) = (∂/∂ϕ, ∂/∂z) denotes the natural basis associated with the coor-
dinates (ϕ, z) and (∂i)

α the components of the vector ∂i with respect to the natural basis
(∂α) = (∂x,∂y,∂z) associated with the Cartesian coordinates (Xα) = (x, y, z). Specifically,
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Figure 2.4: Sphere Σ as a hypersurface of the Euclidean space R3. Notice that the unit normal vector n changes
its direction when displaced on Σ. This shows that the extrinsic curvature of Σ does not vanish. Moreover all
directions being equivalent at the surface of the sphere, K is necessarily proportional to the induced metric γ,
as found by the explicit calculation leading to Eq. (2.58). Besides, the sum of angles of any triangle lying in Σ is
α + β + γ > π, which shows that the intrinsic curvature of (Σ, γ) does not vanish either.

since ∂ϕ = −y∂x + x∂y, one has (∂ϕ)α = (−y, x, 0) and (∂z)
α = (0, 0, 1). From Eq. (2.48)

and (2.49), we then obtain

Kij =

(
Kϕϕ Kϕz

Kzϕ Kzz

)

=

(
−R 0
0 0

)

. (2.50)

From Eq. (2.45), γij = diag(R−2, 1), so that the trace of K is

K = − 1

R
. (2.51)

Example 3 : a sphere in R3 Our final simple example is constituted by the sphere of radius R
(cf. Fig. 2.4), the equation of which is t := r−R = 0, with r =

√

x2 + y2 + z2. Introducing
the spherical coordinates (xα) = (r, θ, ϕ) such that x = r sin θ cos ϕ, y = r sin θ sin ϕ and
z = r cos θ, (xi) = (θ, ϕ) constitutes a coordinate system on Σ. The components of the
induced metric γ in this coordinate system are given by

γij dxi dxj = R2
(
dθ2 + sin2 θdϕ2

)
. (2.52)

Contrary to the previous two examples, this metric is not flat: the Ricci scalar, Ricci tensor
and Riemann tensor of (Σ,γ) are respectively4

ΣR =
2

R2
, Rij =

1

R2
γij, Ri

jkl =
1

R2

(
δi

kγjl − δi
lγjk

)
. (2.53)

4the superscript Σ has been put on the Ricci scalar to distinguish it from the sphere’s radius R.
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The non vanishing of the Riemann tensor is reflected by the well-known property that the
sum of angles of any triangle drawn at the surface of a sphere is larger than π (cf. Fig. 2.4).

The unit vector n normal to Σ (and oriented towards the exterior of the sphere) has the
following components with respect to the coordinates (Xα) = (x, y, z):

nα =

(

x
√

x2 + y2 + z2
,

y
√

x2 + y2 + z2
,

z
√

x2 + y2 + z2

)

. (2.54)

It is then easy to compute ∇βnα = ∂nα/∂Xβ to get

∇βnα = (x2 + y2 + z2)−3/2





y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2



 . (2.55)

The natural basis associated with the coordinates (xi) = (θ, ϕ) on Σ is

∂θ = (x2 + y2)−1/2
[
xz ∂x + yz ∂y − (x2 + y2)∂z

]
(2.56)

∂ϕ = −y ∂x + x∂y. (2.57)

The components of the extrinsic curvature tensor in this basis are obtained from Kij =
K(∂i,∂j) = −∇βnα (∂i)

α (∂j)
β. We get

Kij =

(
Kθθ Kθϕ

Kϕθ Kϕϕ

)

=

(
−R 0
0 −R sin2 θ

)

= − 1

R
γij. (2.58)

The trace of K with respect to γ is then

K = − 2

R
. (2.59)

With these examples, we have encountered hypersurfaces with intrinsic and extrinsic curva-
ture both vanishing (the plane), the intrinsic curvature vanishing but not the extrinsic one (the
cylinder), and with both curvatures non vanishing (the sphere). As we shall see in Sec. 2.5, the
extrinsic curvature is not fully independent from the intrinsic one: they are related by the Gauss
equation.

2.4 Spacelike hypersurface

From now on, we focus on spacelike hypersurfaces, i.e. hypersurfaces Σ such that the induced
metric γ is definite positive (Riemannian), or equivalently such that the unit normal vector n

is timelike (cf. Secs. 2.3.1 and 2.3.2).
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2.4.1 The orthogonal projector

At each point p ∈ Σ, the space of all spacetime vectors can be orthogonally decomposed as

Tp(M) = Tp(Σ) ⊕ Vect(n) , (2.60)

where Vect(n) stands for the 1-dimensional subspace of Tp(M) generated by the vector n.

Remark : The orthogonal decomposition (2.60) holds for spacelike and timelike hypersurfaces,
but not for the null ones. Indeed for any normal n to a null hypersurface Σ, Vect(n) ⊂
Tp(Σ).

The orthogonal projector onto Σ is the operator ~γ associated with the decomposition (2.60)
according to

~γ : Tp(M) −→ Tp(Σ)
v 7−→ v + (n · v)n.

(2.61)

In particular, as a direct consequence of n · n = −1, ~γ satisfies

~γ(n) = 0. (2.62)

Besides, it reduces to the identity operator for any vector tangent to Σ:

∀v ∈ Tp(Σ), ~γ(v) = v. (2.63)

According to Eq. (2.61), the components of ~γ with respect to any basis (eα) of Tp(M) are

γα
β = δα

β + nαnβ . (2.64)

We have noticed in Sec. 2.3.1 that the embedding Φ of Σ in M induces a mapping Tp(Σ) →
Tp(M) (push-forward) and a mapping T ∗

p (M) → T ∗
p (Σ) (pull-back), but does not provide any

mapping in the reverse ways, i.e. from Tp(M) to Tp(Σ) and from T ∗
p (Σ) to T ∗

p (M). The
orthogonal projector naturally provides these reverse mappings: from its very definition, it is a
mapping Tp(M) → Tp(Σ) and we can construct from it a mapping ~γ∗

M : T ∗
p (Σ) → T ∗

p (M) by
setting, for any linear form ω ∈ T ∗

p (Σ),

~γ∗
Mω : Tp(M) −→ R

v 7−→ ω(~γ(v)).
(2.65)

This clearly defines a linear form belonging to T ∗
p (M). Obviously, we can extend the operation

~γ∗
M to any multilinear form A acting on Tp(Σ), by setting

~γ∗
M

A : Tp(M)n −→ R

(v1, . . . ,vn) 7−→ A (~γ(v1), . . . , ~γ(vn)) .
(2.66)

Let us apply this definition to the bilinear form on Σ constituted by the induced metric γ: ~γ∗
M

γ

is then a bilinear form on M, which coincides with γ if its two arguments are vectors tangent
to Σ and which gives zero if any of its argument is a vector orthogonal to Σ, i.e. parallel to n.
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Since it constitutes an “extension” of γ to all vectors in Tp(M), we shall denote it by the same
symbol:

γ := ~γ∗
Mγ . (2.67)

This extended γ can be expressed in terms of the metric tensor g and the linear form n dual to
the normal vector n according to

γ = g + n ⊗ n . (2.68)

In components:

γαβ = gαβ + nα nβ. (2.69)

Indeed, if v and u are vectors both tangent to Σ, γ(u,v) = g(u,v)+〈n,u〉〈n,v〉 = g(u,v)+0 =
g(u,v), and if u = λn, then, for any v ∈ Tp(M), γ(u,v) = λg(n,v) + λ〈n,n〉〈n,v〉 =
λ[g(n,v) − 〈n,v〉] = 0. This establishes Eq. (2.68). Comparing Eq. (2.69) with Eq. (2.64)
justifies the notation ~γ employed for the orthogonal projector onto Σ, according to the convention
set in Sec. 2.2.2 [see Eq. (2.11)]: ~γ is nothing but the ”extended” induced metric γ with the
first index raised by the metric g.

Similarly, we may use the ~γ∗
M operation to extend the extrinsic curvature tensor K, defined

a priori as a bilinear form on Σ [Eq. (2.42)], to a bilinear form on M, and we shall use the same
symbol to denote this extension:

K := ~γ∗
MK . (2.70)

Remark : In this lecture, we will very often use such a “four-dimensional point of view”, i.e.
we shall treat tensor fields defined on Σ as if they were defined on M. For covariant
tensors (multilinear forms), if not mentioned explicitly, the four-dimensional extension is
performed via the ~γ∗

M operator, as above for γ and K. For contravariant tensors, the
identification is provided by the push-forward mapping Φ∗ discussed in Sec. 2.3.1. This
four-dimensional point of view has been advocated by Carter [80, 81, 82] and results in
an easier manipulation of tensors defined in Σ, by treating them as ordinary tensors on
M. In particular this avoids the introduction of special coordinate systems and complicated
notations.

In addition to the extension of three dimensional tensors to four dimensional ones, we use
the orthogonal projector ~γ to define an “orthogonal projection operation” for all tensors on M
in the following way. Given a tensor T of type

(
p
q

)

on M, we denote by ~γ∗T another tensor on

M, of the same type and such that its components in any basis (eα) of Tp(M) are expressed in
terms of those of T by

(~γ∗T )
α1...αp

β1...βq
= γα1

µ1
. . . γ

αp
µpγ

ν1
β1

. . . γ
νq

βq
T

µ1...µp
ν1...νq . (2.71)

Notice that for any multilinear form A on Σ, ~γ∗(~γ∗
M

A) = ~γ∗
M

A, for a vector v ∈ Tp(M),
~γ∗v = ~γ(v), for a linear form ω ∈ T ∗

p (M), ~γ∗ω = ω ◦ ~γ, and for any tensor T , ~γ∗T is tangent

to Σ, in the sense that ~γ∗T results in zero if one of its arguments is n or n.
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2.4.2 Relation between K and ∇n

A priori the unit vector n normal to Σ is defined only at points belonging to Σ. Let us consider
some extension of n in an open neighbourhood of Σ. If Σ is a level surface of some scalar field
t, such a natural extension is provided by the gradient of t, according to Eq. (2.30). Then the
tensor fields ∇n and ∇n are well defined quantities. In particular, we can introduce the vector

a := ∇nn. (2.72)

Since n is a timelike unit vector, it can be regarded as the 4-velocity of some observer, and a

is then the corresponding 4-acceleration. a is orthogonal to n and hence tangent to Σ, since
n · a = n · ∇nn = 1/2∇n(n · n) = 1/2∇n(−1) = 0.

Let us make explicit the definition of the tensor K extend to M by Eq. (2.70). From the
definition of the operator ~γ∗

M
[Eq. (2.66)] and the original definition of K [Eq. (2.43)], we have

∀(u,v) ∈ Tp(M)2, K(u,v) = K(~γ(u), ~γ(v)) = −~γ(u) · ∇~γ(v)n

= −~γ(u) · ∇v+(n·v)n n

= −[u + (n · u)n] · [∇vn + (n · v)∇nn]

= −u · ∇vn − (n · v)u · ∇nn
︸ ︷︷ ︸

=a

−(n · u)n · ∇vn
︸ ︷︷ ︸

=0

−(n · u)(n · v)n · ∇nn
︸ ︷︷ ︸

=0

= −u · ∇vn − (a · u)(n · v),

= −∇n(u,v) − 〈a,u〉〈n,v〉, (2.73)

where we have used the fact that n·n = −1 to set n·∇xn = 0 for any vector x. Since Eq. (2.73)
is valid for any pair of vectors (u,v) in Tp(M), we conclude that

∇n = −K − a ⊗ n . (2.74)

In components:

∇β nα = −Kαβ − aα nβ . (2.75)

Notice that Eq. (2.74) implies that the (extended) extrinsic curvature tensor is nothing but the
gradient of the 1-form n to which the projector operator ~γ∗ is applied:

K = −~γ∗
∇n . (2.76)

Remark : Whereas the bilinear form ∇n is a priori not symmetric, its projected part −K is
a symmetric bilinear form.

Taking the trace of Eq. (2.74) with respect to the metric g (i.e. contracting Eq. (2.75) with
gαβ) yields a simple relation between the divergence of the vector n and the trace of the extrinsic
curvature tensor:

K = −∇ · n . (2.77)
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2.4.3 Links between the ∇ and D connections

Given a tensor field T on Σ, its covariant derivative DT with respect to the Levi-Civita con-
nection D of the metric γ (cf. Sec. 2.3.3) is expressible in terms of the covariant derivative ∇T

with respect to the spacetime connection ∇ according to the formula

DT = ~γ∗
∇T , (2.78)

the component version of which is [cf. Eq. (2.71)]:

DρT
α1...αp

β1...βq
= γα1

µ1
· · · γαp

µp γν1
β1

· · · γνq

βq
γσ

ρ ∇σT
µ1...µp

ν1...νq . (2.79)

Various comments are appropriate: first of all, the T in the right-hand side of Eq. (2.78) should
be the four-dimensional extension ~γ∗

M
T provided by Eq. (2.66). Following the remark made

above, we write T instead of ~γ∗
M

T . Similarly the right-hand side should write ~γ∗
M

DT , so that
Eq. (2.78) is a equality between tensors on M. Therefore the rigorous version of Eq. (2.78) is

~γ∗
M

DT = ~γ∗[∇(~γ∗
M

T )]. (2.80)

Besides, even if T := ~γ∗
MT is a four-dimensional tensor, its suppport (domain of definition)

remains the hypersurface Σ. In order to define the covariant derivative ∇T , the support must
be an open set of M, which Σ is not. Accordingly, one must first construct some extension T ′ of
T in an open neighbourhood of Σ in M and then compute ∇T ′. The key point is that thanks
to the operator ~γ∗ acting on ∇T ′, the result does not depend of the choice of the extension T ′,
provided that T ′ = T at every point in Σ.

The demonstration of the formula (2.78) takes two steps. First, one can show easily that
~γ∗∇ (or more precisely the pull-back of ~γ∗∇~γ∗

M) is a torsion-free connection on Σ, for it satisfies
all the defining properties of a connection (linearity, reduction to the gradient for a scalar
field, commutation with contractions and Leibniz’ rule) and its torsion vanishes. Secondly, this
connection vanishes when applied to the metric tensor γ: indeed, using Eqs. (2.71) and (2.69),

(~γ∗
∇γ)αβγ = γµ

αγν
βγρ

γ∇ργµν

= γµ
αγν

βγρ
γ(∇ρ gµν
︸ ︷︷ ︸

=0

+∇ρnµ nν + nµ∇ρnν)

= γρ
γ(γµ

α γν
βnν

︸ ︷︷ ︸

=0

∇ρnµ + γµ
αnµ

︸ ︷︷ ︸

=0

∇ρnν)

= 0. (2.81)

Invoking the uniqueness of the torsion-free connection associated with a given non-degenerate
metric (the Levi-Civita connection, cf. Sec. 2.IV.2 of N. Deruelle’s lecture [108]), we conclude
that necessarily ~γ∗∇ = D.

One can deduce from Eq. (2.78) an interesting formula about the derivative of a vector field
v along another vector field u, when both vectors are tangent to Σ. Indeed, from Eq. (2.78),

(Duv)α = uσDσvα = uσγν
σ

︸ ︷︷ ︸

=uν

γα
µ∇νv

µ = uν
(
δα

µ + nαnµ

)
∇νv

µ

= uν∇νv
α + nαuν nµ∇νv

µ

︸ ︷︷ ︸

=−vµ∇νnµ

= uν∇νv
α − nαuνvµ∇µnν , (2.82)
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Figure 2.5: In the Euclidean space R3, the plane Σ is a totally geodesic hypersurface, for the geodesic between
two points A and B within (Σ, γ) (solid line) coincides with the geodesic in the ambient space (dashed line). On
the contrary, for the sphere, the two geodesics are distinct, whatever the position of points A and B.

where we have used nµvµ = 0 (v being tangent to Σ) to write nµ∇νv
µ = −vµ∇νnµ. Now, from

Eq. (2.43), −uνvµ∇µnν = K(u,v), so that the above formula becomes

∀(u,v) ∈ T (Σ) × T (Σ), Duv = ∇uv + K(u,v)n . (2.83)

This equation provides another interpretation of the extrinsic curvature tensor K: K measures
the deviation of the derivative of any vector of Σ along another vector of Σ, taken with the
intrinsic connection D of Σ from the derivative taken with the spacetime connection ∇. Notice
from Eq. (2.83) that this deviation is always in the direction of the normal vector n.

Consider a geodesic curve L in (Σ,γ) and the tangent vector u associated with some affine
parametrization of L. Then Duu = 0 and Eq. (2.83) leads to ∇uu = −K(u,u)n. If L were
a geodesic of (M,g), one should have ∇uu = κu, for some non-affinity parameter κ. Since u

is never parallel to n, we conclude that the extrinsic curvature tensor K measures the failure
of a geodesic of (Σ,γ) to be a geodesic of (M,g). Only in the case where K vanishes, the two
notions of geodesics coincide. For this reason, hypersurfaces for which K = 0 are called totally

geodesic hypersurfaces.

Example : The plane in the Euclidean space R3 discussed as Example 1 in Sec. 2.3.5 is a
totally geodesic hypersurface: K = 0. This is obvious since the geodesics of the plane are
straight lines, which are also geodesics of R3 (cf. Fig. 2.5). A counter-example is provided
by the sphere embedded in R3 (Example 3 in Sec. 2.3.5): given two points A and B, the
geodesic curve with respect to (Σ,γ) joining them is a portion of a sphere’s great circle,
whereas from the point of view of R3, the geodesic from A to B is a straight line (cf.
Fig. 2.5).
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2.5 Gauss-Codazzi relations

We derive here equations that will constitute the basis of the 3+1 formalism for general relativity.
They are decompositions of the spacetime Riemann tensor, 4Riem [Eq. (2.12)], in terms of
quantities relative to the spacelike hypersurface Σ, namely the Riemann tensor associated with
the induced metric γ, Riem [Eq. (2.34)] and the extrinsic curvature tensor of Σ, K.

2.5.1 Gauss relation

Let us consider the Ricci identity (2.34) defining the (three-dimensional) Riemann tensor Riem
as measuring the lack of commutation of two successive covariant derivatives with respect to the
connection D associated with Σ’s metric γ. The four-dimensional version of this identity is

DαDβvγ − DβDαvγ = Rγ
µαβ vµ, (2.84)

where v is a generic vector field tangent to Σ. Let us use formula (2.79) which relates the
D-derivative to the ∇-derivative, to write

DαDβvγ = Dα(Dβvγ) = γµ
αγν

βγγ
ρ∇µ(Dνv

ρ). (2.85)

Using again formula (2.79) to express Dνvρ yields

DαDβvγ = γµ
αγν

βγγ
ρ∇µ

(

γσ
νγ

ρ
λ∇σvλ

)

. (2.86)

Let us expand this formula by making use of Eq. (2.64) to write ∇µγσ
ν = ∇µ (δσ

ν + nσnν) =
∇µnσ nν + nσ∇µnν. Since γν

βnν = 0, we get

DαDβvγ = γµ
αγν

βγγ
ρ

(

nσ∇µnν γρ
λ∇σvλ + γσ

ν∇µnρ nλ∇σvλ

︸ ︷︷ ︸

=−vλ∇σnλ

+γσ
νγρ

λ∇µ∇σvλ

)

= γµ
αγν

βγγ
λ∇µnν nσ∇σvλ − γµ

αγσ
βγγ

ρv
λ∇µnρ ∇σnλ + γµ

αγσ
βγγ

λ∇µ∇σvλ

= −Kαβ γγ
λ nσ∇σvλ − Kγ

αKβλ vλ + γµ
αγσ

βγγ
λ∇µ∇σvλ, (2.87)

where we have used the idempotence of the projection operator ~γ, i.e. γγ
ργ

ρ
λ = γγ

λ to get
the second line and γµ

αγν
β∇µnν = −Kβα [Eq. (2.76)] to get the third one. When we permute

the indices α and β and substract from Eq. (2.87) to form DαDβvγ − DβDγvγ , the first term
vanishes since Kαβ is symmetric in (α, β). There remains

DαDβvγ − DβDγvγ =
(

KαµKγ
β − KβµKγ

α

)

vµ + γρ
αγσ

βγγ
λ

(

∇ρ∇σvλ −∇σ∇ρv
λ
)

. (2.88)

Now the Ricci identity (2.13) for the connection ∇ gives ∇ρ∇σvλ−∇σ∇ρv
λ = 4Rλ

µρσvµ. There-
fore

DαDβvγ − DβDγvγ =
(

KαµKγ
β − KβµKγ

α

)

vµ + γρ
αγσ

βγγ
λ
4Rλ

µρσvµ. (2.89)

Substituting this relation for the left-hand side of Eq. (2.84) results in
(

KαµKγ
β − KβµKγ

α

)

vµ + γρ
αγσ

βγγ
λ
4Rλ

µρσvµ = Rγ
µαβ vµ, (2.90)
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or equivalently, since vµ = γµ
σvσ,

γµ
αγν

βγγ
ργ

σ
λ
4Rρ

σµνvλ = Rγ
λαβ vλ +

(

Kγ
αKλβ − Kγ

βKαλ

)

vλ. (2.91)

In this identity, v can be replaced by any vector of T (M) without changing the results, thanks
to the presence of the projector operator ~γ and to the fact that both K and Riem are tangent
to Σ. Therefore we conclude that

γµ
αγν

βγγ
ργ

σ
δ
4Rρ

σµν = Rγ
δαβ + Kγ

αKδβ − Kγ
βKαδ . (2.92)

This is the Gauss relation.

If we contract the Gauss relation on the indices γ and α and use γµ
αγα

ρ = γµ
ρ = δµ

ρ +nµnρ,
we obtain an expression that lets appear the Ricci tensors 4R and R associated with g and γ

respectively:

γµ
αγν

β
4Rµν + γαµnνγρ

βnσ 4Rµ
νρσ = Rαβ + KKαβ − KαµKµ

β . (2.93)

We call this equation the contracted Gauss relation. Let us take its trace with respect to γ,
taking into account that Kµ

µ = Ki
i = K, KµνKµν = KijK

ij and

γαβγαµnνγρ
βnσ 4Rµ

νρσ = γρ
µnνnσ4Rµ

νρσ = 4Rµ
νµσ

︸ ︷︷ ︸

=4Rνσ

nνnσ+4Rµ
νρσnρnµnνnσ

︸ ︷︷ ︸

=0

= 4Rµνnµnν. (2.94)

We obtain
4R + 2 4Rµνnµnν = R + K2 − KijK

ij . (2.95)

Let us call this equation the scalar Gauss relation. It constitutes a generalization of Gauss’
famous Theorema Egregium (remarkable theorem) [52, 53]. It relates the intrinsic curvature
of Σ, represented by the Ricci scalar R, to its extrinsic curvature, represented by K2 −KijK

ij.
Actually, the original version of Gauss’ theorem was for two-dimensional surfaces embedded in
the Euclidean space R3. Since the curvature of the latter is zero, the left-hand side of Eq. (2.95)
vanishes identically in this case. Moreover, the metric g of the Euclidean space R3 is Riemannian,
not Lorentzian. Consequently the term K2 − KijK

ij has the opposite sign, so that Eq. (2.95)
becomes

R − K2 + KijK
ij = 0 (g Euclidean). (2.96)

This change of sign stems from the fact that for a Riemannian ambient metric, the unit normal
vector n is spacelike and the orthogonal projector is γα

β = δα
β−nαnβ instead of γα

β = δα
β+nαnβ

[the latter form has been used explicitly in the calculation leading to Eq. (2.87)]. Moreover, in
dimension 2, formula (2.96) can be simplified by letting appear the principal curvatures κ1 and
κ2 of Σ (cf. Sec. 2.3.4). Indeed, K can be diagonalized in an orthonormal basis (with respect
to γ) so that Kij = diag(κ1, κ2) and Kij = diag(κ1, κ2). Consequently, K = κ1 + κ2 and
KijK

ij = κ2
1 + κ2

2 and Eq. (2.96) becomes

R = 2κ1κ2 (g Euclidean, Σ dimension 2). (2.97)
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Example : We may check the Theorema Egregium (2.96) for the examples of Sec. 2.3.5. It
is trivial for the plane, since each term vanishes separately. For the cylinder of radius r,
R = 0, K = −1/r [Eq. (2.51)], KijK

ij = 1/r2 [Eq. (2.50)], so that Eq. (2.96) is satisfied.
For the sphere of radius r, R = 2/r2 [Eq. (2.53)], K = −2/r [Eq. (2.59)], KijK

ij = 2/r2

[Eq. (2.58)], so that Eq. (2.96) is satisfied as well.

2.5.2 Codazzi relation

Let us at present apply the Ricci identity (2.13) to the normal vector n (or more precisely to
any extension of n around Σ, cf. Sec. 2.4.2):

(∇α∇β −∇β∇α) nγ = 4Rγ
µαβ nµ. (2.98)

If we project this relation onto Σ, we get

γµ
αγν

βγγ
ρ
4Rρ

σµνnσ = γµ
αγν

βγγ
ρ (∇µ∇νn

ρ −∇ν∇µnρ) . (2.99)

Now, from Eq. (2.75),

γµ
αγν

βγγ
ρ∇µ∇νn

ρ = γµ
αγν

βγγ
ρ∇µ (−Kρ

ν − aρnν)

= −γµ
αγν

βγγ
ρ (∇µKρ

ν + ∇µaρ nν + aρ∇µnν)

= −DαKγ
β + aγKαβ , (2.100)

where we have used Eq. (2.79), as well as γν
βnν = 0, γγ

ρaρ = aγ , and γµ
αγν

β∇µnν = −Kαβ to
get the last line. After permutation of the indices α and β and substraction from Eq. (2.100),
taking into account the symmetry of Kαβ, we see that Eq. (2.99) becomes

γγ
ρ nσ γµ

αγν
β

4Rρ
σµν = DβKγ

α − DαKγ
β . (2.101)

This is the Codazzi relation, also called Codazzi-Mainardi relation in the mathematical
litterature [52].

Remark : Thanks to the symmetries of the Riemann tensor (cf. Sec. 2.2.3), changing the
index contracted with n in Eq. (2.101) (for instance considering nργ

γσ γµ
αγν

β
4Rρ

σµν or

γγ
ρ γσ

α nµ γν
β

4Rρ
σµν ) would not give an independent relation: at most it would result in

a change of sign of the right-hand side.

Contracting the Codazzi relation on the indices α and γ yields to

γµ
ρ nσγν

β
4Rρ

σµν = DβK − DµKµ
β , (2.102)

with γµ
ρ nσγν

β
4Rρ

σµν = (δµ
ρ + nµnρ)nσγν

β
4Rρ

σµν = nσγν
β

4Rσν + γν
β

4Rρ
σµνnρn

σnµ. Now,
from the antisymmetry of the Riemann tensor with respect to its first two indices [Eq. (2.14),
the last term vanishes, so that one is left with

γµ
αnν 4Rµν = DαK − DµKµ

α . (2.103)

We shall call this equation the contracted Codazzi relation.
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Example : The Codazzi relation is trivially satisfied by the three examples of Sec. 2.3.5 because
the Riemann tensor vanishes for the Euclidean space R3 and for each of the considered
surfaces, either K = 0 (plane) or K is constant on Σ, in the sense that DK = 0.
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Chapter 3

Geometry of foliations
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3.1 Introduction

In the previous chapter, we have studied a single hypersurface Σ embedded in the spacetime
(M,g). At present, we consider a continuous set of hypersurfaces (Σt)t∈R

that covers the man-
ifold M. This is possible for a wide class of spacetimes to which we shall restrict ourselves: the
so-called globally hyperbolic spacetimes. Actually the latter ones cover most of the spacetimes
of astrophysical or cosmological interest. Again the title of this chapter is “Geometry...”, since
as in Chap. 2, all the results are independent of the Einstein equation.

3.2 Globally hyperbolic spacetimes and foliations

3.2.1 Globally hyperbolic spacetimes

A Cauchy surface is a spacelike hypersurface Σ in M such that each causal (i.e. timelike or
null) curve without end point intersects Σ once and only once [156]. Equivalently, Σ is a Cauchy
surface iff its domain of dependence is the whole spacetime M. Not all spacetimes admit a
Cauchy surface. For instance spacetimes with closed timelike curves do not. Other examples
are provided in Ref. [131]. A spacetime (M,g) that admits a Cauchy surface Σ is said to be
globally hyperbolic. The name globally hyperbolic stems from the fact that the scalar wave
equation is well posed,
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Figure 3.1: Foliation of the spacetime M by a family of spacelike hypersurfaces (Σt)t∈R.

The topology of a globally hyperbolic spacetime M is necessarily Σ × R (where Σ is the
Cauchy surface entering in the definition of global hyperbolicity).

Remark : The original definition of a globally hyperbolic spacetime is actually more technical
that the one given above, but the latter has been shown to be equivalent to the original one
(see e.g. Ref. [88] and references therein).

3.2.2 Definition of a foliation

Any globally hyperbolic spacetime (M,g) can be foliated by a family of spacelike hypersurfaces
(Σt)t∈R

. By foliation or slicing , it is meant that there exists a smooth scalar field t̂ on M,
which is regular (in the sense that its gradient never vanishes), such that each hypersurface is a
level surface of this scalar field:

∀t ∈ R, Σt :=
{
p ∈ M, t̂(p) = t

}
. (3.1)

Since t̂ is regular, the hypersurfaces Σt are non-intersecting:

Σt ∩ Σt′ = ∅ for t 6= t′. (3.2)

In the following, we do no longer distinguish between t and t̂, i.e. we skip the hat in the name
of the scalar field. Each hypersurface Σt is called a leaf or a slice of the foliation. We assume
that all Σt’s are spacelike and that the foliation covers M (cf. Fig. 3.1):

M =
⋃

t∈R

Σt. (3.3)
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Figure 3.2: The point p′ deduced from p ∈ Σt by the displacement δtm belongs to Σt+δt, i.e. the hypersurface
Σt is transformed to Σt+δt by the vector field δtm (Lie dragging).

3.3 Foliation kinematics

3.3.1 Lapse function

As already noticed in Sec. 2.3.2, the timelike and future-directed unit vector n normal to the
slice Σt is necessarily collinear to the vector ~∇t associated with the gradient 1-form dt. Hence
we may write

n := −N ~∇t (3.4)

with

N :=
(

− ~∇t · ~∇t
)−1/2

=
(

−〈dt, ~∇t〉
)−1/2

. (3.5)

The minus sign in (3.4) is chosen so that the vector n is future-oriented if the scalar field t
is increasing towards the future. Notice that the value of N ensures that n is a unit vector:
n ·n = −1. The scalar field N hence defined is called the lapse function. The name lapse has
been coined by Wheeler in 1964 [267].

Remark : In most of the numerical relativity literature, the lapse function is denoted α instead
of N . We follow here the ADM [23] and MTW [189] notation.

Notice that by construction [Eq. (3.5)],

N > 0. (3.6)

In particular, the lapse function never vanishes for a regular foliation. Equation (3.4) also
says that −N is the proportionality factor between the gradient 1-form dt and the 1-form n

associated to the vector n by the metric duality:

n = −N dt . (3.7)
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3.3.2 Normal evolution vector

Let us define the normal evolution vector as the timelike vector normal to Σt such that

m := Nn . (3.8)

Since n is a unit vector, the scalar square of m is

m · m = −N2. (3.9)

Besides, we have
〈dt,m〉 = N〈dt,n〉 = N2 (−〈dt, ~∇t〉)

︸ ︷︷ ︸

=N−2

= 1, (3.10)

where we have used Eqs. (3.4) and (3.5). Hence

〈dt,m〉 = ∇m t = mµ∇µ t = 1 . (3.11)

This relation means that the normal vector m is “adapted” to the scalar field t, contrary to
the normal vector n. A geometrical consequence of this property is that the hypersurface Σt+δt

can be obtained from the neighbouring hypersurface Σt by the small displacement δt m of each
point of Σt. Indeed consider some point p in Σt and displace it by the infinitesimal vector δt m

to the point p′ = p + δt m (cf. Fig. 3.2). From the very definition of the gradient 1-form dt, the
value of the scalar field t at p′ is

t(p′) = t(p + δt m) = t(p) + 〈dt, δt m〉 = t(p) + δt 〈dt,m〉
︸ ︷︷ ︸

=1

= t(p) + δt. (3.12)

This last equality shows that p′ ∈ Σt+δt. Hence the vector δt m carries the hypersurface Σt into
the neighbouring one Σt+δt. One says equivalently that the hypersurfaces (Σt) are Lie dragged

by the vector m. This justifies the name normal evolution vector given to m.
An immediate consequence of the Lie dragging of the hypersurfaces Σt by the vector m is

that the Lie derivative along m of any vector tangent to Σt is also a vector tangent to Σt:

∀v ∈ T (Σt), Lm v ∈ T (Σt) . (3.13)

This is obvious from the geometric definition of the Lie derivative (cf. Fig. 3.3). The reader not
familiar with the concept of Lie derivative may consult Appendix A.

3.3.3 Eulerian observers

Since n is a unit timelike vector, it can be regarded as the 4-velocity of some observer. We call
such observer an Eulerian observer. It follows that the worldlines of the Eulerian observers
are orthogonal to the hypersurfaces Σt. Physically, this means that the hypersurface Σt is locally
the set of events that are simultaneous from the point of view of the Eulerian observer, according
to Einstein’s simultaneity convention.
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Figure 3.3: Geometrical construction showing that Lm v ∈ T (Σt) for any vector v tangent to the hypersurface
Σt: on Σt, a vector can be identified to a infinitesimal displacement between two points, p and q say. These points
are transported onto the neighbouring hypersurface Σt+δt along the field lines of the vector field m (thin lines on
the figure) by the diffeomorphism Φδt associated with m: the displacement between p and Φδt(p) is the vector
δtm. The couple of points (Φδt(p),Φδt(q)) defines the vector Φδtv(t), which is tangent to Σt+δt since both points
Φδt(p) and Φδt(q) belong to Σt+δt. The Lie derivative of v along m is then defined by the difference between the
value of the vector field v at the point Φδt(p), i.e. v(t + δt), and the vector transported from Σt along m’s field
lines, i.e. Φδtv(t) : Lm v(t + δt) = limδt→0[v(t + δt) − Φδtv(t)]/δt. Since both vectors v(t + δt) and Φδtv(t) are
in T (Σt+δt), it follows then that Lm v(t + δt) ∈ T (Σt+δt).

Remark : The Eulerian observers are sometimes called fiducial observers (e.g. [258]). In
the special case of axisymmetric and stationary spacetimes, they are called locally non-

rotating observers [34] or zero-angular-momentum observers (ZAMO) [258].

Let us consider two close events p and p′ on the worldline of some Eulerian observer. Let t be
the “coordinate time” of the event p and t + δt (δt > 0) that of p′, in the sense that p ∈ Σt and
p′ ∈ Σt+δt. Then p′ = p + δt m, as above. The proper time δτ between the events p and p′, as
measured the Eulerian observer, is given by the metric length of the vector linking p and p′:

δτ =
√

−g(δt m, δt m) =
√

−g(m,m) δt. (3.14)

Since g(m,m) = −N2 [Eq. (3.9)], we get (assuming N > 0)

δτ = N δt . (3.15)

This equality justifies the name lapse function given to N : N relates the “coordinate time” t
labelling the leaves of the foliation to the physical time τ measured by the Eulerian observer.

The 4-acceleration of the Eulerian observer is

a = ∇nn. (3.16)

As already noticed in Sec. 2.4.2, the vector a is orthogonal to n and hence tangent to Σt.
Moreover, it can be expressed in terms of the spatial gradient of the lapse function. Indeed, by
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means Eq. (3.7), we have

aα = nµ∇µnα = −nµ∇µ(N∇αt) = −nµ∇µN∇αt − Nnµ ∇µ∇αt
︸ ︷︷ ︸

=∇α∇µt

=
1

N
nαnµ∇µN + Nnµ∇α

(

− 1

N
nµ

)

=
1

N
nαnµ∇µN +

1

N
∇αN nµnµ

︸ ︷︷ ︸

=−1

−nµ∇αnµ
︸ ︷︷ ︸

=0

=
1

N
(∇αN + nαnµ∇µN) =

1

N
γµ

α∇µN

=
1

N
DαN = Dα ln N, (3.17)

where we have used the torsion-free character of the connection ∇ to write ∇µ∇αt = ∇α∇µt,
as well as the expression (2.64) of the orthogonal projector onto Σt, ~γ, and the relation (2.79)
between ∇ and D derivatives. Thus we have

a = D ln N and a = ~D ln N . (3.18)

Thus, the 4-acceleration of the Eulerian observer appears to be nothing but the gradient within
(Σt,γ) of the logarithm of the lapse function. Notice that since a spatial gradient is always
tangent to Σt, we recover immediately from formula (3.18) that n · a = 0.

Remark : Because they are hypersurface-orthogonal, the congruence formed by all the Eulerian
observers’ worldlines has a vanishing vorticity, hence the name “non-rotating” observer
given sometimes to the Eulerian observer.

3.3.4 Gradients of n and m

Substituting Eq. (3.18) for a into Eq. (2.74) leads to the following relation between the extrinsic
curvature tensor, the gradient of n and the spatial gradient of the lapse function:

∇n = −K − D ln N ⊗ n , (3.19)

or, in components:

∇β nα = −Kαβ − Dα ln N nβ . (3.20)

The covariant derivative of the normal evolution vector is deduced from ∇m = ∇(Nn) =
N∇n + n ⊗ ∇N . We get

∇m = −N ~K − ~DN ⊗ n + n ⊗ ∇N , (3.21)

or, in components:

∇β mα = −NKα
β − DαN nβ + nα∇βN . (3.22)
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3.3.5 Evolution of the 3-metric

The evolution of Σt’s metric γ is naturally given by the Lie derivative of γ along the normal
evolution vector m (see Appendix A). By means of Eqs. (A.8) and (3.22), we get

Lm γαβ = mµ∇µγαβ + γµβ∇αmµ + γαµ∇βmµ

= Nnµ∇µ(nαnβ) − γµβ (NKµ
α + DµN nα − nµ∇αN)

−γαµ

(

NKµ
β + DµN nβ − nµ∇βN

)

= N( nµ∇µnα
︸ ︷︷ ︸

aα
︸︷︷︸

=N−1DαN

nβ + nα nµ∇µnβ
︸ ︷︷ ︸

aβ
︸︷︷︸

=N−1DβN

) − NKβα − DβN nα − NKαβ − DαN nβ

= −2NKαβ. (3.23)

Hence the simple result:

Lm γ = −2NK . (3.24)

One can deduce easily from this relation the value of the Lie derivative of the 3-metric along
the unit normal n. Indeed, since m = Nn,

Lm γαβ = LNnγαβ

= Nnµ∇µγαβ + γµβ∇α(Nnµ) + γαµ∇β(Nnµ)

= Nnµ∇µγαβ + γµβnµ

︸ ︷︷ ︸

=0

∇αN + Nγµβ∇αnµ + γαµnµ

︸ ︷︷ ︸

=0

∇βN + Nγαµ∇βnµ

= NLn γαβ . (3.25)

Hence

Ln γ =
1

N
Lm γ. (3.26)

Consequently, Eq. (3.24) leads to

K = −1

2
Ln γ . (3.27)

This equation sheds some new light on the extrinsic curvature tensor K. In addition to being
the projection on Σt of the gradient of the unit normal to Σt [cf. Eq. (2.76)],

K = −~γ∗
∇n, (3.28)

as well as the measure of the difference between D-derivatives and ∇-derivatives for vectors
tangent to Σt [cf. Eq. (2.83)],

∀(u,v) ∈ T (Σ)2, K(u,v)n = Duv − ∇uv, (3.29)

K is also minus one half the Lie derivative of Σt’s metric along the unit timelike normal.
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Remark : In many numerical relativity articles, Eq. (3.27) is used to define the extrinsic cur-
vature tensor of the hypersurface Σt. It is worth to keep in mind that this equation has
a meaning only because Σt is member of a foliation. Indeed the right-hand side is the
derivative of the induced metric in a direction which is not parallel to the hypersurface
and therefore this quantity could not be defined for a single hypersurface, as considered in
Chap. 2.

3.3.6 Evolution of the orthogonal projector

Let us now evaluate the Lie derivative of the orthogonal projector onto Σt along the normal
evolution vector. Using Eqs. (A.8) and (3.22), we have

Lm γα
β = mµ∇µγα

β − γµ
β∇µmα + γα

µ∇βmµ

= Nnµ∇µ(nαnβ) + γµ
β

(
NKα

µ + DαN nµ − nα∇µN
)

−γα
µ

(

NKµ
β + DµN nβ − nµ∇βN

)

= N( nµ∇µnα

︸ ︷︷ ︸

=N−1DαN

nβ + nα nµ∇µnβ
︸ ︷︷ ︸

=N−1DβN

) + NKα
β − nαDβN − NKα

β − DαN nβ

= 0, (3.30)

i.e.
Lm ~γ = 0 . (3.31)

An important consequence of this is that the Lie derivative along m of any tensor field T tangent
to Σt is a tensor field tangent to Σt:

T tangent to Σt =⇒ Lm T tangent to Σt . (3.32)

Indeed a distinctive feature of a tensor field tangent to Σt is

~γ∗T = T . (3.33)

Assume for instance that T is a tensor field of type
(1

1

)
. Then the above equation writes [cf.

Eq. (2.71)]
γα

µγν
βT µ

ν = Tα
β. (3.34)

Taking the Lie derivative along m of this relation, employing the Leibniz rule and making use
of Eq. (3.31), leads to

Lm

(
γα

µγν
βT µ

ν

)
= Lm Tα

β

Lm γα
µ

︸ ︷︷ ︸

=0

γν
βT µ

ν + γα
µ Lm γν

β
︸ ︷︷ ︸

=0

T µ
ν + γα

µγν
β Lm T µ

ν = Lm Tα
β

~γ∗
Lm T = Lm T . (3.35)

This shows that Lm T is tangent to Σt. The proof is readily extended to any type of tensor field
tangent to Σt. Notice that the property (3.32) generalizes that obtained for vectors in Sec. 3.3.2
[cf. Eq. (3.13)].
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Remark : An illustration of property (3.32) is provided by Eq. (3.24), which says that Lm γ

is −2NK: K being tangent to Σt, we have immediately that Lm γ is tangent to Σt.

Remark : Contrary to Ln γ and Lm γ, which are related by Eq. (3.26), Ln ~γ and Lm ~γ are
not proportional. Indeed a calculation similar to that which lead to Eq. (3.26) gives

Ln ~γ =
1

N
Lm ~γ + n ⊗ D ln N. (3.36)

Therefore the property Lm ~γ = 0 implies

Ln ~γ = n ⊗ D ln N 6= 0. (3.37)

Hence the privileged role played by m regarding the evolution of the hypersurfaces Σt is
not shared by n; this merely reflects that the hypersurfaces are Lie dragged by m, not by
n.

3.4 Last part of the 3+1 decomposition of the Riemann tensor

3.4.1 Last non trivial projection of the spacetime Riemann tensor

In Chap. 2, we have formed the fully projected part of the spacetime Riemann tensor, i.e.
~γ∗ 4Riem, yielding the Gauss equation [Eq. (2.92)], as well as the part projected three times
onto Σt and once along the normal n, yielding the Codazzi equation [Eq. (2.101)]. These two
decompositions involve only fields tangents to Σt and their derivatives in directions parallel to
Σt, namely γ, K, Riem and DK. This is why they could be defined for a single hypersurface.
In the present section, we form the projection of the spacetime Riemann tensor twice onto Σt

and twice along n. As we shall see, this involves a derivative in the direction normal to the
hypersurface.

As for the Codazzi equation, the starting point of the calculation is the Ricci identity applied
to the vector n, i.e. Eq. (2.98). But instead of projecting it totally onto Σt, let us project it
only twice onto Σt and once along n:

γαµnσγν
β(∇ν∇σnµ −∇σ∇νn

µ) = γαµnσγν
β

4Rµ
ρνσnρ. (3.38)

By means of Eq. (3.20), we get successively

γαµ nργν
β nσ 4Rµ

ρνσ = γαµnσγν
β [−∇ν(K

µ
σ + Dµ ln N nσ) + ∇σ(Kµ

ν + Dµ ln N nν)]

= γαµnσγν
β[ −∇νK

µ
σ −∇νnσ Dµ ln N − nσ∇νD

µ ln N

+∇σKµ
ν + ∇σnν Dµ ln N + nν∇σDµ ln N ]

= γαµγν
β [Kµ

σ∇νn
σ + ∇νD

µ ln N + nσ∇σKµ
ν + Dν ln N Dµ ln N ]

= −KασKσ
β + DβDα ln N + γµ

αγν
β nσ∇σKµν + Dα ln NDβ ln N

= −KασKσ
β +

1

N
DβDαN + γµ

αγν
β nσ∇σKµν . (3.39)
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Note that we have used Kµ
σnσ = 0, nσ∇νnσ = 0, nσnσ = −1, nσ∇σnν = Dν ln N and γν

βnν = 0

to get the third equality. Let us now show that the term γµ
αγν

β nσ∇σKµν is related to Lm K.
Indeed, from the expression (A.8) of the Lie derivative:

Lm Kαβ = mµ∇µKαβ + Kµβ∇αmµ + Kαµ∇βmµ. (3.40)

Substituting Eq. (3.22) for ∇αmµ and ∇βmµ leads to

Lm Kαβ = Nnµ∇µKαβ − 2NKαµKµ
β − KαµDµN nβ − KβµDµN nα. (3.41)

Let us project this equation onto Σt, i.e. apply the operator ~γ∗ to both sides. Using the
property ~γ∗Lm K = Lm K, which stems from the fact that Lm K is tangent to Σt since K is
[property (3.32)], we get

Lm Kαβ = N γµ
αγν

β nσ∇σKµν − 2NKαµKµ
β. (3.42)

Extracting γµ
αγν

β nσ∇σKµν from this relation and plugging it into Eq. (3.39) results in

γαµ nργν
β nσ 4Rµ

ρνσ =
1

N
Lm Kαβ +

1

N
DαDβN + KαµKµ

β . (3.43)

Note that we have written DβDαN = DαDβN (D has no torsion). Equation (3.43) is the
relation we sought. It is sometimes called the Ricci equation [not to be confused with the
Ricci identity (2.13)]. Together with the Gauss equation (2.92) and the Codazzi equation (2.101),
it completes the 3+1 decomposition of the spacetime Riemann tensor. Indeed the part projected
three times along n vanish identically, since 4Riem(n,n,n, .) = 0 and 4Riem(.,n,n,n) = 0
thanks to the partial antisymmetry of the Riemann tensor. Accordingly one can project 4Riem
at most twice along n to get some non-vanishing result.

It is worth to note that the left-hand side of the Ricci equation (3.43) is a term which appears
in the contracted Gauss equation (2.93). Therefore, by combining the two equations, we get a
formula which does no longer contain the spacetime Riemann tensor, but only the spacetime
Ricci tensor:

γµ
αγν

β
4Rµν = − 1

N
Lm Kαβ − 1

N
DαDβN + Rαβ + KKαβ − 2KαµKµ

β , (3.44)

or in index-free notation:

~γ∗ 4R = − 1

N
Lm K − 1

N
DDN + R + K K − 2K · ~K . (3.45)

3.4.2 3+1 expression of the spacetime scalar curvature

Let us take the trace of Eq. (3.45) with respect to the metric γ. This amounts to contracting
Eq. (3.44) with γαβ . In the left-hand side, we have γαβγµ

αγν
β = γµν and in the right-hand we
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can limit the range of variation of the indices to {1, 2, 3} since all the involved tensors are spatial
ones [including Lm K, thanks to the property (3.32)] Hence

γµν4Rµν = − 1

N
γijLm Kij −

1

N
DiD

iN + R + K2 − 2KijK
ij. (3.46)

Now γµν4Rµν = (gµν + nµnν)4Rµν = 4R + 4Rµνn
µnν and

− γijLm Kij = −Lm (γijKij
︸ ︷︷ ︸

=K

) + KijLm γij , (3.47)

with Lm γij evaluted from the very definition of the inverse 3-metric:

γikγ
kj = δj

i

⇒ Lm γik γkj + γik Lm γkj = 0

⇒ γilγkjLm γlk + γilγlk
︸ ︷︷ ︸

=δi
k

Lm γlj = 0

⇒ Lm γij = −γikγjlLm γkl

⇒ Lm γij = 2NγikγklKkl

⇒ Lm γij = 2NKij , (3.48)

where we have used Eq. (3.24). Pluging Eq. (3.48) into Eq. (3.47) gives

− γijLm Kij = −Lm K + 2NKijK
ij. (3.49)

Consequently Eq. (3.46) becomes

4R + 4Rµνn
µnν = R + K2 − 1

N
Lm K − 1

N
DiD

iN . (3.50)

It is worth to combine with equation with the scalar Gauss relation (2.95) to get rid of the
Ricci tensor term 4Rµνnµnν and obtain an equation which involves only the spacetime scalar
curvature 4R:

4R = R + K2 + KijK
ij − 2

N
Lm K − 2

N
DiD

iN . (3.51)
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4.1 Einstein equation in 3+1 form

4.1.1 The Einstein equation

After the first two chapters devoted to the geometry of hypersurfaces and foliations, we are now
back to physics: we consider a spacetime (M,g) such that g obeys to the Einstein equation
(with zero cosmological constant):

4R − 1

2
4R g = 8πT , (4.1)

where 4R is the Ricci tensor associated with g [cf. Eq. (2.16)], 4R the corresponding Ricci scalar,
and T is the matter stress-energy tensor.

We shall also use the equivalent form

4R = 8π

(

T − 1

2
T g

)

, (4.2)

where T := gµνTµν stands for the trace (with respect to g) of the stress-energy tensor T .
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Let us assume that the spacetime (M,g) is globally hyperbolic (cf. Sec. 3.2.1) and let be
(Σt)t∈R by a foliation of M by a family of spacelike hypersurfaces. The foundation of the 3+1
formalism amounts to projecting the Einstein equation (4.1) onto Σt and perpendicularly to Σt.
To this purpose let us first consider the 3+1 decomposition of the stress-energy tensor.

4.1.2 3+1 decomposition of the stress-energy tensor

From the very definition of a stress-energy tensor, the matter energy density as measured
by the Eulerian observer introduced in Sec. 3.3.3 is

E := T (n,n) . (4.3)

This follows from the fact that the 4-velocity of the Eulerian observer in the unit normal vector
n.

Similarly, also from the very definition of a stress-energy tensor, the matter momentum

density as measured by the Eulerian observer is the linear form

p := −T (n, ~γ(.)) , (4.4)

i.e. the linear form defined by

∀v ∈ Tp(M), 〈p,v〉 = −T (n, ~γ(v)). (4.5)

In components:

pα = −Tµν nµ γν
α. (4.6)

Notice that, thanks to the projector ~γ, p is a linear form tangent to Σt.

Remark : The momentum density p is often denoted j. Here we reserve the latter for electric
current density.

Finally, still from the very definition of a stress-energy tensor, the matter stress tensor

as measured by the Eulerian observer is the bilinear form

S := ~γ∗T , (4.7)

or, in components,

Sαβ = Tµνγ
µ
αγν

β (4.8)

As for p, S is a tensor field tangent to Σt. Let us recall the physical interpretation of the stress
tensor S: given two spacelike unit vectors e and e′ (possibly equal) in the rest frame of the
Eulerian observer (i.e. two unit vectors orthogonal to n), S(e,e′) is the force in the direction e

acting on the unit surface whose normal is e′. Let us denote by S the trace of S with respect
to the metric γ (or equivalently with respect to the metric g):

S := γijSij = gµνSµν . (4.9)
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The knowledge of (E,p,S) is sufficient to reconstruct T since

T = S + n ⊗ p + p ⊗ n + E n ⊗ n . (4.10)

This formula is easily established by substituting Eq. (2.64) for γα
β into Eq. (4.8) and expanding

the result. Taking the trace of Eq. (4.10) with respect to the metric g yields

T = S + 2 〈p,n〉
︸ ︷︷ ︸

=0

+E 〈n,n〉
︸ ︷︷ ︸

=−1

, (4.11)

hence
T = S − E. (4.12)

4.1.3 Projection of the Einstein equation

With the above 3+1 decomposition of the stress-energy tensor and the 3+1 decompositions of
the spacetime Ricci tensor obtained in Chapters 2 and 3, we are fully equipped to perform the
projection of the Einstein equation (4.1) onto the hypersurface Σt and along its normal. There
are only three possibilities:

(1) Full projection onto Σt

This amounts to applying the operator ~γ∗ to the Einstein equation. It is convenient to take the
version (4.2) of the latter; we get

~γ∗ 4R = 8π

(

~γ∗T − 1

2
T ~γ∗g

)

. (4.13)

~γ∗ 4R is given by Eq. (3.45) (combination of the contracted Gauss equation with the Ricci
equation), ~γ∗T is by definition S, T = S − E [Eq. (4.12)], and ~γ∗g is simply γ. Therefore

− 1

N
Lm K − 1

N
DDN + R + K K − 2K · ~K = 8π

[

S − 1

2
(S − E)γ

]

, (4.14)

or equivalently

Lm K = −DDN + N
{

R + KK − 2K · ~K + 4π [(S − E)γ − 2S]
}

. (4.15)

In components:

Lm Kαβ = −DαDβN + N
{

Rαβ + KKαβ − 2KαµKµ
β + 4π [(S − E)γαβ − 2Sαβ ]

}

. (4.16)

Notice that each term in the above equation is a tensor field tangent to Σt. For Lm K, this
results from the fundamental property (3.32) of Lm . Consequently, we may restrict to spatial
indices without any loss of generality and write Eq. (4.16) as

Lm Kij = −DiDjN + N
{

Rij + KKij − 2KikK
k
j + 4π [(S − E)γij − 2Sij ]

}

. (4.17)
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(2) Full projection perpendicular to Σt

This amounts to applying the Einstein equation (4.1), which is an identity between bilinear
forms, to the couple (n,n); we get, since g(n,n) = −1,

4R(n,n) +
1

2
4R = 8πT (n,n). (4.18)

Using the scalar Gauss equation (2.95), and noticing that T (n,n) = E [Eq. (4.3)] yields

R + K2 − KijK
ij = 16πE . (4.19)

This equation is called the Hamiltonian constraint. The word ‘constraint’ will be justified
in Sec. 4.4.3 and the qualifier ‘Hamiltonian’ in Sec. 4.5.2.

(3) Mixed projection

Finally, let us project the Einstein equation (4.1) once onto Σt and once along the normal n:

4R(n, ~γ(.)) − 1

2
4R g(n, ~γ(.))
︸ ︷︷ ︸

=0

= 8πT (n, ~γ(.)). (4.20)

By means of the contracted Codazzi equation (2.103) and T (n, ~γ(.)) = −p [Eq. (4.4)], we get

D · ~K − DK = 8πp , (4.21)

or, in components,

DjK
j
i − DiK = 8πpi . (4.22)

This equation is called the momentum constraint. Again, the word ‘constraint’ will be
justified in Sec. 4.4.

Summary

The Einstein equation is equivalent to the system of three equations: (4.15), (4.19) and (4.21).
Equation (4.15) is a rank 2 tensorial (bilinear forms) equation within Σt, involving only sym-
metric tensors: it has therefore 6 independent components. Equation (4.19) is a scalar equation
and Eq. (4.21) is a rank 1 tensorial (linear forms) within Σt: it has therefore 3 independent
components. The total number of independent components is thus 6 + 1 + 3 = 10, i.e. the same
as the original Einstein equation (4.1).

4.2 Coordinates adapted to the foliation

4.2.1 Definition of the adapted coordinates

The system (4.15)+(4.19)+(4.21) is a system of tensorial equations. In order to transform it
into a system of partial differential equations (PDE), one must introduce coordinates on the
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Figure 4.1: Coordinates (xi) on the hypersurfaces Σt: each line xi = const cuts across the foliation (Σt)t∈R and
defines the time vector ∂t and the shift vector β of the spacetime coordinate system (xα) = (t, xi).

spacetime manifold M, which we have not done yet. Coordinates adapted to the foliation
(Σt)t∈R are set in the following way. On each hypersurface Σt one introduces some coordinate
system (xi) = (x1, x2, x3). If this coordinate system varies smoothly between neighbouring
hypersurfaces, then (xα) = (t, x1, x2, x3) constitutes a well-behaved coordinate system on M.
We shall call (xi) = (x1, x2, x3) the spatial coordinates.

Let us denote by (∂α) = (∂t,∂i) the natural basis of Tp(M) associated with the coordinates
(xα), i.e. the set of vectors

∂t :=
∂

∂t
(4.23)

∂i :=
∂

∂xi
, i ∈ {1, 2, 3}. (4.24)

Notice that the vector ∂t is tangent to the lines of constant spatial coordinates, i.e. the curves
of M defined by (x1 = K1, x2 = K2, x3 = K3), where K1, K2 and K3 are three constants (cf.
Fig. 4.1). We shall call ∂t the time vector.

Remark : ∂t is not necessarily a timelike vector. This will be discussed further below [Eqs. (4.33)-
(4.35)].

For any i ∈ {1, 2, 3}, the vector ∂i is tangent to the lines t = K0, xj = Kj (j 6= i), where K0

and Kj (j 6= i) are three constants. Having t constant, these lines belong to the hypersurfaces
Σt. This implies that ∂i is tangent to Σt:

∂i ∈ Tp(Σt), i ∈ {1, 2, 3}. (4.25)
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4.2.2 Shift vector

The dual basis associated with (∂α) is the gradient 1-form basis (dxα), which is a basis of the
space of linear forms T ∗

p (M):

〈dxα,∂β〉 = δα
β. (4.26)

In particular, the 1-form dt is dual to the vector ∂t:

〈dt,∂t〉 = 1. (4.27)

Hence the time vector ∂t obeys to the same property as the normal evolution vector m, since
〈dt,m〉 = 1 [Eq. (3.11)]. In particular, ∂t Lie drags the hypersurfaces Σt, as m does (cf.
Sec. 3.3.2). In general the two vectors ∂t and m differ. They coincide only if the coordinates
(xi) are such that the lines xi = const are orthogonal to the hypersurfaces Σt (cf. Fig. 4.1). The
difference between ∂t and m is called the shift vector and is denoted β:

∂t =: m + β . (4.28)

As for the lapse, the name shift vector has been coined by Wheeler (1964) [267]. By combining
Eqs. (4.27) and (3.11), we get

〈dt,β〉 = 〈dt,∂t〉 − 〈dt,m〉 = 1 − 1 = 0, (4.29)

or equivalently, since dt = −N−1n [Eq. (3.7)],

n · β = 0 . (4.30)

Hence the vector β is tangent to the hypersurfaces Σt.

The lapse function and the shift vector have been introduced for the first time explicitly,
although without their present names, by Y. Choquet-Bruhat in 1956 [128].

It usefull to rewrite Eq. (4.28) by means of the relation m = Nn [Eq. (3.8)]:

∂t = Nn + β . (4.31)

Since the vector n is normal to Σt and β tangent to Σt, Eq. (4.31) can be seen as a 3+1
decomposition of the time vector ∂t.

The scalar square of ∂t is deduced immediately from Eq. (4.31), taking into account n·n = −1
and Eq. (4.30):

∂t · ∂t = −N2 + β · β. (4.32)

Hence we have the following:

∂t is timelike ⇐⇒ β · β < N2, (4.33)

∂t is null ⇐⇒ β · β = N2, (4.34)

∂t is spacelike ⇐⇒ β · β > N2. (4.35)
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Remark : A shift vector that fulfills the condition (4.35) is sometimes called a superluminal

shift. Notice that, since a priori the time vector ∂t is a pure coordinate quantity and is not
associated with the 4-velocity of some observer (contrary to m, which is proportional to
the 4-velocity of the Eulerian observer), there is nothing unphysical in having ∂t spacelike.

Since β is tangent to Σt, let us introduce the components of β and the metric dual form β

with respect to the spatial coordinates (xi) according to

β =: βi ∂i and β =: βi dxi. (4.36)

Equation (4.31) then shows that the components of the unit normal vector n with respect to
the natural basis (∂α) are expressible in terms of N and (βi) as

nα =

(
1

N
,−β1

N
,−β2

N
,−β3

N

)

. (4.37)

Notice that the covariant components (i.e. the components of n with respect to the basis (dxα)
of T ∗

p (M)) are immediately deduced from the relation n = −Ndt [Eq. (3.7)] :

nα = (−N, 0, 0, 0). (4.38)

4.2.3 3+1 writing of the metric components

Let us introduce the components γij of the 3-metric γ with respect to the coordinates (xi)

γ =: γij dxi ⊗ dxj. (4.39)

From the definition of β, we have

βi = γij βj. (4.40)

The components gαβ of the metric g with respect to the coordinates (xα) are defined by

g =: gαβ dxα ⊗ dxβ. (4.41)

Each component can be computed as

gαβ = g(∂α,∂β). (4.42)

Accordingly, thanks to Eq. (4.32),

g00 = g(∂t,∂t) = ∂t · ∂t = −N2 + β · β = −N2 + βiβ
i (4.43)

and, thanks to Eq. (4.28)
g0i = g(∂t,∂i) = (m + β) · ∂i. (4.44)

Now, as noticed above [cf. Eq. (4.25)], the vector ∂i is tangent to Σt, so that m ·∂i = 0. Hence

g0i = β · ∂i = 〈β,∂i〉 = 〈βj dxj ,∂i〉 = βj 〈dxj ,∂i〉
︸ ︷︷ ︸

=δj
i

= βi. (4.45)
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Besides, since ∂i and ∂j are tangent to Σt,

gij = g(∂i,∂j) = γ(∂i,∂j) = γij . (4.46)

Collecting Eqs. (4.43), (4.45) and (4.46), we get the following expression of the metric compo-
nents in terms of 3+1 quantities:

gαβ =

(
g00 g0j

gi0 gij

)

=

(
−N2 + βkβ

k βj

βi γij

)

, (4.47)

or, in terms of line elements [using Eq. (4.40)],

gµν dxµ dxν = −N2dt2 + γij(dxi + βidt)(dxj + βjdt) . (4.48)

The components of the inverse metric are given by the matrix inverse of (4.47):

gαβ =

(
g00 g0j

gi0 gij

)

=

(

− 1
N2

βj

N2

βi

N2 γij − βiβj

N2

)

. (4.49)

Indeed, it is easily checked that the matrix product gαµgµβ is equal to the identity matrix δα
β.

Remark : Notice that gij = γij but that in general gij 6= γij.

One can deduce from the above formulæ a simple relation between the determinants of g

and γ. Let us first define the latter ones by

g := det(gαβ) , (4.50)

γ := det(γij) . (4.51)

Notice that g and γ depend upon the choice of the coordinates (xα). They are not scalar
quantities, but scalar densities. Using Cramer’s rule for expressing the inverse (gαβ) of the
matrix (gαβ), we have

g00 =
C00

det(gαβ)
=

C00

g
, (4.52)

where C00 is the element (0, 0) of the cofactor matrix associated with (gαβ). It is given by
C00 = (−1)0M00 = M00, where M00 is the minor (0, 0) of the matrix (gαβ), i.e. the determinant
of the 3× 3 matrix deduced from (gαβ) by suppressing the first line and the first column. From
Eq. (4.47), we read

M00 = det(γij) = γ. (4.53)

Hence Eq. (4.52) becomes

g00 =
γ

g
. (4.54)

Expressing g00 from Eq. (4.49) yields then g = −N2γ, or equivalently,

√−g = N
√

γ . (4.55)
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4.2.4 Choice of coordinates via the lapse and the shift

We have seen above that giving a coordinate system (xα) on M such that the hypersurfaces
x0 = const. are spacelike determines uniquely a lapse function N and a shift vector β. The
converse is true in the following sense: setting on some hypersurface Σ0 a scalar field N , a
vector field β and a coordinate system (xi) uniquely specifies a coordinate system (xα) in some
neighbourhood of Σ0, such that the hypersurface x0 = 0 is Σ0. Indeed, the knowledge of the
lapse function a each point of Σ0 determines a unique vector m = Nn and consequently the
location of the “next” hypersurface Σδt by Lie transport along m (cf. Sec. 3.3.2). Graphically,
we may also say that for each point of Σ0 the lapse function specifies how far is the point of Σδt

located “above” it (“above” meaning perpendicularly to Σ0, cf. Fig. 3.2). Then the shift vector
tells how to propagate the coordinate system (xi) from Σ0 to Σδt (cf. Fig. 4.1).

This way of choosing coordinates via the lapse function and the shift vector is one of the
main topics in 3+1 numerical relativity and will be discussed in detail in Chap. 9.

4.3 3+1 Einstein equation as a PDE system

4.3.1 Lie derivatives along m as partial derivatives

Let us consider the term Lm K which occurs in the 3+1 Einstein equation (4.15). Thanks to
Eq. (4.28), we can write

Lm K = L∂tK − Lβ K. (4.56)

This implies that L∂tK is a tensor field tangent to Σt, since both Lm K and Lβ K are tangent
to Σt, the former by the property (3.32) and the latter because β and K are tangent to Σt.
Moreover, if one uses tensor components with respect to a coordinate system (xα) = (t, xi)
adapted to the foliation, the Lie derivative along ∂t reduces simply to the partial derivative with
respect to t [cf. Eq. (A.3)]:

L∂tKij =
∂Kij

∂t
. (4.57)

By means of formula (A.6), one can also express Lβ K in terms of partial derivatives:

Lβ Kij = βk ∂Kij

∂xk
+ Kkj

∂βk

∂xi
+ Kik

∂βk

∂xj
. (4.58)

Similarly, the relation (3.24) between Lm γ and K becomes

L∂tγ − Lβ γ = −2NK, (4.59)

with

L∂tγij =
∂γij

∂t
. (4.60)

and, evaluating the Lie derivative with the connection D instead of partial derivatives [cf.
Eq. (A.8)]:

Lβ γij = βk Dkγij
︸ ︷︷ ︸

=0

+γkjDiβ
k + γikDjβ

k, (4.61)

i.e.
Lβ γij = Diβj + Djβi. (4.62)
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4.3.2 3+1 Einstein system

Using Eqs. (4.56) and (4.57), as well as (4.59) and (4.60), we rewrite the 3+1 Einstein system
(4.17), (4.19) and (4.22) as

(
∂

∂t
− Lβ

)

γij = −2NKij (4.63)

(
∂

∂t
− Lβ

)

Kij = −DiDjN + N
{

Rij + KKij − 2KikKk
j + 4π [(S − E)γij − 2Sij ]

}

(4.64)

R + K2 − KijK
ij = 16πE (4.65)

DjK
j
i − DiK = 8πpi . (4.66)

In this system, the covariant derivatives Di can be expressed in terms of partial derivatives with
respect to the spatial coordinates (xi) by means of the Christoffel symbols Γi

jk of D associated

with (xi):

DiDjN =
∂2N

∂xi∂xj
− Γk

ij

∂N

∂xk
, (4.67)

DjK
j
i =

∂Kj
i

∂xj
+ Γj

jkK
k
i − Γk

jiK
j
k, (4.68)

DiK =
∂K

∂xi
. (4.69)

The Lie derivatives along β can be expressed in terms of partial derivatives with respect to the
spatial coordinates (xi), via Eqs. (4.58) and (4.62):

Lβ γij =
∂βi

∂xj
+

∂βj

∂xi
− 2Γk

ijβk (4.70)

Lβ Kij = βk ∂Kij

∂xk
+ Kkj

∂βk

∂xi
+ Kik

∂βk

∂xj
. (4.71)

Finally, the Ricci tensor and scalar curvature of γ are expressible according to the standard
expressions:

Rij =
∂Γk

ij

∂xk
− ∂Γk

ik

∂xj
+ Γk

ijΓ
l
kl − Γl

ikΓ
k
lj (4.72)

R = γijRij. (4.73)

For completeness, let us recall the expression of the Christoffel symbols in terms of partial
derivatives of the metric:

Γk
ij =

1

2
γkl

(
∂γlj

∂xi
+

∂γil

∂xj
− ∂γij

∂xl

)

. (4.74)

Assuming that matter “source terms” (E, pi, Sij) are given, the system (4.63)-(4.66), with
all the terms explicited according to Eqs. (4.67)-(4.74) constitutes a second-order non-linear
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PDE system for the unknowns (γij,Kij , N, βi). It has been first derived by Darmois, as early as
1927 [105], in the special case N = 1 and β = 0 (Gaussian normal coordinates, to be discussed
in Sec. 4.4.2). The case N 6= 1, but still with β = 0, has been obtained by Lichnerowicz in
1939 [176, 177] and the general case (arbitrary lapse and shift) by Choquet-Bruhat in 1948
[126, 128]. A slightly different form, with Kij replaced by the “momentum conjugate to γij”,
namely πij :=

√
γ(Kγij − Kij), has been derived by Arnowitt, Deser and Misner (1962) [23]

from their Hamiltonian formulation of general relativity (to be discussed in Sec. 4.5).

Remark : In the numerical relativity literature, the 3+1 Einstein equations (4.63)-(4.66) are
sometimes called the “ADM equations”, in reference of the above mentioned work by
Arnowitt, Deser and Misner [23]. However, the major contribution of ADM is an Hamil-
tonian formulation of general relativity (which we will discuss succinctly in Sec. 4.5). This
Hamiltonian approach is not used in numerical relativity, which proceeds by integrating the
system (4.63)-(4.66). The latter was known before ADM work. In particular, the recog-
nition of the extrinsic curvature K as a fundamental 3+1 variable was already achieved
by Darmois in 1927 [105]. Moreoever, as stressed by York [279] (see also Ref. [12]),
Eq. (4.64) is the spatial projection of the spacetime Ricci tensor [i.e. is derived from the
Einstein equation in the form (4.2), cf. Sec. 4.1.3] whereas the dynamical equation in the
ADM work [23] is instead the spatial projection of the Einstein tensor [i.e. is derived from
the Einstein equation in the form (4.1)].

4.4 The Cauchy problem

4.4.1 General relativity as a three-dimensional dynamical system

The system (4.63)-(4.74) involves only three-dimensional quantities, i.e. tensor fields defined
on the hypersurface Σt, and their time derivatives. Consequently one may forget about the
four-dimensional origin of the system and consider that (4.63)-(4.74) describes time evolving
tensor fields on a single three-dimensional manifold Σ, without any reference to some ambient
four-dimensional spacetime. This constitutes the geometrodynamics point of view developed by
Wheeler [267] (see also Fischer and Marsden [122, 123] for a more formal treatment).

It is to be noticed that the system (4.63)-(4.74) does not contain any time derivative of
the lapse function N nor of the shift vector β. This means that N and β are not dynamical
variables. This should not be surprising if one remembers that they are associated with the
choice of coordinates (t, xi) (cf. Sec. 4.2.4). Actually the coordinate freedom of general relativity
implies that we may choose the lapse and shift freely, without changing the physical solution
g of the Einstein equation. The only things to avoid are coordinate singularities, to which a
arbitrary choice of lapse and shift might lead.

4.4.2 Analysis within Gaussian normal coordinates

To gain some insight in the nature of the system (4.63)-(4.74), let us simplify it by using the
freedom in the choice of lapse and shift: we set

N = 1 (4.75)
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β = 0, (4.76)

in some neighbourhood a given hypersurface Σ0 where the coordinates (xi) are specified arbitrar-
ily. This means that the lines of constant spatial coordinates are orthogonal to the hypersurfaces
Σt (see Fig. 4.1). Moreover, with N = 1, the coordinate time t coincides with the proper time
measured by the Eulerian observers between neighbouring hypersurfaces Σt [cf. Eq. (3.15)].
Such coordinates are called Gaussian normal coordinates. The foliation away from Σ0 se-
lected by the choice (4.75) of the lapse function is called a geodesic slicing . This name stems
from the fact that the worldlines of the Eulerian observers are geodesics, the parameter t being
then an affine parameter along them. This is immediate from Eq. (3.18), which, for N = 1,
implies the vanishing of the 4-accelerations of the Eulerian observers (free fall).

In Gaussian normal coordinates, the spacetime metric tensor takes a simple form [cf. Eq. (4.48)]:

gµν dxµ dxν = −dt2 + γij dxi dxj . (4.77)

In general it is not possible to get a Gaussian normal coordinate system that covers all M.
This results from the well known tendencies of timelike geodesics without vorticity (such as the
worldlines of the Eulerian observers) to focus and eventually cross. This reflects the attractive
nature of gravity and is best seen on the Raychaudhuri equation (cf. Lemma 9.2.1 in [265]).
However, for the purpose of the present discussion it is sufficient to consider Gaussian normal
coordinates in some neighbourhood of the hypersurface Σ0; provided that the neighbourhood is
small enough, this is always possible. The 3+1 Einstein system (4.63)-(4.66) reduces then to

∂γij

∂t
= −2Kij (4.78)

∂Kij

∂t
= Rij + KKij − 2KikK

k
j + 4π [(S − E)γij − 2Sij ] (4.79)

R + K2 − KijK
ij = 16πE (4.80)

DjK
j
i − DiK = 8πpi. (4.81)

Using the short-hand notation

γ̇ij :=
∂γij

∂t
(4.82)

and replacing everywhere Kij thanks to Eq. (4.78), we get

−∂2γij

∂t2
= 2Rij +

1

2
γklγ̇kl γ̇ij − 2γklγ̇ikγ̇lj + 8π [(S − E)γij − 2Sij ] (4.83)

R +
1

4
(γij γ̇ij)

2 − 1

4
γikγjlγ̇ij γ̇kl = 16πE (4.84)

Dj(γ
jkγ̇ki) −

∂

∂xi

(

γklγ̇kl

)

= −16πpi. (4.85)

As far as the gravitational field is concerned, this equation contains only the 3-metric γ. In
particular the Ricci tensor can be explicited by plugging Eq. (4.74) into Eq. (4.72). We need
only the principal part for our analysis, that is the part containing the derivative of γij of
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hightest degree (two in the present case). We get, denoting by “· · ·” everything but a second
order derivative of γij :

Rij =
∂Γk

ij

∂xk
− ∂Γk

ik

∂xj
+ · · ·

=
1

2

∂

∂xk

[

γkl

(
∂γlj

∂xi
+

∂γil

∂xj
− ∂γij

∂xl

)]

− 1

2

∂

∂xj

[

γkl

(
∂γlk

∂xi
+

∂γil

∂xk
− ∂γik

∂xl

)]

+ · · ·

=
1

2
γkl

(
∂2γlj

∂xk∂xi
+

∂2γil

∂xk∂xj
− ∂2γij

∂xk∂xl
− ∂2γlk

∂xj∂xi
− ∂2γil

∂xj∂xk
+

∂2γik

∂xj∂xl

)

+ · · ·

Rij = −1

2
γkl

(
∂2γij

∂xk∂xl
+

∂2γkl

∂xi∂xj
− ∂2γlj

∂xi∂xk
− ∂2γil

∂xj∂xk

)

+ Qij

(

γkl,
∂γkl

∂xm

)

, (4.86)

where Qij(γkl, ∂γkl/∂xm) is a (non-linear) expression containing the components γkl and their
first spatial derivatives only. Taking the trace of (4.86) (i.e. contracting with γij), we get

R = γikγjl ∂2γij

∂xk∂xl
− γijγkl ∂2γij

∂xk∂xl
+ Q

(

γkl,
∂γkl

∂xm

)

. (4.87)

Besides

Dj(γ
jkγ̇ki) = γjkDj γ̇ki = γjk

(
∂γ̇ki

∂xj
− Γl

jkγ̇li − Γl
jiγ̇kl

)

= γjk ∂2γki

∂xj∂t
+ Qi

(

γkl,
∂γkl

∂xm
,
∂γkl

∂t

)

, (4.88)

where Qi(γkl, ∂γkl/∂xm, ∂γkl/∂t) is some expression that does not contain any second order
derivative of γkl. Substituting Eqs. (4.86), (4.87) and (4.88) in Eqs. (4.83)-(4.85) gives

−∂2γij

∂t2
+ γkl

(
∂2γij

∂xk∂xl
+

∂2γkl

∂xi∂xj
− ∂2γlj

∂xi∂xk
− ∂2γil

∂xj∂xk

)

= 8π [(S − E)γij − 2Sij ]

+Qij

(

γkl,
∂γkl

∂xm
,
∂γkl

∂t

)

(4.89)

γikγjl ∂2γij

∂xk∂xl
− γijγkl ∂2γij

∂xk∂xl
= 16πE + Q

(

γkl,
∂γkl

∂xm
,
∂γkl

∂t

)

(4.90)

γjk ∂2γki

∂xj∂t
− γkl ∂

2γkl

∂xi∂t
= −16πpi + Qi

(

γkl,
∂γkl

∂xm
,
∂γkl

∂t

)

. (4.91)

Notice that we have incorporated the first order time derivatives into the Q terms.
Equations (4.89)-(4.91) constitute a system of PDEs for the unknowns γij . This system is of

second order and non linear, but quasi-linear, i.e. linear with respect to all the second order
derivatives. Let us recall that, in this system, the γij’s are to be considered as functions of the
γij ’s, these functions being given by expressing the matrix (γij) as the inverse of the matrix (γij)
(e.g. via Cramer’s rule).

A key feature of the system (4.89)-(4.91) is that it contains 6 + 1 + 3 = 10 equations for
the 6 unknowns γij. Hence it is an over-determined system. Among the three sub-systems
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(4.89), (4.90) and (4.91), only the first one involves second-order time derivatives. Moreover the
sub-system (4.89) contains the same numbers of equations than unknowns (six) and it is in a
form tractable as a Cauchy problem, namely one could search for a solution, given some initial
data. More precisely, the sub-system (4.89) being of second order and in the form

∂2γij

∂t2
= Fij

(

γkl,
∂γkl

∂xm
,
∂γkl

∂t
,

∂2γkl

∂xm∂xn

)

, (4.92)

the Cauchy problem amounts to finding a solution γij for t > 0 given the knowledge of γij

and ∂γij/∂t at t = 0, i.e. the values of γij and ∂γij/∂t on the hypersurface Σ0. Since Fij

is a analytical function1, we can invoke the Cauchy-Kovalevskaya theorem (see e.g. [100]) to
guarantee the existence and uniqueness of a solution γij in a neighbourhood of Σ0, for any initial
data (γij , ∂γij/∂t) on Σ0 that are analytical functions of the coordinates (xi).

The complication arises because of the extra equations (4.90) and (4.91), which must be
fulfilled to ensure that the metric g reconstructed from γij via Eq. (4.77) is indeed a solution of
Einstein equation. Equations (4.90) and (4.91), which cannot be put in the form such that the
Cauchy-Kovalevskaya theorem applies, constitute constraints for the Cauchy problem (4.89).
In particular one has to make sure that the initial data (γij , ∂γij/∂t) on Σ0 satisfies these
constraints. A natural question which arises is then: suppose that we prepare initial data
(γij , ∂γij/∂t) which satisfy the constraints (4.90)-(4.91) and that we get a solution of the Cauchy
problem (4.89) from these initial data, are the constraints satisfied by the solution for t > 0 ?
The answer is yes, thanks to the Bianchi identities, as we shall see in Sec. 10.3.2.

4.4.3 Constraint equations

The main conclusions of the above discussion remain valid for the general 3+1 Einstein system
as given by Eqs. (4.63)-(4.66): Eqs. (4.63)-(4.64) constitute a time evolution system tractable
as a Cauchy problem, whereas Eqs. (4.65)-(4.66) constitute constraints. This partly justifies the
names Hamiltonian constraint and momentum constraint given respectively to Eq. (4.65) and
to Eq. (4.66).

The existence of constraints is not specific to general relativity. For instance the Maxwell
equations for the electromagnetic field can be treated as a Cauchy problem subject to the
constraints D · B = 0 and D · E = ρ/ǫ0 (see Ref. [171] or Sec. 2.3 of Ref. [44] for details of the
electromagnetic analogy).

4.4.4 Existence and uniqueness of solutions to the Cauchy problem

In the general case of arbitrary lapse and shift, the time derivative γ̇ij introduced in Sec. 4.4.2 has
to be replaced by the extrinsic curvature Kij, so that the initial data on a given hypersurface
Σ0 is (γ,K). The couple (γ,K) has to satisfy the constraint equations (4.65)-(4.66) on Σ0.
One may then ask the question: given a set (Σ0,γ,K, E,p), where Σ0 is a three-dimensional
manifold, γ a Riemannian metric on Σ0, K a symmetric bilinear form field on Σ0, E a scalar

1it is polynomial in the derivatives of γkl and involves at most rational fractions in γkl (to get the inverse
metric γkl
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field on Σ0 and p a vector field on Σ0, which obeys the constraint equations (4.65)-(4.66):

R + K2 − KijK
ij = 16πE (4.93)

DjK
j
i − DiK = 8πpi, (4.94)

does there exist a spacetime (M,g,T ) such that (g,T ) fulfills the Einstein equation and Σ0 can
be embedded as an hypersurface of M with induced metric γ and extrinsic curvature K ?

Darmois (1927) [105] and Lichnerowicz (1939) [176] have shown that the answer is yes for
the vacuum case (E = 0 and pi = 0), when the initial data (γ,K) are analytical functions
of the coordinates (xi) on Σ0. Their analysis is based on the Cauchy-Kovalevskaya theorem
mentioned in Sec. 4.4.2 (cf. Chap. 10 of Wald’s textbook [265] for details). However, on physical
grounds, the analytical case is too restricted. One would like to deal instead with smooth (i.e.
differentiable) initial data. There are at least two reasons for this:

• The smooth manifold structure of M imposes only that the change of coordinates are
differentiable, not necessarily analytical. Consequently if (γ,K) are analytical functions
of the coordinates, they might not be analytical functions of another coordinate system
(x′i).

• An analytical function is fully determined by its value and those of all its derivatives at a
single point. Equivalently an analytical function is fully determined by its value in some
small open domain D. This fits badly with causality requirements, because a small change
to the initial data, localized in a small region, should not change the whole solution at all
points of M. The change should take place only in the so-called domain of dependence of
D.

This is why the major breakthrough in the Cauchy problem of general relativity has been
achieved by Choquet-Bruhat in 1952 [127] when she showed existence and uniqueness of the
solution in a small neighbourhood of Σ0 for smooth (at least C5) initial data (γ,K). We shall
not give any sketch on the proof (beside the original publication [127], see the review articles
[39] and [88]) but simply mentioned that it is based on harmonic coordinates.

A major improvement has been then the global existence and uniqueness theorem by Choquet-
Bruhat and Geroch (1969) [87]. The latter tells that among all the spacetimes (M,g) solution
of the Einstein equation and such that (Σ0,γ,K) is an embedded Cauchy surface, there exists
a maximal spacetime (M∗,g∗) and it is unique. Maximal means that any spacetime (M,g) so-
lution of the Cauchy problem is isometric to a subpart of (M∗,g∗). For more details about the
existence and uniqueness of solutions to the Cauchy problem, see the reviews by Choquet-Bruhat
and York [88], Klainerman and Nicolò [169], Andersson [15] and Rendall [212].

4.5 ADM Hamiltonian formulation

Further insight in the 3+1 Einstein equations is provided by the Hamiltonian formulation of
general relativity. Indeed the latter makes use of the 3+1 formalism, since any Hamiltonian
approach involves the concept of a physical state “at a certain time”, which is translated in
general relativity by the state on a spacelike hypersurface Σt. The Hamiltonian formulation
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of general relativity has been developed notably by Dirac in the late fifties [115, 116] (see also
Ref. [109]), by Arnowitt, Deser and Misner (ADM) in the early sixties [23] and by Regge and
Teitelboim in the seventies [209]. Pedagogical presentations are given in Chap. 21 of MTW
[189], in Chap. 4 of Poisson’s book [205], in M. Henneaux’s lectures [157] and in G. Schäfer’s
ones [218]. Here we focuss on the ADM approach, which makes a direct use of the lapse function
and shift vector (contrary to Dirac’s one). For simplicity, we consider only the vacuum Einstein
equation in this section. Also we shall disregard any boundary term in the action integrals.
Such terms will be restored in Chap. 7 in order to discuss total energy and momentum.

4.5.1 3+1 form of the Hilbert action

Let us consider the standard Hilbert action for general relativity (see N. Deruelle’s lecture [108]):

S =

∫

V

4R
√−g d4x, (4.95)

where V is a part of M delimited by two hypersurfaces Σt1 and Σt2 (t1 < t2) of the foliation
(Σt)t∈R:

V :=

t2⋃

t=t1

Σt. (4.96)

Thanks to the 3+1 decomposition of 4R provided by Eq. (3.51) and to the relation
√−g = N

√
γ

[Eq. (4.55)] we can write

S =

∫

V

[
N
(
R + K2 + KijK

ij
)
− 2Lm K − 2DiD

iN
]√

γ d4x. (4.97)

Now

Lm K = mµ∇µK = Nnµ∇µK = N [∇µ(Knµ) − K ∇µnµ

︸ ︷︷ ︸

=−K

]

= N [∇µ(Knµ) + K2]. (4.98)

Hence Eq. (4.97) becomes

S =

∫

V

[
N
(
R + KijK

ij − K2
)
− 2N∇µ(Knµ) − 2DiD

iN
]√

γ d4x. (4.99)

But
∫

V
N∇µ(Knµ)

√
γ d4x =

∫

V
∇µ(Knµ)

√−g d4x =

∫

V

∂

∂xµ

(√−gKnµ
)

d4x (4.100)

is the integral of a pure divergence and we can disregard this term in the action. Accordingly,
the latter becomes

S =

∫ t2

t1

{∫

Σt

[
N
(
R + KijK

ij − K2
)
− 2DiD

iN
]√

γ d3x

}

dt, (4.101)



4.5 ADM Hamiltonian formulation 67

where we have used (4.96) to split the four-dimensional integral into a time integral and a
three-dimensional one. Again we have a divergence term:

∫

Σt

DiD
iN

√
γ d3x =

∫

Σt

∂

∂xi

(√
γDiN

)
d3x, (4.102)

which we can disregard. Hence the 3+1 writing of the Hilbert action is

S =

∫ t2

t1

{∫

Σt

N
(
R + KijK

ij − K2
)√

γ d3x

}

dt . (4.103)

4.5.2 Hamiltonian approach

The action (4.103) is to be considered as a functional of the “configuration” variables q =
(γij , N, βi) [which describe the full spacetime metric components gαβ , cf. Eq. (4.47)] and their
time derivatives2 q̇ = (γ̇ij, Ṅ , β̇i): S = S[q, q̇]. In particular Kij in Eq. (4.103) is the function of
γ̇ij , γij , N and βi given by Eqs. (4.63) and (4.62):

Kij =
1

2N

(

γikDjβ
k + γjkDiβ

k − γ̇ij

)

. (4.104)

From Eq. (4.103), we read that the gravitational field Lagrangian density is

L(q, q̇) = N
√

γ(R + KijK
ij − K2) = N

√
γ
[

R + (γikγjl − γijγkl)KijKkl

]

, (4.105)

with Kij and Kkl expressed as (4.104). Notice that this Lagrangian does not depend upon
the time derivatives of N and βi: this shows that the lapse function and the shift vector are
not dynamical variables. Consequently the only dynamical variable is γij . The momentum
canonically conjugate to it is

πij :=
∂L

∂γ̇ij
. (4.106)

From Eqs. (4.105) and (4.104), we get

πij = N
√

γ
[

(γikγjl − γijγkl)Kkl + (γkiγlj − γklγij)Kkl

]

×
(

− 1

2N

)

, (4.107)

i.e.

πij =
√

γ
(
Kγij − Kij

)
. (4.108)

The Hamiltonian density is given by the Legendre transform

H = πij γ̇ij − L. (4.109)

2we use the same notation as that defined by Eq. (4.82)
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Using Eqs. (4.104), (4.108) and (4.105), we have

H =
√

γ
(
Kγij − Kij

)
(−2NKij + Diβj + Djβi) − N

√
γ(R + KijK

ij − K2)

=
√

γ
[

−N(R + K2 − KijK
ij) + 2

(

Kγj
i − Kj

i

)

Djβ
i
]

= −√
γ
[

N(R + K2 − KijK
ij) + 2βi

(

DiK − DjK
j
i

)]

+2
√

γDj

(

Kβj − Kj
iβ

i
)

. (4.110)

The corresponding Hamiltonian is

H =

∫

Σt

H d3x. (4.111)

Noticing that the last term in Eq. (4.110) is a divergence and therefore does not contribute to
the integral, we get

H = −
∫

Σt

(
NC0 − 2βiCi

)√
γd3x , (4.112)

where

C0 := R + K2 − KijK
ij, (4.113)

Ci := DjK
j
i − DiK (4.114)

are the left-hand sides of the constraint equations (4.65) and (4.66) respectively.
The Hamiltonian H is a functional of the configuration variables (γij , N, βi) and their con-

jugate momenta (πij , πN , πβ
i ), the last two ones being identically zero since

πN :=
∂L

∂Ṅ
= 0 and πβ

i :=
∂L

∂β̇i
= 0. (4.115)

The scalar curvature R which appears in H via C0 is a function of γij and its spatial derivatives,
via Eqs. (4.72)-(4.74), whereas Kij which appears in both C0 and Ci is a function of γij and πij,
obtained by “inverting” relation (4.108):

Kij = Kij [γ,π] =
1√
γ

(
1

2
γklπ

klγij − γikγjlπ
kl

)

. (4.116)

The minimization of the Hilbert action is equivalent to the Hamilton equations

δH

δπij
= γ̇ij (4.117)

δH

δγij
= −π̇ij (4.118)

δH

δN
= −π̇N = 0 (4.119)

δH

δβi
= −π̇β

i = 0. (4.120)
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Computing the functional derivatives from the expression (4.112) of H leads the equations

δH

δπij
= −2NKij + Diβj + Djβi = γ̇ij (4.121)

δH

δγij
= −π̇ij (4.122)

δH

δN
= −C0 = 0 (4.123)

δH

δβi
= 2Ci = 0. (4.124)

Equation (4.121) is nothing but the first equation of the 3+1 Einstein system (4.63)-(4.66).
We do not perform the computation of the variation (4.122) but the explicit calculation (see
e.g. Sec. 4.2.7 of Ref. [205]) yields an equation which is equivalent to the dynamical Einstein
equation (4.64). Finally, Eq. (4.123) is the Hamiltonian constraint (4.65) with E = 0 (vacuum)
and Eq. (4.124) is the momentum constraint (4.66) with pi = 0.

Equations (4.123) and (4.124) show that in the ADM Hamiltonian approach, the lapse func-
tion and the shift vector turn out to be Lagrange multipliers to enforce respectively the Hamil-
tonian constraint and the momentum constraint, the true dynamical variables being γij and
πij .
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5.1 Introduction

After having considered mostly the left-hand side of Einstein equation, in this chapter we focus
on the right-hand side, namely on the matter represented by its stress-energy tensor T . By
“matter”, we actually mean any kind of non-gravitational field, which is minimally coupled to
gravity. This includes the electromagnetic field, which we shall treat in Sec. 5.4. The matter
obeys two types of equations. The first one is the vanishing of the spacetime divergence of the
stress-energy tensor:

~∇ · T = 0 , (5.1)

which, thanks to the contracted Bianchi identities, is a consequence of Einstein equation (4.1)
(see N. Deruelle’s lectures [108]). The second type of equations is the field equations that must
be satisfied independently of the Einstein equation, for instance the baryon number conservation
law or the Maxwell equations for the electromagnetic field.
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5.2 Energy and momentum conservation

5.2.1 3+1 decomposition of the 4-dimensional equation

Let us replace T in Eq. (5.1) by its 3+1 expression (4.10) in terms of the energy density E, the
momentum density p and the stress tensor S, all of them as measured by the Eulerian observer.
We get, successively,

∇µT µ
α = 0

∇µ (Sµ
α + nµpα + pµnα + Enµnα) = 0

∇µSµ
α − Kpα + nµ∇µpα + ∇µpµ nα − pµKµα − KEnα + EDα ln N

+nµ∇µE nα = 0, (5.2)

where we have used Eq. (3.20) to express the ∇n in terms of K and D ln N .

5.2.2 Energy conservation

Let us project Eq. (5.2) along the normal to the hypersurfaces Σt, i.e. contract Eq. (5.2) with
nα. We get, since p, K and D ln N are all orthogonal to n:

nν∇µSµ
ν + nµnν∇µpν −∇µpµ + KE − nµ∇µE = 0. (5.3)

Now, since n · S = 0,

nν∇µSµ
ν = −Sµ

ν∇µnν = Sµ
ν(K

ν
µ + Dν ln N nµ) = KµνSµν . (5.4)

Similarly

nµnν∇µpν = −pνn
µ∇µnν = −pνD

ν ln N. (5.5)

Besides, let us express the 4-dimensional divergence ∇µpµ is terms of the 3-dimensional one,
Dµpµ. For any vector v tangent to Σt, like ~p, Eq. (2.79) gives

Dµvµ = γρ
µγµ

σ∇ρv
σ = γρ

σ∇ρv
σ = (δρ

σ +nρ nσ)∇ρv
σ = ∇ρv

ρ− vσnρ∇ρnσ = ∇ρv
ρ − vσDσ ln N

(5.6)
Hence the usefull relation between the two divergences

∀v ∈ T (Σt), ∇·v = D ·v + v · D ln N , (5.7)

or in terms of components,

∀v ∈ T (Σt), ∇µvµ = Div
i + viDi ln N. (5.8)

Applying this relation to v = p and taking into account Eqs. (5.4) and (5.5), Eq. (5.3) becomes

Ln E + D · ~p + 2~p · D ln N − KE − KijS
ij = 0. (5.9)
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Remark : We have written the derivative of E along n as a Lie derivative. E being a scalar
field, we have of course the alternative expressions

Ln E = ∇nE = n · ∇E = nµ∇µE = nµ ∂E

∂xµ
= 〈dE,n〉. (5.10)

Ln E is the derivative of E with respect to the proper time of the Eulerian observers: Ln E =
dE/dτ , for n is the 4-velocity of these observers. It is easy to let appear the derivative with
respect to the coordinate time t instead, thanks to the relation n = N−1(∂t−β) [cf. Eq. (4.31)]:

Ln E =
1

N

(
∂

∂t
− Lβ

)

E. (5.11)

Then
(

∂

∂t
− Lβ

)

E + N
(
D · ~p − KE − KijS

ij
)

+ 2~p · DN = 0 , (5.12)

in components:

(
∂

∂t
− βi ∂

∂xi

)

E + N
(
Dip

i − KE − KijS
ij
)

+ 2piDiN = 0. (5.13)

This equation has been obtained by York (1979) in his seminal article [276].

5.2.3 Newtonian limit

As a check, let us consider the Newtonian limit of Eq. (5.12). For this purpose let us assume
that the gravitational field is weak and static. It is then always possible to find a coordinate
system (xα) = (x0 = ct, xi) such that the metric components take the form (cf. N. Deruelle’s
lectures [108])

gµνdxµdxν = − (1 + 2Φ) dt2 + (1 − 2Φ) fij dxidxj , (5.14)

where Φ is the Newtonian gravitational potential (solution of Poisson equation ∆Φ = 4πGρ)
and fij are the components the flat Euclidean metric f in the 3-dimensional space. For a weak
gravitational field (Newtonian limit), |Φ| ≪ 1 (in units where the light velocity is not one, this
should read |Φ|/c2 ≪ 1). Comparing Eq. (5.14) with (4.48), we get N =

√
1 + 2Φ ≃ 1 + Φ,

β = 0 and γ = (1 − 2Φ)f . From Eq. (4.63), we then obtain immediately that K = 0. To
summarize:

Newtonian limit: N = 1 + Φ, β = 0, γ = (1 − 2Φ)f , K = 0, |Φ| ≪ 1. (5.15)

Notice that the Eulerian observer becomes a Galilean (inertial) observer for he is non-rotating
(cf. remark page 44).

Taking into account the limits (5.15), Eq. (5.12) reduces to

∂E

∂t
+ D · ~p = −2~p · DΦ. (5.16)
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Let us denote by D the Levi-Civita connection associated with the flat metric f . Obviously
DΦ = DΦ. On the other side, let us express the divergence D · ~p in terms of the divergence
D · ~p. From Eq. (5.15), we have γij = (1 − 2Φ)−1f ij ≃ (1 + 2Φ)f ij as well as the relation√

γ =
√

(1 − 2Φ)3f ≃ (1 − 3Φ)
√

f between the determinants γ and f of respectively (γij) and
(fij). Therefore

D · ~p =
1√
γ

∂

∂xi

(√
γpi
)

=
1√
γ

∂

∂xi

(√
γγijpj

)

≃ 1

(1 − 3Φ)
√

f

∂

∂xi

[

(1 − 3Φ)
√

f(1 + 2Φ)f ijpj

]

≃ 1√
f

∂

∂xi

[

(1 − Φ)
√

ff ijpj

]

≃ 1√
f

∂

∂xi

(√

ff ijpj

)

− f ijpj
∂Φ

∂xi

≃ D · ~p − ~p · DΦ. (5.17)

Consequently Eq. (5.16) becomes

∂E

∂t
+ D · ~p = −~p · DΦ. (5.18)

This is the standard energy conservation relation in a Galilean frame with the source term
−~p ·DΦ. The latter constitutes the density of power provided to the system by the gravitational
field (this will be clear in the perfect fluid case, to be discussed below).

Remark : In the left-hand side of Eq. (5.18), the quantity p plays the role of an energy flux,
whereas it had been defined in Sec. 4.1.2 as a momentum density. It is well known that
both aspects are equivalent (see e.g. Chap. 22 of [155]).

5.2.4 Momentum conservation

Let us now project Eq. (5.2) onto Σt:

γν
α∇µSµ

ν − Kpα + γν
αnµ∇µpν − Kαµpµ + EDα ln N = 0. (5.19)

Now, from relation (2.79),

DµSµ
α = γρ

µγµ
σγν

α∇ρS
σ
ν = γρ

σγν
α∇ρS

σ
ν

= γν
α(δρ

σ + nρnσ)∇ρS
σ
ν = γν

α(∇ρS
ρ
ν − Sσ

ν nρ∇ρnσ
︸ ︷︷ ︸

=Dσ ln N

)

= γν
α∇µSµ

ν − Sµ
αDµ ln N. (5.20)

Besides

γν
αnµ∇µpν = N−1γν

αmµ∇µpν = N−1γν
α (Lm pν − pµ∇νm

µ)

= N−1
Lm pα + Kαµpµ, (5.21)
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where use has been made of Eqs. (3.22) and (3.22) to get the second line. In view of Eqs. (5.19)
and (5.20), Eq. (5.21) becomes

1

N
Lm pα + DµSµ

α + Sµ
αDµ ln N − Kpα + EDα ln N = 0 (5.22)

Writing Lm = ∂/∂t − Lβ , we obtain

(
∂

∂t
− Lβ

)

p + ND · ~S + S · ~DN − NKp + EDN = 0 , (5.23)

or in components

(
∂

∂t
− Lβ

)

pi + NDjS
j
i + SijD

jN − NKpi + EDiN = 0. (5.24)

Again, this equation appears in York’s article [276]. Actually York’s version [his Eq. (41)]
contains an additional term, for it is written for the vector ~p dual to the linear form p, and since
Lm γij 6= 0, this generates the extra term pjLm γij = 2NKijpj.

To take the Newtonian limit of Eq. (5.23), we shall consider not only Eq. (5.15), which
provides the Newtonian limit of the gravitational field, by in addition the relation

Newtonian limit: |Si
j | ≪ E, (5.25)

which expresses that the matter is not relativistic. Then the Newtonian limit of (5.23) is

∂p

∂t
+ D · ~S = −EDΦ. (5.26)

Note that in relating D · ~S to D · ~S, there should appear derivatives of Φ, as in Eq. (5.17), but
thanks to property (5.25), these terms are negligible in front of EDΦ. Equation (5.26) is the
standard momentum conservation law, with −EDΦ being the gravitational force density.

5.3 Perfect fluid

5.3.1 kinematics

The perfect fluid model of matter relies on a vector field u of 4-velocities, giving at each point
the 4-velocity of a fluid particle. In addition the perfect fluid is characterized by an isotropic
pressure in the fluid frame. More precisely, the perfect fluid model is entirely defined by the
following stress-energy tensor:

T = (ρ + P )u ⊗ u + P g , (5.27)

where ρ and P are two scalar fields, representing respectively the matter energy density and the
pressure, both measured in the fluid frame (i.e. by an observer who is comoving with the fluid),
and u is the 1-form associated to the 4-velocity u by the metric tensor g [cf. Eq. (2.9)].
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Figure 5.1: Worldline L of a fluid element crossing the spacetime foliation (Σt)t∈R. u is the fluid 4-velocity
and U = dℓ/dτ the relative velocity of the fluid with respect to the Eulerian observer, whose 4-velocity is n. U

is tangent to Σt and enters in the orthogonal decomposition of u with respect to Σt, via u = Γ(n + U ). NB:

contrary to what the figure might suggest, dτ > dτ0 (conflict between the figure’s underlying Euclidean geometry
and the actual Lorentzian geometry of spacetime).

Let us consider a fluid element at point p ∈ Σt (cf. Fig. 5.1). Let τ be the Eulerian observer’s
proper time at p. At the coordinate time t + dt, the fluid element has moved to the point
q ∈ Σt+dt. The date τ + dτ attributed to the event q by the Eulerian observer moving through
p is given by the orthogonal projection q′ of q onto the wordline of that observer. Indeed, let us
recall that the space of simultaneous events (local rest frame) for the Eulerian observer is the
space orthogonal to his 4-velocity u, i.e. locally Σt (cf. Sec. 3.3.3). Let dℓ be the infinitesimal
vector connecting q′ to q. Let dτ0 be the increment of the fluid proper time between the events
p and q. The Lorentz factor of the fluid with respect to the Eulerian observer is defined as
being the proportionality factor Γ between the proper times dτ0 and dτ :

dτ =: Γdτ0 . (5.28)

One has the triangle identity (cf. Fig. 5.1):

dτ0 u = dτ n + dℓ. (5.29)

Taking the scalar product with n yields

dτ0 n · u = dτ n · n
︸ ︷︷ ︸

=−1

+ n · dℓ
︸ ︷︷ ︸

=0

, (5.30)

hence, using relation (5.28),

Γ = −n · u . (5.31)

From a pure geometrical point of view, the Lorentz factor is thus nothing but minus the scalar
product of the two 4-velocities, the fluid’s one and the Eulerian observer’s one.
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Remark : Whereas Γ has been defined in an asymmetric way as the “Lorentz factor of the fluid
observer with respect to the Eulerian observer”, the above formula shows that the Lorentz
factor is actually a symmetric quantity in terms of the two observers.

Using the components nα of n given by Eq. (4.38), Eq. (5.31) gives an expression of the Lorentz
factor in terms of the component u0 of u with respect to the coordinates (t, xi):

Γ = Nu0. (5.32)

The fluid velocity relative to the Eulerian observer is defined as the quotient of the
displacement dℓ by the proper time dτ , both quantities being relative to the Eulerian observer
(cf. Fig. 5.1):

U :=
dℓ

dτ
. (5.33)

Notice that by construction, U is tangent to Σt. Dividing the identity (5.29) by dτ and making
use of Eq. (5.28) results in

u = Γ(n + U) . (5.34)

Since n · U = 0, the above writting constitutes the orthogonal 3+1 decomposition of the fluid
4-velocity u. The normalization relation of the fluid 4-velocity, i.e. u · u = −1, combined with
Eq. (5.34), results in

− 1 = Γ2(n · n
︸ ︷︷ ︸

=−1

+2n · U
︸ ︷︷ ︸

=0

+U · U), (5.35)

hence

Γ = (1 − U · U)−1/2 . (5.36)

Thus, in terms of the velocity U , the Lorentz factor is expressed by a formula identical of that
of special relativity, except of course that the scalar product in Eq. (5.36) is to be taken with
the (curved) metric γ, whereas in special relativity it is taken with a flat metric.

It is worth to introduce another type of fluid velocity, namely the fluid coordinate velocity

defined by

V :=
dx

dt
, (5.37)

where dx is the displacement of the fluid worldline with respect to the line of constant spatial
coordinates (cf. Fig. 5.2). More precisely, if the fluid moves from the point p of coordinates
(t, xi) to the point q of coordinates (t + dt, xi + dxi), the fluid coordinate velocity is defined as
the vector tangent to Σt, the components of which are

V i =
dxi

dt
. (5.38)

Noticing that the components of the fluid 4-velocity are uα = dxα/dτ0, the above formula can
be written

V i =
ui

u0
. (5.39)
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Figure 5.2: Coordinate velocity V of the fluid defined as the ratio of the fluid displacement with respect to the
line of constant spatial coordinates to the coordinate time increment dt.

From the very definition of the shift vector (cf. Sec. 4.2.2), the drift of the coordinate line
xi = const from the Eulerian observer worldline between t and t + dt is the vector dt β. Hence
we have (cf. Fig. 5.2)

dℓ = dt β + dx. (5.40)

Dividing this relation by dτ , using Eqs. (5.33), (3.15) and (5.37) yields

U =
1

N
(V + β) . (5.41)

On this expression, it is clear that at the Newtonian limit as given by (5.15), U = V .

5.3.2 Baryon number conservation

In addition to ∇ · T = 0, the perfect fluid must obey to the fundamental law of baryon number
conservation:

∇ · jB = 0 , (5.42)

where jB is the baryon number 4-current, expressible in terms of the fluid 4-velocity and
the fluid proper baryon number density nB as

jB = nBu . (5.43)

The baryon number density measured by the Eulerian observer is

NB := −jB · n. (5.44)
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Combining Eqs. (5.31) and (5.43), we get

NB = ΓnB . (5.45)

This relation is easily interpretable by remembering that NB and nB are volume densities and
invoking the Lorentz-FitzGerald “length contraction” in the direction of motion.

The baryon number current measured by the Eulerian observer is given by the
orthogonal projection of jB onto Σt:

JB := ~γ(jB). (5.46)

Taking into account that ~γ(u) = ΓU [Eq. (5.34)], we get the simple relation

JB = NBU . (5.47)

Using the above formulæ, as well as the orthogonal decomposition (5.34) of u, the baryon
number conservation law (5.42) can be written

∇ · (nBu) = 0

⇒ ∇ · [nBΓ(n + U)] = 0

⇒ ∇ · [NBn + NBU ] = 0

⇒ n · ∇NB + NB ∇ · n
︸ ︷︷ ︸

=−K

+∇ · (NBU) = 0 (5.48)

Since NBU ∈ T (Σt), we may use the divergence formula (5.7) and obtain

LnNB − KNB + D · (NBU) + NBU · D ln N = 0, (5.49)

where we have written n ·∇NB = LnNB. Since n = N−1(∂t −β) [Eq. (4.31)], we may rewrite
the above equation as

(
∂

∂t
− Lβ

)

NB + D · (NNBU) − NKNB = 0 . (5.50)

Using Eq. (5.41), we can put this equation in an alternative form

∂

∂t
NB + D · (NBV ) + NB (D · β − NK) = 0. (5.51)

5.3.3 Dynamical quantities

The fluid energy density as measured by the Eulerian observer is given by formula (4.3): E =
T (n,n), with the stress-energy tensor (5.27). Hence E = (ρ + P )(u · n)2 + Pg(n,n). Since
u · n = −Γ [Eq. (5.31)] and g(n,n) = −1, we get

E = Γ2(ρ + P ) − P . (5.52)
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Remark : For pressureless matter (dust), the above formula reduces to E = Γ2ρ. The reader
familiar with the formula E = Γmc2 may then be puzzled by the Γ2 factor in (5.52).
However he should remind that E is not an energy, but an energy per unit volume: the
extra Γ factor arises from “length contraction” in the direction of motion.

Introducing the proper baryon density nB, one may decompose the proper energy density ρ
in terms of a proper rest-mass energy density ρ0 and an proper internal energy εint as

ρ = ρ0 + εint, with ρ0 := mBnB, (5.53)

mB being a constant, namely the mean baryon rest mass (mB ≃ 1.66 × 10−27 kg). Inserting
the above relation into Eq. (5.52) and writting Γ2ρ = Γρ + (Γ − 1)Γρ leads to the following
decomposition of E:

E = E0 + Ekin + Eint, (5.54)

with the rest-mass energy density

E0 := mBNB, (5.55)

the kinetic energy density

Ekin := (Γ − 1)E0 = (Γ − 1)mBNB, (5.56)

the internal energy density

Eint := Γ2(εint + P ) − P. (5.57)

The three quantities E0, Ekin and Eint are relative to the Eulerian observer.

At the Newtonian limit, we shall suppose that the fluid is not relativistic [cf. (5.25)]:

P ≪ ρ0, |ǫint| ≪ ρ0, U2 := U · U ≪ 1. (5.58)

Then we get

Newtonian limit: Γ ≃ 1 +
U2

2
, E ≃ E + P ≃ E0 ≃ ρ0, E − E0 ≃ 1

2
ρ0U

2 + εint. (5.59)

The fluid momentum density as measured by the Eulerian observer is obtained by applying
formula (4.4):

p = −T (n, ~γ(.)) = −(ρ + P ) 〈u,n〉
︸ ︷︷ ︸

=−Γ

〈u, ~γ(.)〉
︸ ︷︷ ︸

=ΓU

−P g(n, ~γ(.))
︸ ︷︷ ︸

=0

= Γ2(ρ + P )U , (5.60)

where Eqs. (5.31) and (5.34) have been used to get the second line. Taking into account
Eq. (5.52), the above relation becomes

p = (E + P )U . (5.61)
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Finally, by applying formula (4.7), we get the fluid stress tensor with respect to the Eulerian
observer:

S = ~γ∗T = (ρ + P ) ~γ∗u
︸︷︷︸

=ΓU

⊗ ~γ∗u
︸︷︷︸

=ΓU

+P ~γ∗g
︸︷︷︸

=γ

= P γ + Γ2(ρ + P )U ⊗ U , (5.62)

or, taking into account Eq. (5.52),

S = P γ + (E + P )U ⊗ U . (5.63)

5.3.4 Energy conservation law

By means of Eqs. (5.61) and (5.63), the energy conservation law (5.12) becomes
(

∂

∂t
− Lβ

)

E +N
{
D · [(E + P )U ] − (E + P )(K + KijU

iU j)
}

+2(E +P )U ·DN = 0 (5.64)

To take the Newtonian limit, we may combine the Newtonian limit of the baryon number
conservation law (5.50) with Eq. (5.18) to get

∂E′

∂t
+ D · [(E′ + P )U ] = −U · (ρ0DΦ), (5.65)

where E′ := E − E0 = Ekin + Eint and we clearly recognize in the right-hand side the power
provided to a unit volume fluid element by the gravitational force.

5.3.5 Relativistic Euler equation

Injecting the expressions (5.61) and (5.63) into the momentum conservation law (5.23), we get
(

∂

∂t
− Lβ

)

[(E + P )Ui] + NDj

[

Pδj
i + (E + P )U jUi

]

+ [Pγij + (E + P )UiUj ]D
jN

−NK(E + P )Ui + EDiN = 0. (5.66)

Expanding and making use of Eq. (5.64) yields
(

∂

∂t
− Lβ

)

Ui + NU jDjUi − U jDjN Ui + DiN + NKklU
kU lUi

+
1

E + P

[

NDiP + Ui

(
∂

∂t
− Lβ

)

P

]

= 0. (5.67)

Now, from Eq. (5.41), NU jDjUi = V jDjUi + βjDjUi, so that −Lβ Ui + NU jDjUi = V jDjUi −
UjDiβ

j [cf. Eq. (A.7)]. Hence the above equation can be written

∂Ui

∂t
+ V jDjUi + NKklU

kU lUi − UjDiβ
j = − 1

E + P

[

NDiP + Ui

(
∂P

∂t
− βj ∂P

∂xj

)]

−DiN + UiU
jDjN.

(5.68)
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The Newtonian limit of this equation is [cf. Eqs. (5.15) and (5.59)]

∂Ui

∂t
+ U jDjUi = − 1

ρ0
DiP −DiΦ, (5.69)

i.e. the standard Euler equation in presence of a gravitational field of potential Φ.

5.3.6 Further developments

For further developments in 3+1 relativistic hydrodynamics, we refer to the review article by
Font [124]. Let us also point out that the 3+1 decomposition presented above is not very
convenient for discussing conservation laws, such as the relativistic generalizations of Bernoulli’s
theorem or Kelvin’s circulation theorem. For this purpose the Carter-Lichnerowicz approach,
which is based on exterior calculus, is much more powerfull, as discussed in Ref. [143].

5.4 Electromagnetic field

not written up yet; see Ref. [258].

5.5 3+1 magnetohydrodynamics

not written up yet; see Refs. [45, 235, 22].
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6.1 Introduction

Historically, conformal decompositions in 3+1 general relativity have been introduced in two
contexts. First of all, Lichnerowicz [177] 1 has introduced in 1944 a decomposition of the
induced metric γ of the hypersurfaces Σt of the type

γ = Ψ4γ̃, (6.1)

where Ψ is some strictly positive scalar field and γ̃ an auxiliary metric on Σt, which is necessarily
Riemannian (i.e. positive definite), as γ is. The relation (6.1) is called a conformal trans-

formation and γ̃ will be called hereafter the conformal metric. Lichnerowicz has shown
that the conformal decomposition of γ, along with some specific conformal decomposition of the
extrinsic curvature provides a fruitful tool for the resolution of the constraint equations to get
valid initial data for the Cauchy problem. This will be discussed in Chap. 8.

Then, in 1971-72, York [271, 272] has shown that conformal decompositions are also impor-
tant for the time evolution problem, by demonstrating that the two degrees of freedom of the
gravitational field are carried by the conformal equivalence classes of 3-metrics. A conformal

1see also Ref. [178] which is freely accessible on the web
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equivalence class is defined as the set of all metrics that can be related to a given metric γ

by a transform like (6.1). The argument of York is based on the Cotton tensor [99], which is
a rank-3 covariant tensor defined from the covariant derivative of the Ricci tensor R of γ by

Cijk := Dk

(

Rij −
1

4
Rγij

)

− Dj

(

Rik − 1

4
Rγik

)

. (6.2)

The Cotton tensor is conformally invariant and shows the same property with respect to 3-
dimensional metric manifolds than the Weyl tensor [cf. Eq. (2.18)] for metric manifolds of
dimension strictly greater than 3, namely its vanishing is a necessary and sufficient condition for
the metric to be conformally flat, i.e. to be expressible as γ = Ψ4f , where Ψ is some scalar
field and f a flat metric. Let us recall that in dimension 3, the Weyl tensor vanishes identically.
More precisely, York [271] constructed from the Cotton tensor the following rank-2 tensor

Cij := −1

2
ǫiklCmklγ

mj = ǫiklDk

(

Rj
l −

1

4
Rδj

l

)

, (6.3)

where ǫ is the Levi-Civita alternating tensor associated with the metric γ. This tensor is called
the Cotton-York tensor and exhibits the following properties:

• symmetric: Cji = Cij

• traceless: γijC
ij = 0

• divergence-free (one says also transverse): DjC
ij = 0

Moreover, if one consider, instead of C, the following tensor density of weight 5/3,

Cij
∗ := γ5/6Cij, (6.4)

where γ := det(γij), then one gets a conformally invariant quantity. Indeed, under a conformal
transformation of the type (6.1), ǫikl = Ψ−6ǫ̃ikl, Cmkl = C̃mkl (conformal invariance of the Cotton
tensor), γml = Ψ−4γ̃ml and γ5/6 = Ψ10γ̃5/6, so that Cij

∗ = C̃ij
∗ . The traceless and transverse

(TT) properties being characteristic of the pure spin 2 representations of the gravitational field
(cf. T. Damour’s lectures [103]), the conformal invariance of Cij

∗ shows that the true degrees of
freedom of the gravitational field are carried by the conformal equivalence class.

Remark : The remarkable feature of the Cotton-York tensor is to be a TT object constructed
from the physical metric γ alone, without the need of some extra-structure on the manifold
Σt. Usually, TT objects are defined with respect to some extra-structure, such as privileged
Cartesian coordinates or a flat background metric, as in the post-Newtonian approach to
general relativity (see L. Blanchet’s lectures [58]).

Remark : The Cotton and Cotton-York tensors involve third derivatives of the metric tensor.
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6.2 Conformal decomposition of the 3-metric

6.2.1 Unit-determinant conformal “metric”

A somewhat natural representative of a conformal equivalence class is the unit-determinant
conformal “metric”

γ̂ := γ−1/3γ, (6.5)

where γ := det(γij). This would correspond to the choice Ψ = γ1/12 in Eq. (6.1). All the metrics
γ in the same conformal equivalence class lead to the same value of γ̂. However, since the
determinant γ depends upon the choice of coordinates to express the components γij , Ψ = γ1/12

would not be a scalar field. Actually, the quantity γ̂ is not a tensor field, but a tensor density,
of weight −2/3.

Let us recall that a tensor density of weight n ∈ Q is a quantity τ such that

τ = γn/2 T , (6.6)

where T is a tensor field.

Remark : The conformal “metric” (6.5) has been used notably in the BSSN formulation [233,
43] for the time evolution of 3+1 Einstein system, to be discussed in Chap. 9. An “associ-
ated” connection D̂ has been introduced, such that D̂γ̂ = 0. However, since γ̂ is a tensor
density and not a tensor field, there is not a unique connection associated with it (Levi-
Civita connection). In particular one has Dγ̂ = 0, so that the connection D associated
with the metric γ is “associated” with γ̂, in addition to D̂. As a consequence, some of
the formulæ presented in the original references [233, 43] for the BSSN formalism have a
meaning only for Cartesian coordinates.

6.2.2 Background metric

To clarify the meaning of D̂ (i.e. to avoid to work with tensor densities) and to allow for the
use of spherical coordinates, we introduce an extra structure on the hypersurfaces Σt, namely
a background metric f [63]. It is asked that the signature of f is (+,+,+), i.e. that f is a
Riemannian metric, as γ. Moreover, we tight f to the coordinates (xi) by demanding that the
components fij of f with respect to (xi) obey to

∂fij

∂t
= 0. (6.7)

An equivalent writing of this is

L∂tf = 0, (6.8)

i.e. the metric f is Lie-dragged along the coordinate time evolution vector ∂t.

If the topology of Σt enables it, it is quite natural to choose f to be flat, i.e. such that its
Riemann tensor vanishes. However, in this chapter, we shall not make such hypothesis, except
in Sec. 6.6.
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As an example of background metric, let us consider a coordinate system (xi) = (x, y, z)
on Σt and define the metric f as the bilinear form whose components with respect to that
coordinate system are fij = diag(1, 1, 1) (in this example, f is flat).

The inverse metric is denoted by f ij:

f ikfkj = δi
j. (6.9)

In particular note that, except for the very special case γij = fij, one has

f ij 6= γikγjl fkl. (6.10)

We denote by D the Levi-Civita connection associated with f :

Dkfij = 0, (6.11)

and define
Di = f ijDj . (6.12)

The Christoffel symbols of the connection D with respect to the coordinates (xi) are denoted
by Γ̄k

ij ; they are given by the standard expression:

Γ̄k
ij =

1

2
fkl

(
∂flj

∂xi
+

∂fil

∂xj
− ∂fij

∂xl

)

. (6.13)

6.2.3 Conformal metric

Thanks to f , we define

γ̃ := Ψ−4γ , (6.14)

where

Ψ :=

(
γ

f

)1/12

, γ := det(γij), f := det(fij). (6.15)

The key point is that, contrary to γ, Ψ is a tensor field on Σt. Indeed a change of coordinates
(xi) 7→ (xi′) induces the following changes in the determinants:

γ′ = (det J)2γ (6.16)

f ′ = (det J)2f, (6.17)

where J denotes the Jacobian matrix

J i
i′ :=

∂xi

∂xi′
. (6.18)

From Eqs. (6.16)-(6.17) it is obvious that γ′/f ′ = γ/f , which shows that γ/f , and hence Ψ, is
a scalar field. Of course, this scalar field depends upon the choice of the background metric f .
Ψ being a scalar field, the quantity γ̃ defined by (6.14) is a tensor field on Σt. Moreover, it is a
Riemannian metric on Σt. We shall call it the conformal metric. By construction, it satisfies

det(γ̃ij) = f . (6.19)
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This is the “unit-determinant” condition fulfilled by γ̃. Indeed, if one uses for (xi) Cartesian-
type coordinates, then f = 1. But the condition (6.19) is more flexible and allows for the use of
e.g. spherical type coordinates (xi) = (r, θ, ϕ), for which f = r4 sin2 θ.

We define the inverse conformal metric γ̃ij by the requirement

γ̃ik γ̃kj = δ j
i , (6.20)

which is equivalent to
γ̃ij = Ψ4 γij . (6.21)

Hence, combining with Eq. (6.14),

γij = Ψ4γ̃ij and γij = Ψ−4 γ̃ij . (6.22)

Note also that although we are using the same notation γ̃ for both γ̃ij and γ̃ij , one has

γ̃ij 6= γikγjl γ̃kl, (6.23)

except in the special case Ψ = 1.

Example : A simple example of a conformal decomposition is provided by the Schwarzschild
spacetime described with isotropic coordinates (xα) = (t, r, θ, ϕ); the latter are related to

the standard Schwarzschild coordinates (t, R, θ, ϕ) by R = r
(
1 + m

2r

)2
. The components of

the spacetime metric tensor in the isotropic coordinates are given by (see e.g.

gµνdxµdxν = −
(

1 − m
2r

1 + m
2r

)2

dt2 +
(

1 +
m

2r

)4 [
dr2 + r2(dθ2 + sin2 θdϕ2)

]
, (6.24)

where the constant m is the mass of the Schwarzschild solution. If we define the background
metric to be fij = diag(1, r2, r2 sin2 θ), we read on this line element that γ = Ψ4γ̃ with

Ψ = 1 +
m

2r
(6.25)

and γ̃ = f . Notice that in this example, the background metric f is flat and that the
conformal metric coincides with the background metric.

Example : Another example is provided by the weak field metric introduced in Sec. 5.2.3 to
take Newtonian limits. We read on the line element (5.14) that the conformal metric is
γ̃ = f and that the conformal factor is

Ψ = (1 − 2Φ)1/4 ≃ 1 − 1

2
Φ, (6.26)

where |Φ| ≪ 1 and Φ reduces to the gravitational potential at the Newtonian limit. As
a side remark, notice that if we identify expressions (6.25) and (6.26), we recover the
standard expression Φ = −m/r (remember G = 1 !) for the Newtonian gravitational
potential outside a spherical distribution of mass.
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6.2.4 Conformal connection

γ̃ being a well defined metric on Σt, let D̃ be the Levi-Civita connection associated to it:

D̃γ̃ = 0. (6.27)

Let us denote by Γ̃k
ij the Christoffel symbols of D̃ with respect to the coordinates (xi):

Γ̃k
ij =

1

2
γ̃kl

(
∂γ̃lj

∂xi
+

∂γ̃il

∂xj
− ∂γ̃ij

∂xl

)

. (6.28)

Given a tensor field T of type
(

p
q

)

on Σt, the covariant derivatives D̃T and DT are related

by the formula

DkT
i1...ip

j1...jq
= D̃kT

i1...ip
j1...jq

+

p
∑

r=1

Cir
kl T

i1...l...ip
j1...jq

−
q
∑

r=1

C l
kjr

T
i1...ip

j1...l...jq
, (6.29)

where2

Ck
ij := Γk

ij − Γ̃k
ij , (6.30)

Γk
ij being the Christoffel symbols of the connection D. The formula (6.29) follows immediately

from the expressions of DT and D̃T in terms of respectively the Christoffel symbols Γk
ij and

Γ̃k
ij. Since DkT

i1...ip
j1...jq

−D̃kT
i1...ip

j1...jq
are the components of a tensor field, namely DT−D̃T ,

it follows from Eq. (6.29) that the Ck
ij are also the components of a tensor field. Hence we recover

a well known property: although the Christoffel symbols are not the components of any tensor
field, the difference between two sets of them represents the components of a tensor field. We
may express the tensor Ck

ij in terms of the D̃-derivatives of the metric γ, by the same formula

than the one for the Christoffel symbols Γk
ij , except that the partial derivatives are replaced by

D̃-derivatives:

Ck
ij =

1

2
γkl
(

D̃iγlj + D̃jγil − D̃lγij

)

. (6.31)

It is easy to establish this relation by evaluating the right-hand side, expressing the D̃-derivatives
of γ in terms of the Christoffel symbols Γ̃k

ij :

1

2
γkl
(

D̃iγlj + D̃jγil − D̃lγij

)

=
1

2
γkl

(
∂γlj

∂xi
− Γ̃m

ilγmj − Γ̃m
ijγlm +

∂γil

∂xj
− Γ̃m

jiγml − Γ̃m
jlγim

−∂γij

∂xl
+ Γ̃m

liγmj + Γ̃m
ljγim

)

= Γk
ij +

1

2
γkl(−2)Γ̃m

ijγlm

= Γk
ij − δk

mΓ̃m
ij

= Ck
ij, (6.32)

2The Ck
ij are not to be confused with the components of the Cotton tensor discussed in Sec. 6.1. Since we

shall no longer make use of the latter, no confusion may arise.
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where we have used the symmetry with respect to (i, j) of the Christoffel symbols Γ̃k
ij to get

the second line.

Let us replace γij and γij in Eq. (6.31) by their expressions (6.22) in terms of γ̃ij , γ̃ij and Ψ:

Ck
ij =

1

2
Ψ−4γ̃kl

[

D̃i(Ψ
4γ̃lj) + D̃j(Ψ

4γil) − D̃l(Ψ
4γ̃ij)

]

=
1

2
Ψ−4γ̃kl

(

γ̃ljD̃iΨ
4 + γ̃ilD̃jΨ

4 − γ̃ijD̃lΨ
4
)

=
1

2
Ψ−4

(

δk
jD̃iΨ

4 + δk
iD̃jΨ

4 − γ̃ijD̃
kΨ4

)

Hence

Ck
ij = 2

(

δk
iD̃j ln Ψ + δk

jD̃i ln Ψ − D̃k ln Ψ γ̃ij

)

. (6.33)

A usefull application of this formula is to derive the relation between the two covariant
derivatives Dv and D̃v of a vector field v ∈ T (Σt). From Eq. (6.29), we have

Djv
i = D̃jv

i + Ci
jkv

k, (6.34)

so that expression (6.33) yields

Djv
i = D̃jv

i + 2
(

vkD̃k ln Ψ δi
j + viD̃j ln Ψ − D̃i ln Ψ γ̃jkv

k
)

. (6.35)

Taking the trace, we get a relation between the two divergences:

Div
i = D̃iv

i + 6viD̃i ln Ψ, (6.36)

or equivalently,

Div
i = Ψ−6D̃i

(
Ψ6vi

)
. (6.37)

Remark : The above formula could have been obtained directly from the standard expression of
the divergence of a vector field in terms of partial derivatives and the determinant γ of γ,
both with respect to some coordinate system (xi):

Div
i =

1√
γ

∂

∂xi

(√
γvi
)
. (6.38)

Noticing that γij = Ψ4γ̃ij implies
√

γ = Ψ6
√

γ̃, we get immediately Eq. (6.37).

6.3 Expression of the Ricci tensor

In this section, we express the Ricci tensor R which appears in the 3+1 Einstein system (4.63)-
(4.66), in terms of the Ricci tensor R̃ associated with the metric γ̃ and derivatives of the
conformal factor Ψ.
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6.3.1 General formula relating the two Ricci tensors

The starting point of the calculation is the Ricci identity (2.34) applied to a generic vector field
v ∈ T (Σt):

(DiDj − DjDi)v
k = Rk

lij vl. (6.39)

Contracting this relation on the indices i and k (and relabelling i ↔ j) let appear the Ricci
tensor:

Rijv
j = DjDiv

j − DiDjv
j . (6.40)

Expressing the D-derivatives in term of the D̃-derivatives via formula (6.29), we get

Rijv
j = D̃j(Div

j) − Ck
jiDkv

j + Cj
jkDiv

k − D̃i(Djv
j)

= D̃j(D̃iv
j + Cj

ikv
k) − Ck

ji(D̃kvj + Cj
klv

l) + Cj
jk(D̃iv

k + Ck
ilv

l) − D̃i(D̃jv
j + Cj

jkv
k)

= D̃jD̃iv
j + D̃jC

j
ik vk + Cj

ikD̃jv
k − Ck

jiD̃kv
j − Ck

jiC
j
klv

l + Cj
jkD̃iv

k + Cj
jkC

k
ilv

l

−D̃iD̃jv
j − D̃iC

j
jk vk − Cj

jkD̃iv
k

= D̃jD̃iv
j − D̃iD̃jv

j + D̃jC
j
ik vk − Ck

jiC
j
klv

l + Cj
jkC

k
ilv

l − D̃iC
j
jk vk. (6.41)

We can replace the first two terms in the right-hand side via the contracted Ricci identity similar
to Eq. (6.40) but regarding the connection D̃:

D̃jD̃iv
j − D̃iD̃jv

j = R̃ijv
j (6.42)

Then, after some relabelling j ↔ k or j ↔ l of dumb indices, Eq. (6.41) becomes

Rijv
j = R̃ijv

j + D̃kC
k
ij vj − D̃iC

k
jk vj + C l

lkC
k
ijv

j − Ck
liC

l
kjv

j . (6.43)

This relation being valid for any vector field v, we conclude that

Rij = R̃ij + D̃kC
k
ij − D̃iC

k
kj + Ck

ijC
l
lk − Ck

ilC
l
kj , (6.44)

where we have used the symmetry of Ck
ij in its two last indices.

Remark : Eq. (6.44) is the general formula relating the Ricci tensors of two connections, with
the Ck

ij’s being the differences of their Christoffel symbols [Eq. (6.30)]. This formula
does not rely on the fact that the metrics γ and γ̃ associated with the two connections are
conformally related.

6.3.2 Expression in terms of the conformal factor

Let now replace Ck
ij in Eq. (6.44) by its expression in terms of the derivatives of Ψ, i.e.

Eq. (6.33). First of all, by contracting Eq. (6.33) on the indices j and k, we have

Ck
ki = 2

(

D̃i ln Ψ + 3D̃i ln Ψ − D̃i ln Ψ
)

, (6.45)

i.e.
Ck

ki = 6D̃i ln Ψ, (6.46)
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whence D̃iC
k
kj = 6D̃iD̃j ln Ψ. Besides,

D̃kC
k
ij = 2

(

D̃iD̃j ln Ψ + D̃jD̃i ln Ψ − D̃kD̃
k ln Ψ γ̃ij

)

= 4D̃iD̃j ln Ψ − 2D̃kD̃k ln Ψ γ̃ij . (6.47)

Consequently, Eq. (6.44) becomes

Rij = R̃ij + 4D̃iD̃j ln Ψ − 2D̃kD̃
k ln Ψ γ̃ij − 6D̃iD̃j ln Ψ

+2
(

δk
iD̃j ln Ψ + δk

jD̃i ln Ψ − D̃k lnΨ γ̃ij

)

× 6D̃k ln Ψ

−4
(

δk
iD̃l ln Ψ + δk

lD̃i ln Ψ − D̃k ln Ψ γ̃il

)(

δl
kD̃j ln Ψ + δl

jD̃k ln Ψ − D̃l ln Ψ γ̃kj

)

.

Expanding and simplifying, we get

Rij = R̃ij − 2D̃iD̃j ln Ψ − 2D̃kD̃
k ln Ψ γ̃ij + 4D̃i ln Ψ D̃j ln Ψ − 4D̃k ln Ψ D̃k ln Ψ γ̃ij . (6.48)

6.3.3 Formula for the scalar curvature

The relation between the scalar curvatures is obtained by taking the trace of Eq. (6.48) with
respect to γ:

R = γijRij = Ψ−4γ̃ijRij

= Ψ−4
(

γ̃ijR̃ij − 2D̃iD̃
i ln Ψ − 2D̃kD̃

k lnΨ × 3 + 4D̃i ln Ψ D̃i ln Ψ − 4D̃k ln Ψ D̃k ln Ψ × 3
)

R = Ψ−4
[

R̃ − 8
(

D̃iD̃
i ln Ψ + D̃i ln Ψ D̃i ln Ψ

)]

, (6.49)

where
R̃ := γ̃ijR̃ij (6.50)

is the scalar curvature associated with the conformal metric. Noticing that

D̃iD̃
i ln Ψ = Ψ−1D̃iD̃

iΨ − D̃i ln Ψ D̃i ln Ψ, (6.51)

we can rewrite the above formula as

R = Ψ−4R̃ − 8Ψ−5D̃iD̃
iΨ . (6.52)

6.4 Conformal decomposition of the extrinsic curvature

6.4.1 Traceless decomposition

The first step is to decompose the extrinsic curvature K of the hypersurface Σt into a trace part
and a traceless one, the trace being taken with the metric γ, i.e. we define

A := K − 1

3
Kγ, (6.53)



92 Conformal decomposition

where K := trγ K = Ki
i = γijKij is the trace of K with respect to γ, i.e. (minus three

times) the mean curvature of Σt embedded in (M,g) (cf. Sec. 2.3.4). The bilinear form A is by
construction traceless:

trγ A = γijAij = 0. (6.54)

In what follows, we shall work occasionally with the twice contravariant version of K, i.e.

the tensor
։

K, the components of which are3

Kij = γikγjlKkl. (6.55)

Similarly, we define
։

A as the twice contravariant tensor, the components of which are

Aij = γikγjlAkl. (6.56)

Hence the traceless decomposition of K and
։

K:

Kij = Aij +
1

3
Kγij and Kij = Aij +

1

3
Kγij . (6.57)

6.4.2 Conformal decomposition of the traceless part

Let us now perform the conformal decomposition of the traceless part of K, namely, let us write

Aij = ΨαÃij (6.58)

for some power α to be determined. Actually there are two natural choices: α = −4 and
α = −10, as we discuss hereafter:

1) “Time-evolution” scaling: α = −4

Let us consider Eq. (3.24) which express the time evolution of the γ in terms of K:

Lm γij = −2NKij . (6.59)

By means of Eqs. (6.22) and (6.57), this equation becomes

Lm

(
Ψ4γ̃ij

)
= −2NAij −

2

3
NKγij, (6.60)

i.e.

Lm γ̃ij = −2NΨ−4Aij −
2

3
(NK + 6Lm ln Ψ) γ̃ij. (6.61)

The trace of this relation with respect to γ̃ is, since Aij is traceless,

γ̃ijLm γ̃ij = −2(NK + 6Lm ln Ψ). (6.62)

3The double arrow is extension of the single arrow notation introduced in Sec. 2.2.2 [cf. Eq. (2.11)].
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Now

γ̃ijLm γ̃ij = Lm ln det(γ̃ij). (6.63)

This follows from the general law of variation of the determinant of any invertible matrix A:

δ(ln detA) = tr(A−1 × δA) , (6.64)

where δ denotes any variation (derivative) that fulfills the Leibniz rule, tr stands for the trace
and × for the matrix product. Applying Eq. (6.64) to A = (γ̃ij) and δ = Lm gives Eq. (6.63).
By construction, det(γ̃ij) = f [Eq. (6.19)], so that, replacing m by ∂t − β, we get

Lm ln det(γ̃ij) =

(
∂

∂t
− Lβ

)

ln f (6.65)

But, as a consequence of Eq. (6.7), ∂f/∂t = 0, so that

Lm ln det(γ̃ij) = −Lβ ln f = −Lβ ln det(γ̃ij). (6.66)

Applying again formula (6.64) to A = (γ̃ij) and δ = Lβ , we get

Lm ln det(γ̃ij) = −γ̃ijLβ γ̃ij

= −γ̃ij
(

βk D̃kγ̃ij
︸ ︷︷ ︸

=0

+γ̃kjD̃iβ
k + γ̃ikD̃jβ

k
)

= −δi
kD̃iβ

k − δj
kD̃jβ

k

= −2D̃iβ
i. (6.67)

Hence Eq. (6.63) becomes

γ̃ijLm γ̃ij = −2D̃iβ
i, (6.68)

so that, after substitution into Eq. (6.62), we get

NK + 6Lm ln Ψ = D̃iβ
i, (6.69)

i.e. the following evolution equation for the conformal factor:

(
∂

∂t
− Lβ

)

ln Ψ =
1

6

(

D̃iβ
i − NK

)

. (6.70)

Finally, substituting Eq. (6.69) into Eq. (6.61) yields an evolution equation for the conformal
metric: (

∂

∂t
− Lβ

)

γ̃ij = −2NΨ−4Aij −
2

3
D̃kβ

k γ̃ij . (6.71)

This suggests to introduce the quantity

Ãij := Ψ−4Aij (6.72)
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to write
(

∂

∂t
− Lβ

)

γ̃ij = −2NÃij −
2

3
D̃kβ

k γ̃ij . (6.73)

Notice that, as an immediate consequence of Eq. (6.54), Ãij is traceless:

γ̃ijÃij = 0 . (6.74)

Let us rise the indices of Ãij with the conformal metric, defining

Ãij := γ̃ikγ̃jlÃkl. (6.75)

Since γ̃ij = Ψ4γij , we get

Ãij = Ψ4Aij . (6.76)

This corresponds to the scaling factor α = −4 in Eq. (6.58). This choice of scaling has been first
considered by Nakamura in 1994 [192].

We can deduce from Eq. (6.73) an evolution equation for the inverse conformal metric γ̃ij.
Indeed, raising the indices of Eq. (6.73) with γ̃, we get

γ̃ikγ̃jlLm γ̃kl = −2NÃij − 2

3
D̃kβ

k γ̃ij

γ̃ik[Lm (γ̃jlγ̃kl
︸ ︷︷ ︸

=δj
k

) − γ̃klLm γ̃jl] = −2NÃij − 2

3
D̃kβ

k γ̃ij

− γ̃ikγ̃kl
︸ ︷︷ ︸

=δi
l

Lm γ̃jl = −2NÃij − 2

3
D̃kβ

k γ̃ij, (6.77)

hence
(

∂

∂t
− Lβ

)

γ̃ij = 2NÃij +
2

3
D̃kβ

k γ̃ij . (6.78)

2) “Momentum-constraint” scaling: α = −10

Whereas the scaling α = −4 was suggested by the evolution equation (6.59) (or equivalently
Eq. (4.63) of the 3+1 Einstein system), another scaling arises when contemplating the mo-
mentum constraint equation (4.66). In this equation appears the divergence of the extrinsic
curvature, that we can write using the twice contravariant version of K and Eq. (6.57):

DjK
ij = DjA

ij +
1

3
DiK. (6.79)

Now, from Eqs. (6.29), (6.33) and (6.46),

DjA
ij = D̃jA

ij + Ci
jkA

kj + Cj
jkA

ik

= D̃jA
ij + 2

(

δi
jD̃k ln Ψ + δi

kD̃j ln Ψ − D̃i ln Ψ γ̃jk

)

Akj + 6D̃k ln Ψ Aik

= D̃jA
ij + 10AijD̃j lnΨ − 2D̃i ln Ψ γ̃jkA

jk. (6.80)
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Since A is traceless, γ̃jkA
jk = Ψ−4γjkA

jk = 0. Then the above equation reduces to DjA
ij =

D̃jA
ij + 10AijD̃j ln Ψ, which can be rewritten as

DjA
ij = Ψ−10D̃j

(
Ψ10Aij

)
. (6.81)

Notice that this identity is valid only because Aij is symmetric and traceless.

Equation (6.81) suggests to introduce the quantity4

Âij := Ψ10Aij . (6.82)

This corresponds to the scaling factor α = −10 in Eq. (6.58). It has been first introduced by
Lichnerowicz in 1944 [177]. Thanks to it and Eq. (6.79), the momentum constraint equation
(4.66) can be rewritten as

D̃jÂ
ij − 2

3
Ψ6D̃iK = 8πΨ10pi . (6.83)

As for Ãij, we define Âij as the tensor field deduced from Âij by lowering the indices with
the conformal metric:

Âij := γ̃ikγ̃jlÂ
kl (6.84)

Taking into account Eq. (6.82) and γ̃ij = Ψ−4γij, we get

Âij = Ψ2Aij . (6.85)

6.5 Conformal form of the 3+1 Einstein system

Having performed a conformal decomposition of γ and of the traceless part of K, we are now
in position to rewrite the 3+1 Einstein system (4.63)-(4.66) in terms of conformal quantities.

6.5.1 Dynamical part of Einstein equation

Let us consider Eq. (4.64), i.e. the so-called dynamical equation in the 3+1 Einstein system:

Lm Kij = −DiDjN + N
{

Rij + KKij − 2KikKk
j + 4π [(S − E)γij − 2Sij ]

}

. (6.86)

Let us substitute Aij + (K/3)γij for Kij [Eq. (6.57)]. The left-hand side of the above equation
becomes

Lm Kij = Lm Aij +
1

3
Lm K γij +

1

3
K Lm γij
︸ ︷︷ ︸

=−2NKij

. (6.87)

In this equation appears Lm K. We may express it by taking the trace of Eq. (6.86) and making
use of Eq. (3.49):

Lm K = γijLm Kij + 2NKijK
ij , (6.88)

4notice that we have used a hat, instead of a tilde, to distinguish this quantity from that defined by (6.76)
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hence

Lm K = −DiD
iN + N

[
R + K2 + 4π(S − 3E)

]
. (6.89)

Let use the Hamiltonian constraint (4.65) to replace R + K2 by 16πE + KijK
ij. Then, writing

Lm K = (∂/∂t − Lβ )K,

(
∂

∂t
− Lβ

)

K = −DiD
iN + N

[
4π(E + S) + KijK

ij
]

. (6.90)

Remark : At the Newtonian limit, as defined by Eqs. (5.15), (5.25) and (5.59), Eq. (6.90)
reduces to the Poisson equation for the gravitational potential Φ:

DiDiΦ = 4πρ0. (6.91)

Substituting Eq. (6.89) for Lm K and Eq. (6.86) for Lm Kij into Eq. (6.87) yields

Lm Aij = −DiDjN + N

[

Rij +
5

3
KKij − 2KikK

k
j − 8π

(

Sij −
1

3
Sγij

)]

+
1

3

[

DkD
kN − N(R + K2)

]

γij . (6.92)

Let us replace Kij by its expression in terms of Aij and K [Eq. (6.57)]: the terms in the
right-hand side of the above equation which involve K are then written

5K

3
Kij − 2KikKk

j −
K2

3
γij =

5K

3

(

Aij +
K

3
γij

)

− 2

(

Aik +
K

3
γik

)(

Ak
j +

K

3
δk

j

)

− K2

3
γij

=
5K

3
Aij +

5K2

9
γij − 2

(

AikA
k
j +

2K

3
Aij +

K2

9
γij

)

− K2

3
γij

=
1

3
KAij − 2AikA

k
j. (6.93)

Accordingly Eq. (6.92) becomes

Lm Aij = −DiDjN + N

[

Rij +
1

3
KAij − 2AikA

k
j − 8π

(

Sij −
1

3
Sγij

)]

+
1

3

(

DkD
kN − NR

)

γij . (6.94)

Remark : Regarding the matter terms, this equation involves only the stress tensor S (more
precisely its traceless part) and not the energy density E, contrary to the evolution equation
(6.86) for Kij, which involves both.

At this stage, we may say that we have split the dynamical Einstein equation (6.86) in
two parts: a trace part: Eq. (6.90) and a traceless part: Eq. (6.94). Let us now perform the
conformal decomposition of these relations, by introducing Ãij. We consider Ãij and not Âij,
i.e. the scaling α = −4 and not α = −10, since we are discussing time evolution equations.
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Let us first transform Eq. (6.90). We can express the Laplacian of the lapse by applying the
divergence relation (6.37) to the vector vi = DiN = γijDjN = Ψ−4γ̃ijD̃jN = Ψ−4D̃iN

DiD
iN = Ψ−6D̃i

(
Ψ6DiN

)
= Ψ−6D̃i

(

Ψ2D̃iN
)

= Ψ−4
(

D̃iD̃
iN + 2D̃i ln Ψ D̃iN

)

. (6.95)

Besides, from Eqs. (6.57), (6.72) and (6.76),

KijK
ij =

(

Aij +
K

3
γij

)(

Aij +
K

3
γij

)

= AijA
ij +

K2

3
= ÃijÃ

ij +
K2

3
. (6.96)

In view of Eqs. (6.95) and (6.96), Eq. (6.90) becomes

(
∂

∂t
− Lβ

)

K = −Ψ−4
(

D̃iD̃
iN + 2D̃i ln Ψ D̃iN

)

+ N

[

4π(E + S) + ÃijÃ
ij +

K2

3

]

. (6.97)

Let us now consider the traceless part, Eq. (6.94). We have, writing Aij = Ψ4Ãij and using
Eq. (6.70),

Lm Aij = Ψ4Lm Ãij + 4Ψ3Lm Ψ Ãij = Ψ4

[

Lm Ãij +
2

3

(

D̃kβ
k − NK

)

Ãij

]

. (6.98)

Besides, from formulæ (6.29) and (6.33),

DiDjN = DiD̃jN = D̃iD̃jN − Ck
ijD̃kN

= D̃iD̃jN − 2
(

δk
iD̃j ln Ψ + δk

jD̃i ln Ψ − D̃k ln Ψ γ̃ij

)

D̃kN

= D̃iD̃jN − 2
(

D̃i ln Ψ D̃jN + D̃j ln Ψ D̃iN − D̃k ln Ψ D̃kN γ̃ij

)

. (6.99)

In Eq. (6.94), we can now substitute expression (6.98) for Lm Aij , (6.99) for DiDjN , (6.48) for
Rij , (6.95) for DkD

kN and (6.49) for R. After some slight rearrangements, we get

(
∂

∂t
− Lβ

)

Ãij = −2

3
D̃kβ

k Ãij + N

[

KÃij − 2γ̃klÃikÃjl − 8π

(

Ψ−4Sij −
1

3
Sγ̃ij

)]

+Ψ−4

{

− D̃iD̃jN + 2D̃i ln Ψ D̃jN + 2D̃j ln Ψ D̃iN

+
1

3

(

D̃kD̃
kN − 4D̃k ln Ψ D̃kN

)

γ̃ij

+N

[

R̃ij −
1

3
R̃γ̃ij − 2D̃iD̃j ln Ψ + 4D̃i ln Ψ D̃j ln Ψ

+
2

3

(

D̃kD̃
k ln Ψ − 2D̃k ln Ψ D̃k ln Ψ

)

γ̃ij

]}

.

(6.100)
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6.5.2 Hamiltonian constraint

Substituting Eq. (6.52) for R and Eq. (6.96) into the Hamiltonian constraint equation (4.65)
yields

D̃iD̃
iΨ − 1

8
R̃Ψ +

(
1

8
ÃijÃ

ij − 1

12
K2 + 2πE

)

Ψ5 = 0 . (6.101)

Let us consider the alternative scaling α = −10 to re-express the term ÃijÃ
ij. By combining

Eqs. (6.76), (6.72), (6.82) and (6.85), we get the following relations

Âij = Ψ6Ãij and Âij = Ψ6Ãij . (6.102)

Hence ÃijÃ
ij = Ψ−12ÂijÂ

ij and Eq. (6.101) becomes

D̃iD̃
iΨ − 1

8
R̃Ψ +

1

8
ÂijÂ

ij Ψ−7 +

(

2πE − 1

12
K2

)

Ψ5 = 0 . (6.103)

This is the Lichnerowicz equation. It has been obtained by Lichnerowicz in 1944 [177] in the
special case K = 0 (maximal hypersurface) (cf. also Eq. (11.7) in Ref. [178]).

Remark : If one regards Eqs. (6.101) and (6.103) as non-linear elliptic equations for Ψ, the
negative power (−7) of Ψ in the ÂijÂ

ij term in Eq. (6.103), as compared to the positive
power (+5) in Eq. (6.101), makes a big difference about the mathematical properties of
these two equations. This will be discussed in detail in Chap. 8.

6.5.3 Momentum constraint

The momentum constraint has been already written in terms of Âij : it is Eq. (6.83). Taking
into account relation (6.102), we can easily rewrite it in terms of Ãij:

D̃jÃ
ij + 6ÃijD̃j ln Ψ − 2

3
D̃iK = 8πΨ4pi . (6.104)

6.5.4 Summary: conformal 3+1 Einstein system

Let us gather Eqs. (6.70), (6.73), (6.97), (6.100), (6.101) and (6.104):

(
∂

∂t
− Lβ

)

Ψ =
Ψ

6

(

D̃iβ
i − NK

)

(6.105)

(
∂

∂t
− Lβ

)

γ̃ij = −2NÃij −
2

3
D̃kβ

k γ̃ij (6.106)

(
∂

∂t
− Lβ

)

K = −Ψ−4
(

D̃iD̃
iN + 2D̃i ln Ψ D̃iN

)

+ N

[

4π(E + S) + ÃijÃ
ij +

K2

3

]

(6.107)
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(
∂

∂t
− Lβ

)

Ãij = −2

3
D̃kβ

k Ãij + N

[

KÃij − 2γ̃klÃikÃjl − 8π

(

Ψ−4Sij −
1

3
Sγ̃ij

)]

+Ψ−4

{

− D̃iD̃jN + 2D̃i ln Ψ D̃jN + 2D̃j ln Ψ D̃iN

+
1

3

(

D̃kD̃
kN − 4D̃k ln Ψ D̃kN

)

γ̃ij

+N

[

R̃ij −
1

3
R̃γ̃ij − 2D̃iD̃j lnΨ + 4D̃i ln Ψ D̃j ln Ψ

+
2

3

(

D̃kD̃
k ln Ψ − 2D̃k ln Ψ D̃k ln Ψ

)

γ̃ij

]}

.

(6.108)

D̃iD̃
iΨ − 1

8
R̃Ψ +

(
1

8
ÃijÃ

ij − 1

12
K2 + 2πE

)

Ψ5 = 0 (6.109)

D̃jÃ
ij + 6ÃijD̃j ln Ψ − 2

3
D̃iK = 8πΨ4pi . (6.110)

For the last two equations, which are the constraints, we have the alternative forms (6.103) and
(6.101) in terms of Âij (instead of Ãij):

D̃iD̃
iΨ − 1

8
R̃Ψ +

1

8
ÂijÂ

ij Ψ−7 +

(

2πE − 1

12
K2

)

Ψ5 = 0 , (6.111)

D̃jÂ
ij − 2

3
Ψ6D̃iK = 8πΨ10pi . (6.112)

Equations (6.105)-(6.110) constitute the conformal 3+1 Einstein system. An alternative
form is constituted by Eqs. (6.105)-(6.108) and (6.111)-(6.112). In terms of the original 3+1
Einstein system (4.63)-(4.66), Eq. (6.105) corresponds to the trace of the kinematical equation
(4.63) and Eq. (6.106) to its traceless part, Eq. (6.107) corresponds to the trace of the dynamical
Einstein equation (4.64) and Eq. (6.108) to its traceless part, Eq. (6.109) or Eq. (6.111) is the
Hamiltonian constraint (4.65), whereas Eq. (6.110) or Eq. (6.112) is the momentum constraint.

If the system (6.105)-(6.110) is solved in terms of γ̃ij, Ãij (or Âij), Ψ and K, then the
physical metric γ and the extrinsic curvature K are recovered by

γij = Ψ4γ̃ij (6.113)

Kij = Ψ4

(

Ãij +
1

3
Kγ̃ij

)

= Ψ−2Âij +
1

3
KΨ4γ̃ij . (6.114)

6.6 Isenberg-Wilson-Mathews approximation to General Rela-
tivity

In 1978, J. Isenberg [160] was looking for some approximation to general relativity without any
gravitational wave, beyond the Newtonian theory. The simplest of the approximations that
he found amounts to impose that the 3-metric γ is conformally flat. In the framework of the
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discussion of Sec. 6.1, this is very natural since this means that γ belongs to the conformal
equivalence class of a flat metric and there are no gravitational waves in a flat spacetime. This
approximation has been reintroduced by Wilson and Mathews in 1989 [268], who were not aware
of Isenberg’s work [160] (unpublished, except for the proceeding [163]). It is now designed as
the Isenberg-Wilson-Mathews approximation (IWM) to General Relativity, or sometimes
the conformal flatness approximation.

In our notations, the IWM approximation amounts to set

γ̃ = f (6.115)

and to demand that the background metric f is flat. Moreover the foliation (Σt)t∈R must be
chosen so that

K = 0, (6.116)

i.e. the hypersurfaces Σt have a vanishing mean curvature. Equivalently Σt is a hypersurface of
maximal volume, as it will be explained in Chap. 9. For this reason, foliations with K = 0 are
called maximal slicings.

Notice that while the condition (6.116) can always be satisfied by selecting a maximal slicing
for the foliation (Σt)t∈R, the requirement (6.115) is possible only if the Cotton tensor of (Σt,γ)
vanishes identically, as we have seen in Sec. 6.1. Otherwise, one deviates from general relativity.

Immediate consequences of (6.115) are that the connection D̃ is simply D and that the Ricci
tensor R̃ vanishes identically, since f is flat. The conformal 3+1 Einstein system (6.105)-(6.110)
then reduces to

(
∂

∂t
−Lβ

)

Ψ =
Ψ

6
Diβ

i (6.117)

(
∂

∂t
−Lβ

)

fij = −2NÃij −
2

3
Dkβ

k fij (6.118)

0 = −Ψ−4
(
DiDiN + 2Di ln ΨDiN

)
+ N

[

4π(E + S) + ÃijÃ
ij
]

(6.119)
(

∂

∂t
− Lβ

)

Ãij = −2

3
Dkβ

k Ãij + N

[

−2fklÃikÃjl − 8π

(

Ψ−4Sij −
1

3
Sfij

)]

+Ψ−4

{

−DiDjN + 2Di ln ΨDjN + 2Dj ln ΨDiN

+
1

3

(

DkDkN − 4Dk ln ΨDkN
)

fij

+N

[

− 2DiDj ln Ψ + 4Di ln ΨDj ln Ψ

+
2

3

(

DkDk ln Ψ − 2Dk ln ΨDk ln Ψ
)

fij

]}

(6.120)

DiDiΨ +

(
1

8
ÃijÃ

ij + 2πE

)

Ψ5 = 0 (6.121)

DjÃ
ij + 6ÃijDj ln Ψ = 8πΨ4pi. (6.122)

Let us consider Eq. (6.118). By hypothesis ∂fij/∂t = 0 [Eq. (6.7)]. Moreover,

Lβ fij = βk Dkfij
︸ ︷︷ ︸

=0

+fkjDiβ
k + fikDjβ

k = fkjDiβ
k + fikDjβ

k, (6.123)
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so that Eq. (6.118) can be rewritten as

2NÃij = fkjDiβ
k + fikDjβ

k − 2

3
Dkβ

k fij. (6.124)

Using Ãij = f ikf jlÃkl, we may rewrite this equation as

Ãij =
1

2N
(Lβ)ij , (6.125)

where

(Lβ)ij := Diβj + Djβi − 2

3
Dkβ

k f ij (6.126)

is the conformal Killing operator associated with the metric f (cf. Appendix B). Conse-
quently, the term DjÃ

ij which appears in Eq. (6.122) is expressible in terms of β as

DjÃ
ij = Dj

[
1

2N
(Lβ)ij

]

=
1

2N
Dj

(

Diβj + Djβi − 2

3
Dkβ

k f ij

)

− 1

2N2
(Lβ)ijDjN

=
1

2N

(

DjDjβi +
1

3
DiDjβ

j − 2ÃijDjN

)

, (6.127)

where we have used DjDiβj = DiDjβ
j since f is flat. Inserting Eq. (6.127) into Eq. (6.122)

yields

DjDjβi +
1

3
DiDjβ

j + 2Ãij (6NDj ln Ψ −DjN) = 16πNΨ4pi. (6.128)

The IWM system is formed by Eqs. (6.119), (6.121) and (6.128), which we rewrite as

∆N + 2Di lnΨDiN = N
[

4π(E + S) + ÃijÃ
ij
]

(6.129)

∆Ψ +

(
1

8
ÃijÃ

ij + 2πE

)

Ψ5 = 0 (6.130)

∆βi +
1

3
DiDjβ

j + 2Ãij (6NDj ln Ψ −DjN) = 16πNΨ4pi , (6.131)

where

∆ := DiDi (6.132)

is the flat-space Laplacian. In the above equations, Ãij is to be understood, not as an indepen-
dent variable, but as the function of N and βi defined by Eq. (6.125).

The IWM system (6.129)-(6.131) is a system of three elliptic equations (two scalar equations
and one vector equation) for the three unknowns N , Ψ and βi. The physical 3-metric is fully
determined by Ψ

γij = Ψ4fij, (6.133)

so that, once the IWM system is solved, the full spacetime metric g can be reconstructed via
Eq. (4.47).
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Remark : In the original article [160], Isenberg has derived the system (6.129)-(6.131) from a
variational principle based on the Hilbert action (4.95), by restricting γij to take the form
(6.133) and requiring that the momentum conjugate to Ψ vanishes.

That the IWM scheme constitutes some approximation to general relativity is clear because the
solutions (N,Ψ, βi) to the IWM system (6.129)-(6.131) do not in general satisfy the remaining
equations of the full conformal 3+1 Einstein system, i.e. Eqs. (6.117) and (6.120). However, the
IWM approximation

• is exact for spherically symmetric spacetimes (the Cotton tensor vanishes for any spheri-
cally symmetric (Σt,γ)), as shown for the Schwarzschild spacetime in the example given
in Sec. 6.2.3;

• is very accurate for axisymmetric rotating neutron stars; [97]

• is correct at the 1-PN order in the post-Newtonian expansion of general relativity.

The IWM approximation has been widely used in relativistic astrophysics, to compute binary
neutron star mergers [186, 121, 198] gravitational collapses of stellar cores [112, 113, 114, 215,
216], as well as quasi-equilibrium configurations of binary neutron stars or binary black holes
(cf. Sec. 8.4).
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7.1 Introduction

In this Chapter, we review the global quantities that one may associate to the spacetime (M,g)
or to each slice Σt of the 3+1 foliation. This encompasses various notions of mass, linear
momentum and angular momentum. In the absence of any symmetry, all these global quantities
are defined only for asymptotically flat spacetimes. So we shall start by defining the notion of
asymptotic flatness.

7.2 Asymptotic flatness

The concept of asymptotic flatness applies to stellar type objects, modeled as if they were alone
in an otherwise empty universe (the so-called isolated bodies). Of course, most cosmological
spacetimes are not asymptotically flat.
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7.2.1 Definition

We consider a globally hyperbolic spacetime (M,g) foliated by a family (Σt)t∈R of spacelike
hypersurfaces. Let γ and K be respectively the induced metric and extrinsic curvature of the
hypersurfaces Σt. One says that the spacetime is asymptotically flat iff there exists, on each
slice Σt, a Riemannian “background” metric f such that [276, 277, 251]

• f is flat (Riem(f) = 0), except possibly on a compact domain B of Σt (the “strong field
region”);

• there exists a coordinate system (xi) = (x, y, z) on Σt such that outside B, the compo-
nents of f are fij = diag(1, 1, 1) (“Cartesian-type coordinates”) and the variable r :=
√

x2 + y2 + z2 can take arbitrarily large values on Σt;

• when r → +∞, the components of γ with respect to the coordinates (xi) satisfy

γij = fij + O(r−1), (7.1)

∂γij

∂xk
= O(r−2); (7.2)

• when r → +∞, the components of K with respect to the coordinates (xi) satisfy

Kij = O(r−2), (7.3)

∂Kij

∂xk
= O(r−3). (7.4)

The “region” r → +∞ is called spatial infinity and is denoted i0.

Remark : There exist other definitions of asymptotic flatness which are not based on any coor-
dinate system nor background flat metric (see e.g. Ref. [24] or Chap. 11 in Wald’s textbook
[265]). In particular, the spatial infinity i0 can be rigorously defined as a single point in
some “extended” spacetime (M̂, ĝ) in which (M,g) can be embedded with g conformal to
ĝ. However the present definition is perfectly adequate for our purposes.

Remark : The requirement (7.2) excludes the presence of gravitational waves at spatial infinity.
Indeed for gravitational waves propagating in the radial direction:

γij = fij +
Fij(t − r)

r
+ O(r−2). (7.5)

This fulfills condition (7.1) but

∂γij

∂xk
= −F ′

ij(t − r)

r

xk

r
− Fij(t − r)

r2

xk

r
+ O(r−2) (7.6)

is O(r−1) since F ′
ij 6= 0 (otherwise Fij would be a constant function and there would be no

radiation). This violates condition (7.2). Notice that the absence of gravitational waves
at spatial infinity is not a serious physical restriction, since one may consider that any
isolated system has started to emit gravitational waves at a finite time “in the past” and
that these waves have not reached the spatial infinity yet.
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7.2.2 Asymptotic coordinate freedom

Obviously the above definition of asymptotic flatness depends both on the foliation (Σt)t∈R and
on the coordinates (xi) chosen on each leaf Σt. It is of course important to assess whether this
dependence is strong or not. In other words, we would like to determine the class of coordinate
changes (xα) = (t, xi) → (x′α) = (t′, x′i) which preserve the asymptotic properties (7.1)-(7.4).
The answer is that the coordinates (x′α) must be related to the coordinates (xα) by [157]

x′α = Λα
µxµ + cα(θ, ϕ) + O(r−1) (7.7)

where Λα
β is a Lorentz matrix and the cα’s are four functions of the angles (θ, ϕ) related to the

coordinates (xi) = (x, y, z) by the standard formulæ:

x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ. (7.8)

The group of transformations generated by (7.7) is related to the Spi group (for Spatial infinity)
introduced by Ashtekar and Hansen [25, 24]. However the precise relation is not clear because
the definition of asymptotic flatness used by these authors is not expressed as decay conditions
for γij and Kij , as in Eqs. (7.1)-(7.4).

Notice that Poincaré transformations are contained in transformation group defined
by (7.7): they simply correspond to the case cα(θ, ϕ) = const. The transformations with
cα(θ, ϕ) 6= const and Λα

β = δα
β constitute “angle-dependent translations” and are called su-

pertranslations.
Note that if the Lorentz matrix Λα

β involves a boost, the transformation (7.7) implies a
change of the 3+1 foliation (Σt)t∈R, whereas if Λα

β corresponds only to some spatial rotation
and the cα’s are constant, the transformation (7.7) describes some change of Cartesian-type
coordinates (xi) (rotation + translation) within the same hypersurface Σt.

7.3 ADM mass

7.3.1 Definition from the Hamiltonian formulation of GR

In the short introduction to the Hamiltonian formulation of general relativity given in Sec. 4.5,
we have for simplicity discarded any boundary term in the action. However, because the grav-
itational Lagrangian density (the scalar curvature 4R) contains second order derivatives of the
metric tensor (and not only first order ones, which is a particularity of general relativity with
respect to other field theories), the precise action should be [209, 205, 265, 157]

S =

∫

V

4R
√−g d4x + 2

∮

∂V
(Y − Y0)

√
h d3y, (7.9)

where ∂V is the boundary of the domain V (∂V is assumed to be a timelike hypersurface), Y the
trace of the extrinsic curvature (i.e. three times the mean curvature) of ∂V embedded in (M,g)
and Y0 the trace of the extrinsic curvature of ∂V embedded in (M,η), where η is a Lorentzian
metric on M which is flat in the region of ∂V. Finally

√
hd3y is the volume element induced

by g on the hypersurface ∂V, h being the induced metric on ∂V and h its determinant with
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respect to the coordinates (yi) used on ∂V. The boundary term in (7.9) guarantees that the
variation of S with the values of g (and not its derivatives) held fixed at ∂V leads to the Einstein
equation. Otherwise, from the volume term alone (Hilbert action), one has to held fixed g and
all its derivatives at ∂V.

Let
St := ∂V ∩ Σt. (7.10)

We assume that St has the topology of a sphere. The gravitational Hamiltonian which can be
derived from the action (7.9) (see [205] for details) contains an additional boundary term with
respect to the Hamiltonian (4.112) obtained in Sec. 4.5 :

H = −
∫

Σint
t

(
NC0 − 2βiCi

)√
γd3x − 2

∮

St

[
N(κ − κ0) + βi(Kij − Kγij)s

j
]√

q d2y, (7.11)

where Σint
t is the part of Σt bounded by St, κ is the trace of the extrinsic curvature of St

embedded in (Σt,γ), and κ0 the trace of the extrinsic curvature of St embedded in (Σt,f) (f
being the metric introduced in Sec. 7.2), s is the unit normal to St in Σt, oriented towards the
asymptotic region, and

√
q d2y denotes the surface element induced by the spacetime metric on

St, q being the induced metric, ya = (y1, y2) some coordinates on St [for instance ya = (θ, ϕ)]
and q := det(qab).

For solutions of Einstein equation, the constraints are satisfied: C0 = 0 and Ci = 0, so that
the value of the Hamiltonian reduces to

Hsolution = −2

∮

St

[
N(κ − κ0) + βi(Kij − Kγij)s

j
]√

q d2y. (7.12)

The total energy contained in the Σt is then defined as the numerical value of the Hamiltonian
for solutions, taken on a surface St at spatial infinity (i.e. for r → +∞) and for coordinates
(t, xi) that could be associated with some asymptotically inertial observer, i.e. such that N = 1
and β = 0. From Eq. (7.12), we get (after restoration of some (16π)−1 factor)

MADM := − 1

8π
lim

St→∞

∮

St

(κ − κ0)
√

q d2y . (7.13)

This energy is called the ADM mass of the slice Σt. By evaluating the extrinsic curvature
traces κ and κ0, it can be shown that Eq. (7.13) can be written

MADM =
1

16π
lim

St→∞

∮

St

[

Djγij −Di(f
klγkl)

]

si√q d2y , (7.14)

where D stands for the connection associated with the metric f and, as above, si stands for the
components of unit normal to St within Σt and oriented towards the exterior of St. In particular,
if one uses the Cartesian-type coordinates (xi) involved in the definition of asymptotic flatness
(Sec. 7.2), then Di = ∂/∂xi and fkl = δkl and the above formula becomes

MADM =
1

16π
lim

St→∞

∮

St

(
∂γij

∂xj
− ∂γjj

∂xi

)

si√q d2y. (7.15)

Notice that thanks to the asymptotic flatness requirement (7.2), this integral takes a finite value:
the O(r2) part of

√
q d2y is compensated by the O(r−2) parts of ∂γij/∂xj and ∂γjj/∂xi.
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Example : Let us consider Schwarzschild spacetime and use the standard Schwarzschild coor-
dinates (xα) = (t, r, θ, φ):

gµνdxµdxν = −
(

1 − 2m

r

)

dt2 +

(

1 − 2m

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2). (7.16)

Let us take for Σt the hypersurface of constant Schwarzschild coordinate time t. Then we
read on (7.16) the components of the induced metric in the coordinates (xi) = (r, θ, ϕ):

γij = diag

[(

1 − 2m

r

)−1

, r2, r2 sin2 θ

]

. (7.17)

On the other side, the components of the flat metric in the same coordinates are

fij = diag
(
1, r2, r2 sin2 θ

)
and f ij = diag

(
1, r−2, r−2 sin−2 θ

)
. (7.18)

Let us now evaluate MADM by means of the integral (7.14) (we cannot use formula (7.15)
because the coordinates (xi) are not Cartesian-like). It is quite natural to take for St the
sphere r = const in the hypersurface Σt. Then ya = (θ, ϕ),

√
q = r2 sin θ and, at spatial

infinity, si√q d2y = r2 sin θ dθ dϕ (∂r)
i, where ∂r is the natural basis vector associated the

coordinate r: (∂r)
i = (1, 0, 0). Consequently, Eq. (7.14) becomes

MADM =
1

16π
lim

r→∞

∮

r=const

[

Djγrj −Dr(f
klγkl)

]

r2 sin θ dθ dϕ, (7.19)

with

fklγkl = γrr +
1

r2
γθθ +

1

r2 sin2 θ
γϕϕ =

(

1 − 2m

r

)−1

+ 2, (7.20)

and since fklγkl is a scalar field,

Dr(f
klγkl) =

∂

∂r
(fklγkl) = −

(

1 − 2m

r

)−2 2m

r2
. (7.21)

There remains to evaluate Djγrj . One has

Djγrj = f jkDkγrj = Drγrr +
1

r2
Dθγrθ +

1

r2 sin2 θ
Dϕγrϕ, (7.22)

with the covariant derivatives given by (taking into account the form (7.17) of γij)

Drγrr =
∂γrr

∂r
− 2Γ̄i

rrγir =
∂γrr

∂r
− 2Γ̄r

rrγrr (7.23)

Dθγrθ =
∂γrθ

∂θ
− Γ̄i

θrγiθ − Γ̄i
θθγri = −Γ̄θ

θrγθθ − Γ̄r
θθγrr (7.24)

Dϕγrϕ =
∂γrϕ

∂ϕ
− Γ̄i

ϕrγiϕ − Γ̄i
ϕϕγri = −Γ̄ϕ

ϕrγϕϕ − Γ̄r
ϕϕγrr, (7.25)
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where the Γ̄k
ij ’s are the Christoffel symbols of the connection D with respect to the coor-

dinates (xi). The non-vanishing ones are

Γ̄r
θθ = −r and Γ̄r

ϕϕ = −r sin2 θ (7.26)

Γ̄θ
rθ = Γ̄θ

θr =
1

r
and Γ̄θ

ϕϕ = − cos θ sin θ (7.27)

Γ̄ϕ
rϕ = Γ̄ϕ

ϕr =
1

r
and Γ̄ϕ

θϕ = Γ̄ϕ
ϕθ =

1

tan θ
. (7.28)

Hence

Djγrj =
∂

∂r

[(

1 − 2m

r

)−1
]

+
1

r2

[

−1

r
× r2 + r ×

(

1 − 2m

r

)−1
]

+
1

r2 sin2 θ

[

−1

r
× r2 sin2 θ + r sin2 θ ×

(

1 − 2m

r

)−1
]

Djγrj =
2m

r2

(

1 − 2m

r

)−2(

1 − 4m

r

)

. (7.29)

Combining Eqs. (7.21) and (7.29), we get

Djγrj −Dr(f
klγkl) =

2m

r2

(

1 − 2m

r

)−2(

1 − 4m

r
+ 1

)

=
4m

r2

(

1 − 2m

r

)−1

∼ 4m

r2
when r → ∞, (7.30)

so that the integral (7.19) results in

MADM = m. (7.31)

We conclude that the ADM mass of any hypersurface t = const of Schwarzschild spacetime
is nothing but the mass parameter m of the Schwarzschild solution.

7.3.2 Expression in terms of the conformal decomposition

Let us introduce the conformal metric γ̃ and conformal factor Ψ associated to γ according to
the prescription given in Sec. 6.2.3, taking for the background metric f the same metric as that
involved in the definition of asymptotic flatness and ADM mass:

γ = Ψ4γ̃, (7.32)

with, in the Cartesian-type coordinates (xi) = (x, y, z) introduced in Sec. 7.2:

det(γ̃ij) = 1. (7.33)

This is the property (6.19) since f = det(fij) = 1 (fij = diag(1, 1, 1)). The asymptotic flatness
conditions (7.1)-(7.2) impose

Ψ = 1 + O(r−1) and
∂Ψ

∂xk
= O(r−2) (7.34)
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and

γ̃ij = fij + O(r−1) and
∂γ̃ij

∂xk
= O(r−2). (7.35)

Thanks to the decomposition (7.32), the integrand of the ADM mass formula (7.14) is

Djγij −Di(f
klγkl) = 4 Ψ3

︸︷︷︸

∼1

DjΨ γ̃ij
︸︷︷︸

∼fij

+ Ψ4
︸︷︷︸

∼1

Dj γ̃ij − 4 Ψ3
︸︷︷︸

∼1

DiΨ fklγ̃kl
︸ ︷︷ ︸

∼3

− Ψ4
︸︷︷︸

∼1

Di(f
klγ̃kl), (7.36)

where the ∼’s denote values when r → ∞, taking into account (7.34) and (7.35). Thus we have

Djγij −Di(f
klγkl) ∼ −8DiΨ + Dj γ̃ij −Di(f

klγ̃kl). (7.37)

From (7.34) and (7.35), DiΨ = O(r−2) and Dj γ̃ij = O(r−2). Let us show that the unit determi-
nant condition (7.33) implies Di(f

klγ̃kl) = O(r−3) so that this term actually does not contribute
to the ADM mass integral. Let us write

γ̃ij =: fij + εij , (7.38)

with according to Eq. (7.35), εij = O(r−1). Then

fklγ̃kl = 3 + εxx + εyy + εzz (7.39)

and

Di(f
klγ̃kl) =

∂

∂xi
(fklγ̃kl) =

∂

∂xi
(εxx + εyy + εzz) . (7.40)

Now the determinant of γ̃ij is

det(γ̃ij) = det





1 + εxx εxy εxz

εxy 1 + εyy εyz

εxz εyz 1 + εzz





= 1 + εxx + εyy + εzz + εxxεyy + εxxεzz + εyyεzz − ε2
xy − ε2

xz − ε2
yz

+εxxεyyεzz + 2εxyεxzεyz − εxxε2
yz − εyyε

2
xz − εzzε

2
xy. (7.41)

Requiring det(γ̃ij) = 1 implies then

εxx + εyy + εzz = −εxxεyy − εxxεzz − εyyεzz + ε2
xy + ε2

xz + ε2
yz

−εxxεyyεzz − 2εxyεxzεyz + εxxε2
yz + εyyε

2
xz + εzzε

2
xy. (7.42)

Since according to (7.35), εij = O(r−1) and ∂εij/∂xk = O(r−2), we conclude that

∂

∂xi
(εxx + εyy + εzz) = O(r−3), (7.43)

i.e. in view of (7.40),
Di(f

klγ̃kl) = O(r−3). (7.44)

Thus in Eq. (7.37), only the first two terms in the right-hand side contribute to the ADM mass
integral, so that formula (7.14) becomes

MADM = − 1

2π
lim

St→∞

∮

St

si

(

DiΨ − 1

8
Dj γ̃ij

)√
q d2y . (7.45)
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Example : Let us return to the example considered in Sec. 6.2.3, namely Schwarzschild space-
time in isotropic coordinates (t, r, θ, ϕ) 1. The conformal factor was found to be Ψ =
1 + m/(2r) [Eq. (6.25)] and the conformal metric to be γ̃ = f . Then Dj γ̃ij = 0 and only
the first term remains in the integral (7.45):

MADM = − 1

2π
lim

r→∞

∮

r=const

∂Ψ

∂r
r2 sin θ dθ dϕ, (7.46)

with
∂Ψ

∂r
=

∂

∂r

(

1 +
m

2r

)

= − m

2r2
, (7.47)

so that we get
MADM = m, (7.48)

i.e. we recover the result (7.31), which was obtained by means of different coordinates
(Schwarzschild coordinates).

7.3.3 Newtonian limit

To check that at the Newtonian limit, the ADM mass reduces to the usual definition of mass,
let us consider the weak field metric given by Eq. (5.14). We have found in Sec. 6.2.3 that the
corresponding conformal metric is γ̃ = f and the conformal factor Ψ = 1 − Φ/2 [Eq. (6.26)],
where Φ reduces to the gravitational potential at the Newtonian limit. Accordingly, Dj γ̃ij = 0
and DiΨ = −1

2DiΦ, so that Eq. (7.45) becomes

MADM =
1

4π
lim

St→∞

∮

St

siDiΦ
√

q d2y. (7.49)

To take Newtonian limit, we may assume that Σt has the topology of R3 and transform the
above surface integral to a volume one by means of the Gauss-Ostrogradsky theorem:

MADM =
1

4π

∫

Σt

DiDiΦ
√

f d3x. (7.50)

Now, at the Newtonian limit, Φ is a solution of the Poisson equation

DiDiΦ = 4πρ, (7.51)

where ρ is the mass density (remember we are using units in which Newton’s gravitational
constant G is unity). Hence Eq. (7.50) becomes

MADM =

∫

Σt

ρ
√

f d3x, (7.52)

which shows that at the Newtonian limit, the ADM mass is nothing but the total mass of the
considered system.

1although we use the same symbol, the r used here is different from the Schwarzschild coordinate r of the
example in Sec. 7.3.1.
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7.3.4 Positive energy theorem

Since the ADM mass represents the total energy of a gravitational system, it is important to show
that it is always positive, at least for “reasonable” models of matter (take ρ < 0 in Eq. (7.52)
and you will get MADM < 0 ...). If negative values of the energy would be possible, then a
gravitational system could decay to lower and lower values and thereby emit an unbounded
energy via gravitational radiation.

The positivity of the ADM mass has been hard to establish. The complete proof was even-
tually given in 1981 by Schoen and Yau [220]. A simplified proof has been found shortly after
by Witten [270]. More precisely, Schoen, Yau and Witten have shown that if the matter content
of spacetime obeys the dominant energy condition, then MADM ≥ 0. Furthermore, MADM = 0
if and only if Σt is a hypersurface of Minkowski spacetime.

The dominant energy condition is the following requirement on the matter stress-energy
tensor T : for any timelike and future-directed vector v, the vector − ~T (v) defined by Eq. (2.11)
2 must be a future-directed timelike or null vector. If v is the 4-velocity of some observer, − ~T (v)
is the energy-momentum density 4-vector as measured by the observer and the dominant energy
condition means that this vector must be causal. In particular, the dominant energy condition
implies the weak energy condition, namely that for any timelike and future-directed vector v,
T (v,v) ≥ 0. If again v is the 4-velocity of some observer, the quantity T (v,v) is nothing but the
energy density as measured by that observer [cf. Eq. (4.3)], and the the weak energy condition
simply stipulates that this energy density must be non-negative. In short, the dominant energy
condition means that the matter energy must be positive and that it must not travel faster than
light.

The dominant energy condition is easily expressible in terms of the matter energy density E
and momentum density p, both measured by the Eulerian observer and introduced in Sec. 4.1.2.
Indeed, from the 3+1 split (4.10) of T , the energy-momentum density 4-vector relative to the
Eulerian observer is found to be

J := − ~T (n) = En + ~p. (7.53)

Then, since n · ~p = 0, J ·J = −E2 + ~p · ~p. Requiring that J is timelike or null means J ·J ≤ 0
and that it is future-oriented amounts to E ≥ 0 (since n is itself future-oriented). Hence the
dominant energy condition is equivalent to the two conditions E2 ≥ ~p · ~p and E ≥ 0. Since ~p is
always a spacelike vector, these two conditions are actually equivalent to the single requirement

E ≥
√

~p · ~p . (7.54)

This justifies the term dominant energy condition.

7.3.5 Constancy of the ADM mass

Since the Hamiltonian H given by Eq. (7.11) depends on the configuration variables (γij , N, βi)
and their conjugate momenta (πij , πN = 0, πβ = 0), but not explicitly on the time t, the

2in index notation, − ~T (v) is the vector −T α
µvµ
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associated energy is a constant of motion:

d

dt
MADM = 0 . (7.55)

Note that this property is not obvious when contemplating formula (7.14), which expresses
MADM as an integral over St.

7.4 ADM momentum

7.4.1 Definition

As the ADM mass is associated with time translations at infinity [taking N = 1 and β = 0
in Eq. (7.12)], the ADM momentum is defined as the conserved quantity associated with the
invariance of the action with respect to spatial translations. With respect to the Cartesian-type
coordinates (xi) introduced in Sec. 7.2, three privileged directions for translations at spatial
infinity are given by the three vectors (∂i)i∈{1,2,3}. The three conserved quantities are then
obtained by setting N = 0 and βi = 1 in Eq. (7.12) [157, 209]:

Pi :=
1

8π
lim

St→∞

∮

St

(Kjk − Kγjk) (∂i)
j sk√q d2y , i ∈ {1, 2, 3}. (7.56)

Remark : The index i in the above formula is not the index of some tensor component, contrary
to the indices j and k. It is used to label the three vectors ∂1, ∂2 and ∂3 and the quantities
P1, P2 and P3 corresponding to each of these vectors.

Notice that the asymptotic flatness condition (7.3) ensures that Pi is a finite quantity. The
three numbers (P1, P2, P3) define the ADM momentum of the hypersurface Σt. The values
Pi depend upon the choice of the coordinates (xi) but the set (P1, P2, P3) transforms as the
components of a linear form under a change of Cartesian coordinates (xi) → (x′i) which asymp-
totically corresponds to rotation and/or a translation. Therefore (P1, P2, P3) can be regarded
as a linear form which “lives” at the “edge” of Σt. It can be regarded as well as a vector since
the duality vector/linear forms is trivial in the asymptotically Euclidean space.

Example : For foliations associated with the standard coordinates of Schwarzschild spacetime
(e.g. Schwarzschild coordinates (7.16) or isotropic coordinates (6.24)), the extrinsic cur-
vature vanishes identically: K = 0, so that Eq. (7.56) yields

Pi = 0. (7.57)

For a non trivial example based on a “boosted” Schwarzschild solution, see Ref. [277].

7.4.2 ADM 4-momentum

Not only (P1, P2, P3) behaves as the components of a linear form, but the set of four numbers

PADM
α := (−MADM, P1, P2, P3) (7.58)



7.5 Angular momentum 113

behaves as the components of a 4-dimensional linear form any under coordinate change (xα) =
(t, xi) → (x′α) = (t′, x′i) which preserves the asymptotic conditions (7.1)-(7.4), i.e. any coordi-
nate change of the form (7.7). In particular, PADM

α is transformed in the proper way under the
Poincaré group:

P ′ADM
α = (Λ−1)µα PADM

µ . (7.59)

This last property has been shown first by Arnowitt, Deser and Misner [23]. For this reason,
PADM

α is considered as a linear form which “lives” at spatial infinity and is called the ADM

4-momentum.

7.5 Angular momentum

7.5.1 The supertranslation ambiguity

Generically, the angular momentum is the conserved quantity associated with the invariance of
the action with respect to rotations, in the same manner as the linear momentum is associated
with the invariance with respect to translations. Then one might naively define the total angular
momentum of a given slice Σt by an integral of the type (7.56) but with ∂i being replaced by
a rotational Killing vector φ of the flat metric f . More precisely, in terms of the Cartesian
coordinates (xi) = (x, y, z) introduced in Sec. 7.2, the three vectors (φi)i∈{1,2,3} defined by

φx = −z∂y + y∂z (7.60)

φy = −x∂z + z∂x (7.61)

φz = −y∂x + x∂y (7.62)

are three independent Killing vectors of f , corresponding to a rotation about respectively the
x-axis, y-axis and the z-axis. Then one may defined the three numbers

Ji :=
1

8π
lim

St→∞

∮

St

(Kjk − Kγjk) (φi)
j sk√q d2y, i ∈ {1, 2, 3}. (7.63)

The problem is that the quantities Ji hence defined depend upon the choice of the coordinates
and, contrary to PADM

α , do not transform as a the components of a vector under a change
(xα) = (t, xi) → (x′α) = (t′, x′i) that preserves the asymptotic properties (7.1)-(7.4), i.e. a
transformation of the type (7.7). As discussed by York [276, 277], the problem arises because
of the existence of the supertranslations (cf. Sec. 7.2.2) in the permissible coordinate changes
(7.7).

Remark : Independently of the above coordinate ambiguity, one may notice that the asymptotic
flatness conditions (7.1)-(7.4) are not sufficient, by themselves, to guarantee that the inte-
gral (7.63) takes a finite value when St → ∞, i.e. when r → ∞. Indeed, Eqs. (7.60)-(7.62)
show that the Cartesian components of the rotational vectors behave like (φi)

j ∼ O(r), so
that Eq. (7.3) implies only (Kjk − Kγjk) (φi)

j = O(r−1). It is the contraction with the
unit normal vector sk which ensures (Kjk − Kγjk) (φi)

jsk = O(r−2) and hence that Ji is
finite. This is clear for the Kγjk(φi)

jsk part because the vectors φi given by Eqs. (7.60)-
(7.62) are all orthogonal to s ∼ x/r ∂x + y/r ∂y + z/r ∂z. For the Kjk(φi)

jsk part, this



114 Asymptotic flatness and global quantities

turns out to be true in practice, as we shall see on the specific example of Kerr spacetime
in Sec. 7.6.3.

7.5.2 The “cure”

In view of the above coordinate dependence problem, one may define the angular momentum
as a quantity which remains invariant only with respect to a subclass of the coordinate changes
(7.7). This is made by imposing decay conditions stronger than (7.1)-(7.4). For instance, York
[276] has proposed the following conditions3 on the flat divergence of the conformal metric and
the trace of the extrinsic curvature:

∂γ̃ij

∂xj
= O(r−3), (7.64)

K = O(r−3). (7.65)

Clearly these conditions are stronger than respectively (7.35) and (7.3). Actually they are so
severe that they exclude some well known coordinates that one would like to use to describe
asymptotically flat spacetimes, for instance the standard Schwarzschild coordinates (7.16) for the
Schwarzschild solution. For this reason, conditions (7.64) and (7.65) are considered as asymptotic
gauge conditions, i.e. conditions restricting the choice of coordinates, rather than conditions on
the nature of spacetime at spatial infinity. Condition (7.64) is called the quasi-isotropic gauge.
The isotropic coordinates (6.24) of the Schwarzschild solution trivially belong to this gauge (since
γ̃ij = fij for them). Condition (7.65) is called the asymptotically maximal gauge, since for
maximal hypersurfaces K vanishes identically. York has shown that in the gauge (7.64)-(7.65),
the angular momentum as defined by the integral (7.63) is carried by the O(r−3) piece of K

(the O(r−2) piece carrying the linear momentum Pi) and is invariant (i.e. behaves as a vector)
for any coordinate change within this gauge.

Alternative decay requirements have been proposed by other authors to fix the ambiguities
in the angular momentum definition (see e.g. [92] and references therein). For instance, Regge
and Teitelboim [209] impose a specific form and some parity conditions on the coefficient of the
O(r−1) term in Eq. (7.1) and on the coefficient of the O(r−2) term in Eq. (7.3) (cf. also M.
Henneaux’ lecture [157]).

As we shall see in Sec. 7.6.3, in the particular case of an axisymmetric spacetime, there exists
a unique definition of the angular momentum, which is independent of any coordinate system.

Remark : In the literature, there is often mention of the “ADM angular momentum”, on the
same footing as the ADM mass and ADM linear momentum. But as discussed above,
there is no such thing as the “ADM angular momentum”. One has to specify a gauge first
and define the angular momentum within that gauge. In particular, there is no mention
whatsoever of angular momentum in the original ADM article [23].

3Actually the first condition proposed by York, Eq. (90) of Ref. [276], is not exactly (7.64) but can be shown
to be equivalent to it; see also Sec. V of Ref. [246].



7.5 Angular momentum 115

Figure 7.1: Hypersurface Σt with a hole defining an inner boundary Ht.

7.5.3 ADM mass in the quasi-isotropic gauge

In the quasi-isotropic gauge, the ADM mass can be expressed entirely in terms of the flux at
infinity of the gradient of the conformal factor Ψ. Indeed, thanks to (7.64), the term Dj γ̃ij

Eq. (7.45) does not contribute to the integral and we get

MADM = − 1

2π
lim

St→∞

∮

St

siDiΨ
√

q d2y (quasi-isotropic gauge). (7.66)

Thanks to the Gauss-Ostrogradsky theorem, we may transform this formula into a volume
integral. More precisely, let us assume that Σt is diffeomorphic to either R3 or R3 minus a ball.
In the latter case, Σt has an inner boundary, that we may call a hole and denote by Ht (cf.
Fig. 7.1). We assume that Ht has the topology of a sphere. Actually this case is relevant for
black hole spacetimes when black holes are treated via the so-called excision technique. The
Gauss-Ostrogradsky formula enables to transform expression (7.66) into

MADM = − 1

2π

∫

Σt

D̃iD̃
iΨ
√

γ̃ d3x + MH, (7.67)

where MH is defined by

MH := − 1

2π

∮

Ht

s̃iD̃iΨ
√

q̃ d2y. (7.68)

In this last equation, q̃ := det(q̃ab), q̃ being the metric induced on Ht by γ̃, and s̃ is the unit
vector with respect to γ̃ (γ̃(s̃, s̃) = 1) tangent to Σt, normal to Ht and oriented towards the
exterior of the hole (cf. Fig. 7.1). If Σt is diffeomorphic to R3, we use formula (7.67) with MH.

Let now use the Lichnerowicz equation (6.103) to express D̃iD̃
iΨ in Eq. (7.67). We get

MADM =

∫

Σt

[

Ψ5E +
1

16π

(

ÂijÂ
ij Ψ−7 − R̃Ψ − 2

3
K2Ψ5

)]
√

γ̃ d3x + MH (QI gauge).

(7.69)
For the computation of the ADM mass in a numerical code, this formula may be result in a
greater precision that the surface integral at infinity (7.66).

Remark : On the formula (7.69), we get immediately the Newtonian limit (7.52) by making
Ψ → 1, E → ρ, Âij → 0, R̃ → 0, K → 0, γ̃ → f and MH = 0.
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For the IWM approximation of general relativity considered in Sec. 6.6, the coordinates
belong to the quasi-isotropic gauge (since γ̃ = f), so we may apply (7.69). Moreover, as a
consequence of γ̃ = f , R̃ = 0 and in the IWM approximation, K = 0. Therefore Eq. (7.69)
simplifies to

MADM =

∫

Σt

(

Ψ5E +
1

16π
ÂijÂ

ij Ψ−7

)
√

γ̃ d3x + MH. (7.70)

Within the framework of exact general relativity, the above formula is valid for any maximal
slice Σt with a conformally flat metric.

7.6 Komar mass and angular momentum

In the case where the spacetime (M,g) has some symmetries, one may define global quantities
in a coordinate-independent way by means of a general technique introduced by Komar (1959)
[172]. It consists in taking flux integrals of the derivative of the Killing vector associated with the
symmetry over closed 2-surfaces surrounding the matter sources. The quantities thus obtained
are conserved in the sense that they do not depend upon the choice of the integration 2-surface,
as long as the latter stays outside the matter. We discuss here two important cases: the Komar
mass resulting from time symmetry (stationarity) and the Komar angular momentum resulting
from axisymmetry.

7.6.1 Komar mass

Let us assume that the spacetime (M,g) is stationary . This means that the metric tensor g is
invariant by Lie transport along the field lines of a timelike vector field k. The latter is called a
Killing vector. Provided that it is normalized so that k · k = −1 at spatial infinity, it is then
unique. Given a 3+1 foliation (Σt)t∈R of M, and a closed 2-surface St in Σt, with the topology
of a sphere, the Komar mass is defined by

MK := − 1

8π

∮

St

∇µkν dSµν , (7.71)

with the 2-surface element

dSµν = (sµnν − nµsν)
√

q d2y, (7.72)

where n is the unit timelike normal to Σt, s is the unit normal to St within Σt oriented towards
the exterior of St, (ya) = (y1, y2) are coordinates spanning St, and q := det(qab), the qab’s being
the components with respect to (ya) of the metric q induced by γ (or equivalently by g) on St.
Actually the Komar mass can be defined over any closed 2-surface, but in the present context
it is quite natural to consider only 2-surfaces lying in the hypersurfaces of the 3+1 foliation.

A priori the quantity MK as defined by (7.71) should depend on the choice of the 2-surface St.
However, thanks to the fact that k is a Killing vector, this is not the case, as long as St is located
outside any matter content of spacetime. In order to show this, let us transform the surface
integral (7.71) into a volume integral. As in Sec. 7.5.3, we suppose that Σt is diffeomorphic to
either R3 or R3 minus one hole, the results being easily generalized to an arbitrary number of
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Figure 7.2: Integration surface St for the computation of Komar mass. St is the external boundary of a part
Vt of Σt which contains all the matter sources (T 6= 0). Vt has possibly some inner boundary, in the form of one
(or more) hole Ht.

holes (see Fig. 7.2). The hole, the surface of which is denoted by Ht as in Sec. 7.5.3, must be
totally enclosed within the surface St. Let us then denote by Vt the part of Σt delimited by Ht

and St.

The starting point is to notice that since k is a Killing vector the ∇µkν ’s in the integrand
of Eq. (7.71) are the components of an antisymmetric tensor. Indeed, k obeys to Killing’s
equation4:

∇αkβ + ∇βkα = 0. (7.73)

Now for any antisymmetric tensor A of type
(2

0

)
, the following identity holds:

2

∫

Vt

∇νA
µν dVµ =

∮

St

Aµν dSµν +

∮

Ht

Aµν dSH
µν , (7.74)

with dVµ is the volume element on Σt:

dVµ = −nµ
√

γ d3x (7.75)

and dSH
µν is the surface element on Ht and is given by a formula similar to Eq. (7.72), using the

same notation for the coordinates and the induced metric on Ht:

dSH
µν = (nµsν − sµnν)

√
q d2y. (7.76)

The change of sign with respect to Eq. (7.72) arises because we choose the unit vector s normal
to Ht to be oriented towards the interior of Vt (cf. Fig. 7.2). Let us establish Eq. (7.74). It is
well known that for the divergence of an antisymmetric tensor is given by

∇νA
µν =

1√−g

∂

∂xν

(√−gAµν
)
. (7.77)

4Killing’s equation follows immediately from the requirement of invariance of the metric along the field lines
of k, i.e. Lk g = 0, along with the use of Eq. (A.8) to express Lk g.
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Using this property, as well as expression (7.75) of dVµ with the components nµ = (−N, 0, 0, 0)
given by Eq. (4.38), we get

∫

Vt

∇νA
µν dVµ = −

∫

Vt

∂

∂xν

(√−gAµν
)

nµ

√
γ√−g

d3x =

∫

Vt

∂

∂xν

(√
γNA0ν

)
d3x, (7.78)

where we have also invoked the relation (4.55) between the determinants of g and γ:
√−g =

N
√

γ. Now, since Aαβ is antisymmetric, A00 = 0 and we can write ∂/∂xν
(√

γNA0ν
)

=
∂/∂xi

(√
γ V i

)
where V i = NA0i are the components of the vector V ∈ T (Σt) defined by

V := −~γ(n · A). The above integral then becomes

∫

Vt

∇νA
µν dVµ =

∫

Vt

1√
γ

∂

∂xi

(√
γV i

) √
γ d3x =

∫

Vt

DiV
i√γ d3x. (7.79)

We can now use the Gauss-Ostrogradsky theorem to get

∫

Vt

∇νA
µν dVµ =

∮

∂Vt

V isi
√

q d2y. (7.80)

Noticing that ∂Vt = Ht ∪ St (cf. Fig. 7.2) and (from the antisymmetry of Aµν)

V isi = V νsν = −nµAµνsν =
1

2
Aµν(sµnν − nµsν), (7.81)

we get the identity (7.74).

Remark : Equation (7.74) can also be derived by applying Stokes’ theorem to the 2-form
4ǫαβµνA

µν , where 4ǫαβµν is the Levi-Civita alternating tensor (volume element) associated
with the spacetime metric g (see e.g. derivation of Eq. (11.2.10) in Wald’s book [265]).

Applying formula (7.74) to Aµν = ∇µkν we get, in view of the definition (7.71),

MK = − 1

4π

∫

Vt

∇ν∇µkν dVµ + MH
K , (7.82)

where

MH
K :=

1

8π

∮

Ht

∇µkν dSH
µν (7.83)

will be called the Komar mass of the hole. Now, from the Ricci identity

∇ν∇µkν −∇µ ∇νkν
︸ ︷︷ ︸

=0

= 4Rµ
νkν , (7.84)

where the “= 0” is a consequence of Killing’s equation (7.73). Equation (7.82) becomes then

MK = − 1

4π

∫

Vt

4Rµ
νk

ν dVµ + MH
K =

1

4π

∫

Vt

4Rµνkνnµ √γ d3x + MH
K . (7.85)
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At this point, we can use Einstein equation in the form (4.2) to express the Ricci tensor 4R in
terms of the matter stress-energy tensor T . We obtain

MK = 2

∫

Vt

(

Tµν − 1

2
Tgµν

)

nµkν√γ d3x + MH
K . (7.86)

The support of the integral over Vt is reduced to the location of matter, i.e. the domain where
T 6= 0. It is then clear on formula (7.86) that MK is independent of the choice of the 2-surface
St, provided all the matter is contained in St. In particular, we may extend the integration to
all Σt and write formula (7.86) as

MK = 2

∫

Σt

[

T (n,k) − 1

2
T n · k

]√
γ d3x + MH

K . (7.87)

The Komar mass then appears as a global quantity defined for stationary spacetimes.

Remark : One may have MH
K < 0, with MK > 0, provided that the matter integral in Eq. (7.87)

compensates for the negative value of MH
K . Such spacetimes exist, as recently demonstrated

by Ansorg and Petroff [21]: these authors have numerically constructed spacetimes con-
taining a black hole with MH

K < 0 surrounded by a ring of matter (incompressible perfect
fluid) such that the total Komar mass is positive.

7.6.2 3+1 expression of the Komar mass and link with the ADM mass

In stationary spacetimes, it is natural to use coordinates adapted to the symmetry, i.e. coordi-
nates (t, xi) such that

∂t = k . (7.88)

Then we have the following 3+1 decomposition of the Killing vector in terms of the lapse and
shift [cf. Eq. (4.31)]:

k = Nn + β. (7.89)

Let us inject this relation in the integrand of the definition (7.71) of the Komar mass :

∇µkν dSµν = ∇µkν(s
µnν − nµsν)

√
q d2y

= 2∇µkν sµnν√q d2y

= 2 (∇µN nν + N∇µnν + ∇µβν) sµnν√q d2y

= 2 (−sµ∇µN + 0 − sµβν∇µnν)
√

q d2y

= −2
(
siDiN − Kijs

iβj
)√

q d2y, (7.90)

where we have used Killing’s equation (7.73) to get the second line, the orthogonality of n and
β to get the fourth one and expression (3.22) for ∇µnν to get the last line. Inserting Eq. (7.90)
into Eq. (7.71) yields the 3+1 expression of the Komar mass:

MK =
1

4π

∮

St

(
siDiN − Kijs

iβj
)√

q d2y . (7.91)
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Example : A simple prototype of a stationary spacetime is of course the Schwarzschild space-
time. Let us compute its Komar mass by means of the above formula and the folia-
tion (Σt)t∈R defined by the standard Schwarzschild coordinates (7.16). For this foliation,
Kij = 0, which reduces Eq. (7.91) to the flux of the lapse’s gradient across St. Tak-
ing advantage of the spherical symmetry, we choose St to be a surface r = const. Then
ya = (θ, ϕ). The unit normal s is read from the line element (7.16); its components with
respect to the Schwarzschild coordinates (r, θ, ϕ) are

si =

((

1 − 2m

r

)1/2

, 0, 0

)

. (7.92)

N and
√

q are also read on the line element (7.16): N = (1− 2m/r)1/2 and
√

q = r2 sin θ,
so that Eq. (7.91) results in

MK =
1

4π

∮

r=const

(

1 − 2m

r

)1/2 ∂

∂r

[(

1 − 2m

r

)1/2
]

r2 sin θdθdϕ. (7.93)

All the terms containing r simplify and we get

MK = m. (7.94)

On this particular example, we have verified that the value of MK does not depend upon
the choice of St.

Let us now turn to the volume expression (7.87) of the Komar mass. By using the 3+1
decomposition (4.10) and (4.12) of respectively T and T , we get

T (n,k) − 1

2
T n · k = −〈p,k〉 − E〈n,k〉 − 1

2
(S − E)n · k

= −〈p,β〉 + EN +
1

2
(S − E)N =

1

2
N(E + S) − 〈p,β〉. (7.95)

Hence formula (7.87) becomes

MK =

∫

Σt

[N(E + S) − 2〈p,β〉]√γ d3x + MH
K , (7.96)

with the Komar mass of the hole given by an expression identical to Eq. (7.91), except for St

replaced by Ht [notice the double change of sign: first in Eq. (7.83) and secondly in Eq. (7.76),
so that at the end we have an expression identical to Eq. (7.91)]:

MH
K =

1

4π

∮

Ht

(
siDiN − Kijs

iβj
)√

q d2y . (7.97)

It is easy to take the Newtonian limit Eq. (7.96), by making N → 1, E → ρ, S ≪ E
[Eq. (5.25)], β → 0, γ → f and MH

K = 0. We get

MK =

∫

Σt

ρ
√

f d3x. (7.98)
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Hence at the Newtonian limit, the Komar mass reduces to the standard total mass. This, along
with the result (7.94) for Schwarzschild spacetime, justifies the name Komar mass.

A natural question which arises then is how does the Komar mass relate to the ADM mass
of Σt ? The answer is not obvious if one compares the defining formulæ (7.13) and (7.71). It
is even not obvious if one compares the 3+1 expressions (7.45) and (7.91): Eq. (7.45) involves
the flux of the gradient of the conformal factor Ψ of the 3-metric, whereas Eq. (7.91) involves
the flux of the gradient of the lapse function N . Moreover, in Eq. (7.45) the integral must be
evaluated at spatial infinity, whereas in Eq. (7.45) it can be evaluated at any finite distance
(outside the matter sources). The answer has been obtained in 1978 by Beig [47], as well as by
Ashtekar and Magnon-Ashtekar the year after [26]: for any foliation (Σt)t∈R whose unit normal
vector n coincides with the timelike Killing vector k at spatial infinity [i.e. N → 1 and β → 0
in Eq. (7.89)],

MK = MADM . (7.99)

Remark : In the quasi-isotropic gauge, we have obtained a volume expression of the ADM
mass, Eq. (7.69), that we may compare to the volume expression (7.96) of the Komar
mass. Even when there is no hole, the two expressions are pretty different. In particular,
the Komar mass integral has a compact support (the matter domain), whereas the ADM
mass integral has not.

7.6.3 Komar angular momentum

If the spacetime (M,g) is axisymmetric, its Komar angular momentum is defined by a
surface integral similar that of the Komar mass, Eq. (7.71), but with the Killing vector k

replaced by the Killing vector φ associated with the axisymmetry:

JK :=
1

16π

∮

St

∇µφν dSµν . (7.100)

Notice a factor −2 of difference with respect to formula (7.71) (the so-called Komar’s anomalous
factor [165]).

For the same reason as for MK, JK is actually independent of the surface St as long as the
latter is outside all the possible matter sources and JK can be expressed by a volume integral
over the matter by a formula similar to (7.87) (except for the factor −2):

JK = −
∫

Σt

[

T (n,φ) − 1

2
T n · φ

]√
γ d3x + JH

K , (7.101)

with

JH
K := − 1

16π

∮

Ht

∇µφν dSH
µν . (7.102)

Let us now establish the 3+1 expression of the Komar angular momentum. It is natural to
choose a foliation adapted to the axisymmetry in the sense that the Killing vector φ is tangent
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to the hypersurfaces Σt. Then n · φ = 0 and the integrand in the definition (7.100) is

∇µφν dSµν = ∇µφν(s
µnν − nµsν)

√
q d2y

= 2∇µφν sµnν√q d2y

= −2sµφν∇µnν√q d2y

= 2Kijs
iφj√q d2y. (7.103)

Accordingly Eq. (7.100) becomes

JK =
1

8π

∮

St

Kijs
iφj√q d2y . (7.104)

Remark : Contrary to the 3+1 expression of the Komar mass which turned out to be very
different from the expression of the ADM mass, the 3+1 expression of the Komar angular
momentum as given by Eq. (7.104) is very similar to the expression of the angular mo-
mentum deduced from the Hamiltonian formalism, i.e. Eq. (7.63). The only differences
are that it is no longer necessary to take the limit St → ∞ and that there is no trace term
Kγijs

iφj in Eq. (7.104). Moreover, if one evaluates the Hamiltonian expression in the
asymptotically maximal gauge (7.65) then K = O(r−3) and thanks to the asymptotic or-
thogonality of s and φ, γijs

iφj = O(1), so that Kγijs
iφj does not contribute to the integral

and expressions (7.104) and (7.63) are then identical.

Example : A trivial example is provided by Schwarzschild spacetime, which among other things
is axisymmetric. For the 3+1 foliation associated with the Schwarzschild coordinates
(7.16), the extrinsic curvature tensor K vanishes identically, so that Eq. (7.104) yields
immediately JK = 0. For other foliations, like that associated with Eddington-Finkelstein
coordinates, K is no longer zero but is such that Kijs

iφj = 0, yielding again JK = 0 (as it
should be since the Komar angular momentum is independent of the foliation). Explicitely
for Eddington-Finkelstein coordinates,

Kijs
i =

(

−2m

r2

1 + m
r

1 + 2m
r

, 0, 0

)

, (7.105)

(see e.g. Eq. (D.25) in Ref. [146]) and φj = (0, 0, 1), so that obviously Kijs
iφj = 0.

Example : The most natural non trivial example is certainly that of Kerr spacetime. Let us
use the 3+1 foliation associated with the standard Boyer-Lindquist coordinates (t, r, θ, ϕ)
and evaluate the integral (7.104) by choosing for St a sphere r = const. Then ya = (θ, ϕ).
The Boyer-Lindquist components of φ are φi = (0, 0, 1) and those of s are si = (sr, 0, 0)
since γij is diagonal is these coordinates. The formula (7.104) then reduces to

JK =
1

8π

∮

r=const
Krϕsr√q dθ dϕ. (7.106)
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The extrinsic curvature component Krϕ can be evaluated via formula (4.63), which reduces
to 2NKij = Lβ γij since ∂γij/∂t = 0. From the Boyer-Lindquist line element (see e.g.
Eq. (5.29) in Ref. [156]), we read the components of the shift:

(βr, βθ, βϕ) =

(

0, 0, − 2amr

(r2 + a2)(r2 + a2 cos2 θ) + 2a2mr sin2 θ

)

, (7.107)

where m and a are the two parameters of the Kerr solution. Then, using Eq. (A.6),

Krϕ =
1

2N
Lβ γrϕ =

1

2N

(

βϕ ∂γrϕ

∂ϕ
︸ ︷︷ ︸

=0

+γϕϕ
∂βϕ

∂r
+ γrϕ

∂βϕ

∂ϕ
︸︷︷︸

=0

)

=
1

2N
γϕϕ

∂βϕ

∂r
. (7.108)

Hence

JK =
1

16π

∮

r=const

sr

N
γϕϕ

∂βϕ

∂r

√
q dθ dϕ. (7.109)

The values of sr, N , γϕϕ and
√

q can all be read on the Boyer-Lindquist line element.
However this is a bit tedious. To simplify things, let us evaluate JK only in the limit
r → ∞. Then sr ∼ 1, N ∼ 1, γϕϕ ∼ r2 sin2 θ,

√
q ∼ r2 sin θ and, from Eq. (7.107),

βϕ ∼ −2am/r3, so that

JK =
1

16π

∮

r=const
r2 sin2 6am

r4
r2 sin θ dθ dϕ =

3am

8π
× 2π ×

∫ π

0
sin3 θ dθ. (7.110)

Hence, as expected,
JK = am. (7.111)

Let us now find the 3+1 expression of the volume version (7.101) of the Komar angular
momentum. We have n · φ = 0 and, from the 3+1 decomposition (4.10) of T :

T (n,φ) = −〈p,φ〉. (7.112)

Hence formula (7.101) becomes

JK =

∫

Σt

〈p,φ〉√γ d3x + JH
K , (7.113)

with

JH
K =

1

8π

∮

Ht

Kijs
iφj√q d2y . (7.114)

Example : Let us consider a perfect fluid. Then p = (E + P )U [Eq. (5.61)], so that

JK =

∫

Σt

(E + P )U · φ√
γ d3x + JH

K . (7.115)

Taking φ = −y∂x +x∂y (symmetry axis = z-axis), the Newtonian limit of this expression
is then

JK =

∫

Σt

ρ(−yUx + xUy) dx dy dz, (7.116)

i.e. we recognize the standard expression for the angular momentum around the z-axis.
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The initial data problem
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8.1 Introduction

8.1.1 The initial data problem

We have seen in Chap. 4 that thanks to the 3+1 decomposition, the resolution of Einstein
equation amounts to solving a Cauchy problem, namely to evolve “forward in time” some initial
data. However this is a Cauchy problem with constraints. This makes the set up of initial data
a non trivial task, because these data must obey the constraints. Actually one may distinguish
two problems:

• The mathematical problem: given some hypersurface Σ0, find a Riemannian metric γ,
a symmetric bilinear form K and some matter distribution (E,p) on Σ0 such that the
Hamiltonian constraint (4.65) and the momentum constraint (4.66) are satisfied:

R + K2 − KijK
ij = 16πE (8.1)

DjK
j
i − DiK = 8πpi . (8.2)

In addition, the matter distribution (E,p) may have some constraints from its own. We
shall not discuss them here.

• The astrophysical problem: make sure that the solution to the constraint equations has
something to do with the physical system that one wish to study.
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Notice that Eqs. (8.1)-(8.2) involve a single hypersurface Σ0, not a foliation (Σt)t∈R
. In partic-

ular, neither the lapse function nor the shift vector appear in these equations. Facing them, a
naive way to proceed would be to choose freely the metric γ, thereby fixing the connection D

and the scalar curvature R, and to solve Eqs. (8.1)-(8.2) for K. Indeed, for fixed γ, E, and p,
Eqs. (8.1)-(8.2) form a quasi-linear system of first order for the components Kij . However, as
discussed by Choquet-Bruhat [128], this approach is not satisfactory because we have only four
equations for six unknowns Kij and there is no natural prescription for choosing arbitrarily two
among the six components Kij .

Lichnerowicz (1944) [177] has shown that a much more satisfactory split of the initial data
(γ,K) between freely choosable parts and parts obtained by solving Eqs. (8.1)-(8.2) is provided
by the conformal decomposition introduced in Chap. 6. Lichnerowicz method has been extended
by Choquet-Bruhat (1956, 1971) [128, 86], by York and Ó Murchadha (1972, 1974, 1979) [273,
274, 196, 276] and more recently by York and Pfeiffer (1999, 2003) [278, 202]. Actually, conformal
decompositions are by far the most widely spread techniques to get initial data for the 3+1
Cauchy problem. Alternative methods exist, such as the quasi-spherical ansatz introduced by
Bartnik in 1993 [37] or a procedure developed by Corvino (2000) [98] and by Isenberg, Mazzeo
and Pollack (2002) [162] for gluing together known solutions of the constraints, thereby producing
new ones. Here we shall limit ourselves to the conformal methods. Standard reviews on this
subject are the articles by York (1979) [276] and Choquet-Bruhat and York (1980) [88]. Recent
reviews are the articles by Cook (2000) [94], Pfeiffer (2004) [201] and Bartnik and Isenberg
(2004) [39].

8.1.2 Conformal decomposition of the constraints

The conformal form of the constraint equations has been derived in Chap. 6. We have introduced
there the conformal metric γ̃ and the conformal factor Ψ such that the metric γ induced by the
spacetime metric on some hypersurface Σ0 is [cf. Eq. (6.22)]

γij = Ψ4γ̃ij , (8.3)

and have decomposed the traceless part Aij of the extrinsic curvature Kij according to [cf.
Eq. (6.82)]

Aij = Ψ−10Âij . (8.4)

We consider here the decomposition involving Âij [α = −10 in Eq. (6.58)] and not the alter-
native one, which uses Ãij (α = −4), because we have seen in Sec. 6.4.2 that the former is
well adapted to the momentum constraint. Using the decompositions (8.3) and (8.4), we have
rewritten the Hamiltonian constraint (8.1) and the momentum constraint (8.2) as respectively
the Lichnerowicz equation [Eq. (6.111)] and an equation involving the divergence of Âij with
respect to the conformal metric [Eq. (6.112)] :

D̃iD̃
iΨ − 1

8
R̃Ψ +

1

8
ÂijÂ

ij Ψ−7 + 2πẼΨ−3 − 1

12
K2Ψ5 = 0 , (8.5)

D̃jÂ
ij − 2

3
Ψ6D̃iK = 8πp̃i , (8.6)
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where we have introduce the rescaled matter quantities

Ẽ := Ψ8E (8.7)

and
p̃i := Ψ10pi. (8.8)

The definition of p̃i is clearly motivated by Eq. (6.112). On the contrary the power 8 in the
definition of Ẽ is not the only possible choice. As we shall see in § 8.2.4, it is chosen (i)
to guarantee a negative power of Ψ in the Ẽ term in Eq. (8.5), resulting in some uniqueness
property of the solution and (ii) to allow for an easy implementation of the dominant energy
condition.

8.2 Conformal transverse-traceless method

8.2.1 Longitudinal/transverse decomposition of Âij

In order to solve the system (8.5)-(8.6), York (1973,1979) [274, 275, 276] has decomposed Âij

into a longitudinal part and a transverse one, by setting

Âij = (L̃X)ij + Âij
TT , (8.9)

where Âij
TT is both traceless and transverse (i.e. divergence-free) with respect to the metric γ̃:

γ̃ijÂ
ij
TT = 0 and D̃jÂ

ij
TT = 0, (8.10)

and (L̃X)ij is the conformal Killing operator associated with the metric γ̃ and acting on
the vector field X:

(L̃X)ij := D̃iXj + D̃jXi − 2

3
D̃kX

k γ̃ij . (8.11)

The properties of this linear differential operator are detailed in Appendix B. Let us retain here
that (L̃X)ij is by construction traceless:

γ̃ij(L̃X)ij = 0 (8.12)

(it must be so because in Eq. (8.9) both Âij and Âij
TT are traceless) and the kernel of L̃ is

made of the conformal Killing vectors of the metric γ̃, i.e. the generators of the conformal
isometries (cf. Sec. B.1.3). The symmetric tensor (L̃X)ij is called the longitudinal part of
Âij , whereas Âij

TT is called the transverse part.

Given Âij , the vector X is determined by taking the divergence of Eq. (8.9): taking into
account property (8.10), we get

D̃j(L̃X)ij = D̃jÂ
ij . (8.13)

The second order operator D̃j(L̃X)ij acting on the vector X is the conformal vector Lapla-

cian ∆̃L:

∆̃L Xi := D̃j(L̃X)ij = D̃jD̃
jXi +

1

3
D̃iD̃jX

j + R̃i
jX

j , (8.14)
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where the second equality follows from Eq. (B.10). The basic properties of ∆̃L are investigated
in Appendix B, where it is shown that this operator is elliptic and that its kernel is, in practice,
reduced to the conformal Killing vectors of γ̃, if any. We rewrite Eq. (8.13) as

∆̃L Xi = D̃jÂ
ij . (8.15)

The existence and uniqueness of the longitudinal/transverse decomposition (8.9) depend on the
existence and uniqueness of solutions X to Eq. (8.15). We shall consider two cases:

• Σ0 is a closed manifold, i.e. is compact without boundary;

• (Σ0,γ) is an asymptotically flat manifold, in the sense made precise in Sec. 7.2.

In the first case, it is shown in Appendix B that solutions to Eq. (8.15) exist provided that the
source D̃jÂ

ij is orthogonal to all conformal Killing vectors of γ̃, in the sense that [cf. Eq. (B.27)]:

∀C ∈ ker L̃,

∫

Σ
γ̃ijC

iD̃kÂ
jk
√

γ̃ d3x = 0. (8.16)

But this is easy to verify: using the fact that the source is a pure divergence and that Σ0 is
closed, we may integrate by parts and get, for any vector field C,

∫

Σ0

γ̃ijC
i D̃kÂ

jk
√

γ̃ d3x = −1

2

∫

Σ0

γ̃ij γ̃kl(L̃C)ikÂjl
√

γ̃ d3x. (8.17)

Then, obviously, when C is a conformal Killing vector, the right-hand side of the above equation
vanishes. So there exists a solution to Eq. (8.15) and this solution is unique up to the addition
of a conformal Killing vector. However, given a solution X, for any conformal Killing vector C,
the solution X + C yields to the same value of L̃X, since C is by definition in the kernel of
L̃. Therefore we conclude that the decomposition (8.9) of Âij is unique, although the vector X

may not be if (Σ0, γ̃) admits some conformal isometries.
In the case of an asymptotically flat manifold, the existence and uniqueness is guaranteed

by the Cantor theorem mentioned in Sec. B.2.4. We shall then require the decay condition

∂2γ̃ij

∂xk∂xl
= O(r−3) (8.18)

in addition to the asymptotic flatness conditions (7.35) introduced in Chap. 7. This guarantees
that [cf. Eq. (B.31)]

R̃ij = O(r−3). (8.19)

In addition, we notice that Âij obeys the decay condition Âij = O(r−2) which is inherited
from the asymptotic flatness condition (7.3). Then D̃jÂ

ij = O(r−3) so that condition (B.29) is
satisfied. Then all conditions are fulfilled to conclude that Eq. (8.15) admits a unique solution
X which vanishes at infinity.

To summarize, for all considered cases (asymptotic flatness and closed manifold), any sym-
metric and traceless tensor Âij (decaying as O(r−2) in the asymptotically flat case) admits a
unique longitudinal/transverse decomposition of the form (8.9).
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8.2.2 Conformal transverse-traceless form of the constraints

Inserting the longitudinal/transverse decomposition (8.9) into the constraint equations (8.5) and
(8.6) and making use of Eq. (8.15) yields to the system

D̃iD̃
iΨ − 1

8
R̃Ψ +

1

8

[

(L̃X)ij + ÂTT
ij

] [

(L̃X)ij + Âij
TT

]

Ψ−7 + 2πẼΨ−3 − 1

12
K2Ψ5 = 0 ,

(8.20)

∆̃L Xi − 2

3
Ψ6D̃iK = 8πp̃i , (8.21)

where

(L̃X)ij := γ̃ikγ̃jl(L̃X)kl (8.22)

ÂTT
ij := γ̃ikγ̃jlÂ

kl
TT. (8.23)

With the constraint equations written as (8.20) and (8.21), we see clearly which part of the
initial data on Σ0 can be freely chosen and which part is “constrained”:

• free data:

– conformal metric γ̃;

– symmetric traceless and transverse tensor Âij
TT (traceless and transverse are meant

with respect to γ̃: γ̃ijÂ
ij
TT = 0 and D̃jÂ

ij
TT = 0);

– scalar field K;

– conformal matter variables: (Ẽ, p̃i);

• constrained data (or “determined data”):

– conformal factor Ψ, obeying the non-linear elliptic equation (8.20) (Lichnerowicz
equation)

– vector X, obeying the linear elliptic equation (8.21) .

Accordingly the general strategy to get valid initial data for the Cauchy problem is to choose
(γ̃ij , Â

ij
TT,K, Ẽ, p̃i) on Σ0 and solve the system (8.20)-(8.21) to get Ψ and Xi. Then one con-

structs

γij = Ψ4γ̃ij (8.24)

Kij = Ψ−10
(

(L̃X)ij + Âij
TT

)

+
1

3
Ψ−4Kγ̃ij (8.25)

E = Ψ−8Ẽ (8.26)

pi = Ψ−10p̃i (8.27)

and obtains a set (γ,K, E,p) which satisfies the constraint equations (8.1)-(8.2). This method
has been proposed by York (1979) [276] and is naturally called the conformal transverse

traceless (CTT) method.
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8.2.3 Decoupling on hypersurfaces of constant mean curvature

Equations (8.20) and (8.21) are coupled, but we notice that if, among the free data, we choose
K to be a constant field on Σ0,

K = const, (8.28)

then they decouple partially : condition (8.28) implies D̃iK = 0, so that the momentum con-
straint (8.2) becomes independent of Ψ:

∆̃L Xi = 8πp̃i (K = const). (8.29)

The condition (8.28) on the extrinsic curvature of Σ0 defines what is called a constant mean

curvature (CMC) hypersurface. Indeed let us recall that K is nothing but minus three times
the mean curvature of (Σ0,γ) embedded in (M,g) [cf. Eq. (2.44)]. A maximal hypersurface,
having K = 0, is of course a special case of a CMC hypersurface. On a CMC hypersurface, the
task of obtaining initial data is greatly simplified: one has first to solve the linear elliptic equation
(8.29) to get X and plug the solution in Eq. (8.20) to form an equation for Ψ. Equation (8.29)
is the conformal vector Poisson equation studied in Appendix B. It is shown in Sec. B.2.4 that
it always solvable for the two cases of interest mentioned in Sec. 8.2.1: closed or asymptotically
flat manifold. Moreover, the solutions X are such that the value of L̃X is unique.

8.2.4 Lichnerowicz equation

Taking into account the CMC decoupling, the difficult problem is to solve Eq. (8.20) for Ψ. This
equation is elliptic and highly non-linear1. It has been first studied by Lichnerowicz [177, 178]
in the case K = 0 (Σ0 maximal) and Ẽ = 0 (vacuum). Lichnerowicz has shown that given the
value of Ψ at the boundary of a bounded domain of Σ0 (Dirichlet problem), there exists at most
one solution to Eq. (8.20). Besides, he showed the existence of a solution provided that ÂijÂ

ij

is not too large. These early results have been much improved since then. In particular Cantor
[77] has shown that in the asymptotically flat case, still with K = 0 and Ẽ = 0, Eq. (8.20) is
solvable if and only if the metric γ̃ is conformal to a metric with vanishing scalar curvature (one
says then that γ̃ belongs to the positive Yamabe class) (see also Ref. [188]). In the case of
closed manifolds, the complete analysis of the CMC case has been achieved by Isenberg (1995)
[161].

For more details and further references, we recommend the review articles by Choquet-Bruhat
and York [88] and Bartnik and Isenberg [39]. Here we shall simply repeat the argument of York
[278] to justify the rescaling (8.7) of E. This rescaling is indeed related to the uniqueness of
solutions to the Lichnerowicz equation. Consider a solution Ψ0 to Eq. (8.20) in the case K = 0,
to which we restrict ourselves. Another solution close to Ψ0 can be written Ψ = Ψ0 + ǫ, with
|ǫ| ≪ Ψ0:

D̃iD̃
i(Ψ0 + ǫ) − 1

8
R̃(Ψ0 + ǫ) +

1

8
ÂijÂ

ij (Ψ0 + ǫ)−7 + 2πẼ(Ψ0 + ǫ)−3 = 0. (8.30)

Expanding to the first order in ǫ/Ψ0 leads to the following linear equation for ǫ:

D̃iD̃
iǫ − αǫ = 0, (8.31)

1although it is quasi-linear in the technical sense, i.e. linear with respect to the highest-order derivatives
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with

α :=
1

8
R̃ +

7

8
ÂijÂ

ijΨ−8
0 + 6πẼΨ−4

0 . (8.32)

Now, if α ≥ 0, one can show, by means of the maximum principle, that the solution of (8.31)
which vanishes at spatial infinity is necessarily ǫ = 0 (see Ref. [89] or § B.1 of Ref. [91]). We
therefore conclude that the solution Ψ0 to Eq. (8.20) is unique (at least locally) in this case. On
the contrary, if α < 0, non trivial oscillatory solutions of Eq. (8.31) exist, making the solution
Ψ0 not unique. The key point is that the scaling (8.7) of E yields the term +6πẼΨ−4

0 in
Eq. (8.32), which contributes to make α positive. If we had not rescaled E, i.e. had considered
the original Hamiltonian constraint equation (6.111), the contribution to α would have been
instead −10πEΨ4

0, i.e. would have been negative. Actually, any rescaling Ẽ = ΨsE with s > 5
would have work to make α positive. The choice s = 8 in Eq. (8.7) is motivated by the fact that
if the conformal data (Ẽ, p̃i) obey the “conformal” dominant energy condition (cf. Sec. 7.3.4)

Ẽ ≥
√

γ̃ij p̃ip̃j , (8.33)

then, via the scaling (8.8) of pi, the reconstructed physical data (E, pi) will automatically obey
the dominant energy condition as stated by Eq. (7.54):

E ≥
√

γijpipj. (8.34)

8.2.5 Conformally flat and momentarily static initial data

In this section we search for asymptotically flat initial data (Σ0,γ,K). Let us then consider the
simplest case one may think of, namely choose the freely specifiable data (γ̃ij, Â

ij
TT,K, Ẽ, p̃i) to

be a flat metric:

γ̃ij = fij, (8.35)

a vanishing transverse-traceless part of the extrinsic curvature:

Âij
TT = 0, (8.36)

a vanishing mean curvature (maximal hypersurface)

K = 0, (8.37)

and a vacuum spacetime:

Ẽ = 0, p̃i = 0. (8.38)

Then D̃i = Di, R̃ = 0, L̃ = L [cf. Eq. (6.126)] and the constraint equations (8.20)-(8.21) reduce
to

∆Ψ +
1

8
(LX)ij(LX)ij Ψ−7 = 0 (8.39)

∆LXi = 0, (8.40)
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where ∆ and ∆L are respectively the scalar Laplacian and the conformal vector Laplacian
associated with the flat metric f :

∆ := DiDi (8.41)

and

∆LXi := DjDjXi +
1

3
DiDjX

j . (8.42)

Equations (8.39)-(8.40) must be solved with the boundary conditions

Ψ = 1 when r → ∞ (8.43)

X = 0 when r → ∞, (8.44)

which follow from the asymptotic flatness requirement. The solution depends on the topology of
Σ0, since the latter may introduce some inner boundary conditions in addition to (8.43)-(8.44)

Let us start with the simplest case: Σ0 = R3. Then the solution of Eq. (8.40) subject to the
boundary condition (8.44) is

X = 0 (8.45)

and there is no other solution (cf. Sec. B.2.4). Then obviously (LX)ij = 0, so that Eq. (8.39)
reduces to Laplace equation for Ψ:

∆Ψ = 0. (8.46)

With the boundary condition (8.43), there is a unique regular solution on R3:

Ψ = 1. (8.47)

The initial data reconstructed from Eqs. (8.24)-(8.25) is then

γ = f (8.48)

K = 0. (8.49)

These data correspond to a spacelike hyperplane of Minkowski spacetime. Geometrically the
condition K = 0 is that of a totally geodesic hypersurface (cf. Sec. 2.4.3). Physically data with
K = 0 are said to be momentarily static or time symmetric. Indeed, from Eq. (3.22),

Lm g = −2NK − 2∇nN n ⊗ n. (8.50)

So if K = 0 and if moreover one chooses a geodesic slicing around Σ0 (cf. Sec. 4.4.2), which
yields N = 1 and ∇nN = 0, then

Lm g = 0. (8.51)

This means that, locally (i.e. on Σ0), the normal evolution vector m is a spacetime Killing
vector. This vector being timelike, the configuration is then stationary . Moreover, the Killing
vector m being orthogonal to some hypersurface (i.e. Σ0), the stationary configuration is called
static. Of course, this staticity properties holds a priori only on Σ0 since there is no guarantee
that the time development of Cauchy data with K = 0 at t = 0 maintains K = 0 at t > 0.
Hence the qualifier ‘momentarily’ in the expression ‘momentarily static’ for data with K = 0.
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Figure 8.1: Hypersurface Σ0 as R3 minus a ball, displayed via an embedding diagram based on the metric γ̃,
which coincides with the Euclidean metric on R3. Hence Σ0 appears to be flat. The unit normal of the inner
boundary S with respect to the metric γ̃ is s̃. Notice that D̃ · s̃ > 0.

To get something less trivial than a slice of Minkowski spacetime, let us consider a slightly
more complicated topology for Σ0, namely R3 minus a ball (cf. Fig. 8.1). The sphere S delimiting
the ball is then the inner boundary of Σ0 and we must provide boundary conditions for Ψ and
X on S to solve Eqs. (8.39)-(8.40). For simplicity, let us choose

X|S = 0. (8.52)

Altogether with the outer boundary condition (8.44), this leads to X being identically zero as
the unique solution of Eq. (8.40). So, again, the Hamiltonian constraint reduces to Laplace
equation

∆Ψ = 0. (8.53)

If we choose the boundary condition Ψ|S = 1, then the unique solution is Ψ = 1 and we are
back to the previous example (slice of Minkowski spacetime). In order to have something non
trivial, i.e. to ensure that the metric γ will not be flat, let us demand that γ admits a closed
minimal surface, that we will choose to be S. This will necessarily translate as a boundary
condition for Ψ since all the information on the metric is encoded in Ψ (let us recall that from
the choice (8.35), γ = Ψ4f). S is a minimal surface of (Σ0,γ) iff its mean curvature vanishes,
or equivalently if its unit normal s is divergence-free (cf. Fig. 8.2):

Dis
i
∣
∣
S

= 0. (8.54)

This is the analog of ∇ ·n = 0 for maximal hypersurfaces, the change from minimal to maximal
being due to the change of signature, from the Riemannian to the Lorentzian one. By means of
Eq. (6.37), condition (8.54) is equivalent to

Di(Ψ
6si)

∣
∣
S

= 0, (8.55)

where we have used D̃i = Di, since γ̃ = f . Let us rewrite this expression in terms of the unit
vector s̃ normal to S with respect to the metric γ̃ (cf. Fig. 8.1); we have

s̃ = Ψ−2s, (8.56)
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Figure 8.2: Same hypersurface Σ0 as in Fig. 8.1 but displayed via an embedding diagram based on the metric
γ instead of γ̃. The unit normal of the inner boundary S with respect to that metric is s. Notice that D · s = 0,
which means that S is a minimal surface of (Σ0, γ).

since γ̃(s̃, s̃) = Ψ−4γ̃(s, s) = γ(s, s) = 1. Thus Eq. (8.55) becomes

Di(Ψ
4s̃i)

∣
∣
S

=
1√
f

∂

∂xi

(√

fΨ4s̃i
)
∣
∣
∣
∣
S

= 0. (8.57)

Let us introduce on Σ0 a coordinate system of spherical type, (xi) = (r, θ, ϕ), such that (i)
fij = diag(1, r2, r2 sin2 θ) and (ii) S is the sphere r = a, where a is some positive constant. Since
in these coordinates

√
f = r2 sin θ and s̃i = (1, 0, 0), the minimal surface condition (8.57) is

written as
1

r2

∂

∂r

(
Ψ4r2

)
∣
∣
∣
∣
r=a

= 0, (8.58)

i.e. (
∂Ψ

∂r
+

Ψ

2r

)∣
∣
∣
∣
r=a

= 0 (8.59)

This is a boundary condition of mixed Newmann/Dirichlet type for Ψ. The unique solution of
the Laplace equation (8.53) which satisfies boundary conditions (8.43) and (8.59) is

Ψ = 1 +
a

r
. (8.60)

The parameter a is then easily related to the ADM mass m of the hypersurface Σ0. Indeed using
formula (7.66), m is evaluated as

m = − 1

2π
lim

r→∞

∮

r=const

∂Ψ

∂r
r2 sin θ dθ dϕ = − 1

2π
lim

r→∞
4πr2 ∂

∂r

(

1 +
a

r

)

= 2a. (8.61)

Hence a = m/2 and we may write

Ψ = 1 +
m

2r
. (8.62)
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Figure 8.3: Extended hypersurface Σ′
0 obtained by gluing a copy of Σ0 at the minimal surface S and defining

an Einstein-Rosen bridge between two asymptotically flat regions.

Therefore, in terms of the coordinates (r, θ, ϕ), the obtained initial data (γ,K) are

γij =
(

1 +
m

2r

)4
diag(1, r2, r2 sin θ) (8.63)

Kij = 0. (8.64)

So, as above, the initial data are momentarily static. Actually, we recognize on (8.63)-(8.64) a
slice t = const of Schwarzschild spacetime in isotropic coordinates [compare with Eq. (6.24)].

The isotropic coordinates (r, θ, ϕ) covering the manifold Σ0 are such that the range of r
is [m/2,+∞). But thanks to the minimal character of the inner boundary S, we can extend
(Σ0,γ) to a larger Riemannian manifold (Σ′

0,γ
′) with γ ′|Σ0

= γ and γ ′ smooth at S. This is
made possible by gluing a copy of Σ0 at S (cf. Fig. 8.3). The topology of Σ′

0 is S2 × R and the
range of r in Σ′

0 is (0,+∞). The extended metric γ ′ keeps exactly the same form as (8.63):

γ′
ij dxi dxj =

(

1 +
m

2r

)4 (
dr2 + r2dθ2 + r2 sin2 θdϕ2

)
. (8.65)

By the change of variable

r 7→ r′ =
m2

4r
(8.66)

it is easily shown that the region r → 0 does not correspond to some “center” but is actually
a second asymptotically flat region (the lower one in Fig. 8.3). Moreover the transformation
(8.66), with θ and ϕ kept fixed, is an isometry of γ ′. It maps a point p of Σ0 to the point located
at the vertical of p in Fig. 8.3. The minimal sphere S is invariant under this isometry. The
region around S is called an Einstein-Rosen bridge. (Σ′

0,γ
′) is still a slice of Schwarzschild

spacetime. It connects two asymptotically flat regions without entering below the event horizon,
as shown in the Kruskal-Szekeres diagram of Fig. 8.4.
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Figure 8.4: Extended hypersurface Σ′
0 depicted in the Kruskal-Szekeres representation of Schwarzschild space-

time. R stands for Schwarzschild radial coordinate and r for the isotropic radial coordinate. R = 0 is the singular-
ity and R = 2m the event horizon. Σ′

0 is nothing but a hypersurface t = const, where t is the Schwarzschild time
coordinate. In this diagram, these hypersurfaces are straight lines and the Einstein-Rosen bridge S is reduced to
a point.

8.2.6 Bowen-York initial data

Let us select the same simple free data as above, namely

γ̃ij = fij , Âij
TT = 0, K = 0, Ẽ = 0 and p̃i = 0. (8.67)

For the hypersurface Σ0, instead of R3 minus a ball, we choose R3 minus a point:

Σ0 = R3\{O}. (8.68)

The removed point O is called a puncture [66]. The topology of Σ0 is S2 × R; it differs from
the topology considered in Sec. 8.2.5 (R3 minus a ball); actually it is the same topology as that
of the extended manifold Σ′

0 (cf. Fig. 8.3).

Thanks to the choice (8.67), the system to be solved is still (8.39)-(8.40). If we choose
the trivial solution X = 0 for Eq. (8.40), we are back to the slice of Schwarzschild spacetime
considered in Sec. 8.2.5, except that now Σ0 is the extended manifold previously denoted Σ′

0.

Bowen and York [65] have obtained a simple non-trivial solution of Eq. (8.40) (see also
Ref. [49]). Given a Cartesian coordinate system (xi) = (x, y, z) on Σ0 (i.e. a coordinate system
such that fij = diag(1, 1, 1)) with respect to which the coordinates of the puncture O are (0, 0, 0),
this solution writes

Xi = − 1

4r

(

7f ijPj +
Pjx

jxi

r2

)

− 1

r3
ǫij

kSjx
k, (8.69)
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where r :=
√

x2 + y2 + z2, ǫij
k is the Levi-Civita alternating tensor associated with the flat

metric f and (Pi, Sj) = (P1, P2, P3, S1, S2, S3) are six real numbers, which constitute the six
parameters of the Bowen-York solution. Notice that since r 6= 0 on Σ0, the Bowen-York solution
is a regular and smooth solution on the entire Σ0.

Example : Choosing Pi = (0, P, 0) and Si = (0, 0, S), where P and S are two real numbers,
leads to the following expression of the Bowen-York solution:







Xx = −P

4

xy

r3
+ S

y

r3

Xy = − P

4r

(

7 +
y2

r2

)

− S
x

r3

Xz = −P

4

xz

r3

(8.70)

The conformal traceless extrinsic curvature corresponding to the solution (8.69) is deduced from
formula (8.9), which in the present case reduces to Âij = (LX)ij ; one gets

Âij =
3

2r3

[

xiP j + xjP i −
(

f ij − xixj

r2

)

Pkx
k

]

+
3

r5

(

ǫik
lSkx

lxj + ǫjk
lSkx

lxi
)

, (8.71)

where P i := f ijPj . The tensor Âij given by Eq. (8.71) is called the Bowen-York extrinsic

curvature. Notice that the Pi part of Âij decays asymptotically as O(r−2), whereas the Si

part decays as O(r−3).

Remark : Actually the expression of Âij given in the original Bowen-York article [65] contains
an additional term with respect to Eq. (8.71), but the role of this extra term is only to
ensure that the solution is isometric through an inversion across some sphere. We are
not interested by such a property here, so we have dropped this term. Therefore, strictly
speaking, we should name expression (8.71) the simplified Bowen-York extrinsic curvature.

Example : Choosing Pi = (0, P, 0) and Si = (0, 0, S) as in the previous example [Eq. (8.70)],
we get

Âxx = − 3P

2r3
y

(

1 − x2

r2

)

− 6S

r5
xy (8.72)

Âxy =
3P

2r3
x

(

1 +
y2

r2

)

+
3S

r5
(x2 − y2) (8.73)

Âxz =
3P

2r5
xyz − 3S

r5
yz (8.74)

Âyy =
3P

2r3
y

(

1 +
y2

r2

)

+
6S

r5
xy (8.75)

Âyz =
3P

2r3
z

(

1 +
y2

r2

)

+
3S

r5
xz (8.76)

Âzz = − 3P

2r3
y

(

1 − z2

r2

)

. (8.77)
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In particular we verify that Âij is traceless: γ̃ijÂ
ij = fijÂ

ij = Âxx + Âyy + Âzz = 0.

The Bowen-York extrinsic curvature provides an analytical solution of the momentum con-
straint (8.40) but there remains to solve the Hamiltonian constraint (8.39) for Ψ, with the
asymptotic flatness boundary condition Ψ = 1 when r → ∞. Since X 6= 0, Eq. (8.39) is no
longer a simple Laplace equation, as in Sec. 8.2.5, but a non-linear elliptic equation. There is
no hope to get any analytical solution and one must solve Eq. (8.39) numerically to get Ψ and
reconstruct the full initial data (γ,K) via Eqs. (8.24)-(8.25).

Let us now discuss the physical significance of the parameters (Pi, Si) of the Bowen-York
solution. First of all, the ADM momentum of the initial data (Σ0,γ,K) is computed via formula
(7.56). Taking into account that Ψ is asymptotically one and K vanishes, we can write

PADM
i =

1

8π
lim

r→∞

∮

r=const
Âik xkr sin θ dθ dϕ, i ∈ {1, 2, 3}, (8.78)

where we have used the fact that, within the Cartesian coordinates (xi) = (x, y, z), (∂i)
j = δj

i

and sk = xk/r. If we insert expression (8.71) for Âjk in this formula, we notice that the Si part
decays too fast to contribute to the integral; there remains only

PADM
i =

1

8π
lim

r→∞

∮

r=const

3

2r2

[

xiPjx
j + r2Pi −

(

xi −
xir2

r2

)

︸ ︷︷ ︸

=0

Pkx
k

]

sin θ dθ dϕ

=
3

16π

(

Pj

∮

r=const

xixj

r2
sin θ dθ dϕ + Pi

∮

r=const
sin θ dθ dϕ

︸ ︷︷ ︸

=4π

)

. (8.79)

Now
∮

r=const

xixj

r2
sin θ dθ dϕ = δij

∮

r=const

(xj)2

r2
sin θ dθ dϕ = δij 1

3

∮

r=const

r2

r2
sin θ dθ dϕ =

4π

3
δij ,

(8.80)
so that Eq. (8.79) becomes

PADM
i =

3

16π

(
4π

3
+ 4π

)

Pi, (8.81)

i.e.
PADM

i = Pi . (8.82)

Hence the parameters Pi of the Bowen-York solution are nothing but the three components of
the ADM linear momentum of the hypersurface Σ0.

Regarding the angular momentum, we notice that since γ̃ij = fij in the present case, the
Cartesian coordinates (xi) = (x, y, z) belong to the quasi-isotropic gauge introduced in Sec. 7.5.2
(condition (7.64) is trivially fulfilled). We may then use formula (7.63) to define the angular
momentum of Bowen-York initial. Again, since Ψ → 1 at spatial infinity and K = 0, we can
write

Ji =
1

8π
lim

r→∞

∮

r=const
Âjk(φi)

j xkr sin θ dθ dϕ, i ∈ {1, 2, 3}. (8.83)
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Substituting expression (8.71) for Âjk as well as expressions (7.60)-(7.62) for (φi)
j , we get that

only the Si part contribute to this integral. After some computation, we find

Ji = Si . (8.84)

Hence the parameters Si of the Bowen-York solution are nothing but the three components of
the angular momentum of the hypersurface Σ0.

Remark : The Bowen-York solution with P i = 0 and Si = 0 reduces to the momentarily static
solution found in Sec. 8.2.5, i.e. is a slice t = const of the Schwarzschild spacetime (t
being the Schwarzschild time coordinate). However Bowen-York initial data with P i = 0
and Si 6= 0 do not constitute a slice of Kerr spacetime. Indeed, it has been shown [138]
that there does not exist any foliation of Kerr spacetime by hypersurfaces which (i) are
axisymmetric, (ii) smoothly reduce in the non-rotating limit to the hypersurfaces of constant
Schwarzschild time and (iii) are conformally flat, i.e. have induced metric γ̃ = f , as the
Bowen-York hypersurfaces have. This means that a Bowen-York solution with Si 6= 0 does
represent initial data for a rotating black hole, but this black hole is not stationary: it is
“surrounded” by gravitational radiation, as demonstrated by the time development of these
initial data [67, 142].

8.3 Conformal thin sandwich method

8.3.1 The original conformal thin sandwich method

An alternative to the conformal transverse-traceless method for computing initial data has been
introduced by York in 1999 [278]. It is motivated by expression (6.78) for the traceless part of
the extrinsic curvature scaled with α = −4:

Ãij =
1

2N

[(
∂

∂t
− Lβ

)

γ̃ij − 2

3
D̃kβ

k γ̃ij

]

. (8.85)

Noticing that [cf. Eq. (8.11)]

− Lβ γ̃ij = (L̃β)ij +
2

3
D̃kβ

k, (8.86)

and introducing the short-hand notation

˙̃γ
ij

:=
∂

∂t
γ̃ij, (8.87)

we can rewrite Eq. (8.85) as

Ãij =
1

2N

[

˙̃γ
ij

+ (L̃β)ij
]

. (8.88)

The relation between Ãij and Âij is [cf. Eq. (6.102)]

Âij = Ψ6Ãij . (8.89)
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Accordingly, Eq. (8.88) yields

Âij =
1

2Ñ

[

˙̃γ
ij

+ (L̃β)ij
]

, (8.90)

where we have introduced the conformal lapse

Ñ := Ψ−6N . (8.91)

Equation (8.90) constitutes a decomposition of Âij alternative to the longitudinal/transverse
decomposition (8.9). Instead of expressing Âij in terms of a vector X and a TT tensor Âij

TT, it

expresses it in terms of the shift vector β, the time derivative of the conformal metric, ˙̃γ
ij

, and
the conformal lapse Ñ .

The Hamiltonian constraint, written as the Lichnerowicz equation (8.5), takes the same form
as before:

D̃iD̃
iΨ − R̃

8
Ψ +

1

8
ÂijÂ

ij Ψ−7 + 2πẼΨ−3 − K2

12
Ψ5 = 0 , (8.92)

except that now Âij is to be understood as the combination (8.90) of βi, ˙̃γ
ij

and Ñ . On the
other side, the momentum constraint (8.6) becomes, once expression (8.90) is substituted for
Âij ,

D̃j

(
1

Ñ
(L̃β)ij

)

+ D̃j

(
1

Ñ
˙̃γ
ij
)

− 4

3
Ψ6D̃iK = 16πp̃i . (8.93)

In view of the system (8.92)-(8.93), the method to compute initial data consists in choosing

freely γ̃ij, ˙̃γ
ij

, K, Ñ , Ẽ and p̃i on Σ0 and solving (8.92)-(8.93) to get Ψ and βi. This method is

called conformal thin sandwich (CTS), because one input is the time derivative ˙̃γ
ij

, which
can be obtained from the value of the conformal metric on two neighbouring hypersurfaces Σt

and Σt+δt (“thin sandwich” view point).

Remark : The term “thin sandwich” originates from a previous method devised in the early
sixties by Wheeler and his collaborators [27, 267]. Contrary to the methods exposed here,
the thin sandwich method was not based on a conformal decomposition: it considered the
constraint equations (8.1)-(8.2) as a system to be solved for the lapse N and the shift vector
β, given the metric γ and its time derivative. The extrinsic curvature which appears in
(8.1)-(8.2) was then considered as the function of γ, ∂γ/∂t, N and β given by Eq. (4.63).
However, this method does not work in general [38]. On the contrary the conformal thin
sandwich method introduced by York [278] and exposed above was shown to work [91].

As for the conformal transverse-traceless method treated in Sec. 8.2, on CMC hypersurfaces,
Eq. (8.93) decouples from Eq. (8.92) and becomes an elliptic linear equation for β.
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8.3.2 Extended conformal thin sandwich method

An input of the above method is the conformal lapse Ñ . Considering the astrophysical problem
stated in Sec. 8.1.1, it is not clear how to pick a relevant value for Ñ . Instead of choosing an
arbitrary value, Pfeiffer and York [202] have suggested to compute Ñ from the Einstein equation
giving the time derivative of the trace K of the extrinsic curvature, i.e. Eq. (6.107):
(

∂

∂t
− Lβ

)

K = −Ψ−4
(

D̃iD̃
iN + 2D̃i ln Ψ D̃iN

)

+ N

[

4π(E + S) + ÃijÃ
ij +

K2

3

]

. (8.94)

This amounts to add this equation to the initial data system. More precisely, Pfeiffer and York
[202] suggested to combine Eq. (8.94) with the Hamiltonian constraint to get an equation involv-
ing the quantity NΨ = ÑΨ7 and containing no scalar products of gradients as the D̃i ln ΨD̃iN
term in Eq. (8.94), thanks to the identity

D̃iD̃
iN + 2D̃i ln Ψ D̃iN = Ψ−1

[

D̃iD̃
i(NΨ) + ND̃iD̃

iΨ
]

. (8.95)

Expressing the left-hand side of the above equation in terms of Eq. (8.94) and substituting
D̃iD̃

iΨ in the right-hand side by its expression deduced from Eq. (8.92), we get

D̃iD̃
i(ÑΨ7)−(ÑΨ7)

[
1

8
R̃ +

5

12
K2Ψ4 +

7

8
ÂijÂ

ijΨ−8 + 2π(Ẽ + 2S̃)Ψ−4

]

+
(

K̇ − βiD̃iK
)

Ψ5 = 0,

(8.96)
where we have used the short-hand notation

K̇ :=
∂K

∂t
(8.97)

and have set
S̃ := Ψ8S. (8.98)

Adding Eq. (8.96) to Eqs. (8.92) and (8.93), the initial data system becomes

D̃iD̃
iΨ − R̃

8
Ψ +

1

8
ÂijÂ

ij Ψ−7 + 2πẼΨ−3 − K2

12
Ψ5 = 0 (8.99)

D̃j

(
1

Ñ
(L̃β)ij

)

+ D̃j

(
1

Ñ
˙̃γ
ij
)

− 4

3
Ψ6D̃iK = 16πp̃i (8.100)

D̃iD̃
i(ÑΨ7) − (ÑΨ7)

[
R̃

8
+

5

12
K2Ψ4 +

7

8
ÂijÂ

ijΨ−8 + 2π(Ẽ + 2S̃)Ψ−4

]

+
(

K̇ − βiD̃iK
)

Ψ5 = 0

, (8.101)

where Âij is the function of Ñ , βi, γ̃ij and ˙̃γ
ij

defined by Eq. (8.90). Equations (8.99)-(8.101)
constitute the extended conformal thin sandwich (XCTS) system for the initial data
problem. The free data are the conformal metric γ̃, its coordinate time derivative ˙̃γ, the extrinsic
curvature trace K, its coordinate time derivative K̇, and the rescaled matter variables Ẽ, S̃ and
p̃i. The constrained data are the conformal factor Ψ, the conformal lapse Ñ and the shift vector
β.
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Remark : The XCTS system (8.99)-(8.101) is a coupled system. Contrary to the CTT system
(8.20)-(8.21), the assumption of constant mean curvature, and in particular of maximal
slicing, does not allow to decouple it.

8.3.3 XCTS at work: static black hole example

Let us illustrate the extended conformal thin sandwich method on a simple example. Take for
the hypersurface Σ0 the punctured manifold considered in Sec. 8.2.6, namely

Σ0 = R3\{O}. (8.102)

For the free data, let us perform the simplest choice:

γ̃ij = fij, ˙̃γ
ij

= 0, K = 0, K̇ = 0, Ẽ = 0, S̃ = 0, and p̃i = 0, (8.103)

i.e. we are searching for vacuum initial data on a maximal and conformally flat hypersurface
with all the freely specifiable time derivatives set to zero. Thanks to (8.103), the XCTS system
(8.99)-(8.101) reduces to

∆Ψ +
1

8
ÂijÂ

ij Ψ−7 = 0 (8.104)

Dj

(
1

Ñ
(Lβ)ij

)

= 0 (8.105)

∆(ÑΨ7) − 7

8
ÂijÂ

ijΨ−1Ñ = 0. (8.106)

Aiming at finding the simplest solution, we notice that

β = 0 (8.107)

is a solution of Eq. (8.105). Together with ˙̃γ
ij

= 0, it leads to [cf. Eq. (8.90)]

Âij = 0. (8.108)

The system (8.104)-(8.106) reduces then further:

∆Ψ = 0 (8.109)

∆(ÑΨ7) = 0. (8.110)

Hence we have only two Laplace equations to solve. Moreover Eq. (8.109) decouples from
Eq. (8.110). For simplicity, let us assume spherical symmetry around the puncture O. We
introduce an adapted spherical coordinate system (xi) = (r, θ, ϕ) on Σ0. The puncture O is
then at r = 0. The simplest non-trivial solution of (8.109) which obeys the asymptotic flatness
condition Ψ → 1 as r → +∞ is

Ψ = 1 +
m

2r
, (8.111)

where as in Sec. 8.2.5, the constant m is the ADM mass of Σ0 [cf. Eq. (8.61)]. Notice that since
r = 0 is excluded from Σ0, Ψ is a perfectly regular solution on the entire manifold Σ0. Let us
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recall that the Riemannian manifold (Σ0,γ) corresponding to this value of Ψ via γ = Ψ4f is
the Riemannian manifold denoted (Σ′

0,γ) in Sec. 8.2.5 and depicted in Fig. 8.3. In particular it
has two asymptotically flat ends: r → +∞ and r → 0 (the puncture).

As for Eq. (8.109), the simplest solution of Eq. (8.110) obeying the asymptotic flatness
requirement ÑΨ7 → 1 as r → +∞ is

ÑΨ7 = 1 +
a

r
, (8.112)

where a is some constant. Let us determine a from the value of the lapse function at the second
asymptotically flat end r → 0. The lapse being related to Ñ via Eq. (8.91), Eq. (8.112) is
equivalent to

N =
(

1 +
a

r

)

Ψ−1 =
(

1 +
a

r

)(

1 +
m

2r

)−1
=

r + a

r + m/2
. (8.113)

Hence

lim
r→0

N =
2a

m
. (8.114)

There are two natural choices for limr→0 N . The first one is

lim
r→0

N = 1, (8.115)

yielding a = m/2. Then, from Eq. (8.113) N = 1 everywhere on Σ0. This value of N corresponds
to a geodesic slicing (cf. Sec. 4.4.2). The second choice is

lim
r→0

N = −1. (8.116)

This choice is compatible with asymptotic flatness: it simply means that the coordinate time
t is running “backward” near the asymptotic flat end r → 0. This contradicts the assumption
N > 0 in the definition of the lapse function given in Sec. 3.3.1. However, we shall generalize
here the definition of the lapse to allow for negative values: whereas the unit vector n is always
future-oriented, the scalar field t is allowed to decrease towards the future. Such a situation has
already been encountered for the part of the slices t = const located on the left side of Fig. 8.4.
Once reported into Eq. (8.114), the choice (8.116) yields a = −m/2, so that

N =
(

1 − m

2r

)(

1 +
m

2r

)−1
. (8.117)

Gathering relations (8.107), (8.111) and (8.117), we arrive at the following expression of the
spacetime metric components:

gµνdxµdxν = −
(

1 − m
2r

1 + m
2r

)2

dt2 +
(

1 +
m

2r

)4 [
dr2 + r2(dθ2 + sin2 θdϕ2)

]
. (8.118)

We recognize the line element of Schwarzschild spacetime in isotropic coordinates [cf. Eq. (6.24)].
Hence we recover the same initial data as in Sec. 8.2.5 and depicted in Figs. 8.3 and 8.4. The
bonus is that we have the complete expression of the metric g on Σ0, and not only the induced
metric γ.
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Remark : The choices (8.115) and (8.116) for the asymptotic value of the lapse both lead to a
momentarily static initial slice in Schwarzschild spacetime. The difference is that the time
development corresponding to choice (8.115) (geodesic slicing) will depend on t, whereas
the time development corresponding to choice (8.116) will not, since in the latter case
t coincides with the standard Schwarzschild time coordinate, which makes ∂t a Killing
vector.

8.3.4 Uniqueness of solutions

Recently, Pfeiffer and York [203] have exhibited a choice of vacuum free data (γ̃ij , ˙̃γ
ij

,K, K̇)
for which the solution (Ψ, Ñ , βi) to the XCTS system (8.99)-(8.101) is not unique (actually two
solutions are found). The conformal metric γ̃ is the flat metric plus a linearized quadrupolar

gravitational wave, as obtained by Teukolsky [256], with a tunable amplitude. ˙̃γ
ij

corresponds
to the time derivative of this wave, and both K and K̇ are chosen to zero. On the contrary, for
the same free data, with K̇ = 0 substituted by Ñ = 1, Pfeiffer and York have shown that the
original conformal thin sandwich method as described in Sec. 8.3.1 leads to a unique solution
(or no solution at all if the amplitude of the wave is two large).

Baumgarte, Ó Murchadha and Pfeiffer [46] have argued that the lack of uniqueness for the
XCTS system may be due to the term

− (ÑΨ7)
7

8
ÂijÂ

ijΨ−8 = − 7

32
Ψ6γ̃ikγ̃jl

[

˙̃γ
ij

+ (L̃β)ij
] [

˙̃γ
kl

+ (L̃β)kl
]

(ÑΨ7)−1 (8.119)

in Eq. (8.101). Indeed, if we proceed as for the analysis of Lichnerowicz equation in Sec. 8.2.4,
we notice that this term, with the minus sign and the negative power of (ÑΨ7)−1, makes the
linearization of Eq. (8.101) of the type D̃iD̃

iǫ + αǫ = σ, with α > 0. This “wrong” sign of α
prevents the application of the maximum principle to guarantee the uniqueness of the solution.

The non-uniqueness of solution of the XCTS system for certain choice of free data has been
confirmed by Walsh [266] by means of bifurcation theory.

8.3.5 Comparing CTT, CTS and XCTS

The conformal transverse traceless (CTT) method exposed in Sec. 8.2 and the (extended) con-
formal thin sandwich (XCTS) method considered here differ by the choice of free data: whereas
both methods use the conformal metric γ̃ and the trace of the extrinsic curvature K as free data,

CTT employs in addition Âij
TT, whereas for CTS (resp. XCTS) the additional free data is ˙̃γ

ij
,

as well as Ñ (resp. K̇). Since Âij
TT is directly related to the extrinsic curvature and the latter is

linked to the canonical momentum of the gravitational field in the Hamiltonian formulation of
general relativity (cf. Sec. 4.5), the CTT method can be considered as the approach to the initial

data problem in the Hamiltonian representation. On the other side, ˙̃γ
ij

being the “velocity” of
γ̃ij , the (X)CTS method constitutes the approach in the Lagrangian representation [279].

Remark : The (X)CTS method assumes that the conformal metric is unimodular: det(γ̃ij) = f
[Eq. (6.19)] (since Eq. (8.90) follows from this assumption), whereas the CTT method can
be applied with any conformal metric.
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Figure 8.5: Action of the helical symmetry group, with Killing vector ℓ. χτ (P ) is the displacement of the point
P by the member of the symmetry group of parameter τ . N and β are respectively the lapse function and the
shift vector associated with coordinates adapted to the symmetry, i.e. coordinates (t, xi) such that ∂t = ℓ.

The advantage of CTT is that its mathematical theory is well developed, yielding existence
and uniqueness theorems, at least for constant mean curvature (CMC) slices. The mathematical
theory of CTS is very close to CTT. In particular, the momentum constraint decouples from
the Hamiltonian constraint on CMC slices. On the contrary, XCTS has a much more involved
mathematical structure. In particular the CMC condition does not yield to any decoupling. The
advantage of XCTS is then to be better suited to the description of quasi-stationary spacetimes,

since ˙̃γ
ij

= 0 and K̇ = 0 are necessary conditions for ∂t to be a Killing vector. This makes
XCTS the method to be used in order to prepare initial data in quasi-equilibrium. For instance,
it has been shown [149, 104] that XCTS yields orbiting binary black hole configurations in
much better agreement with post-Newtonian computations than the CTT treatment based on
a superposition of two Bowen-York solutions.

A detailed comparison of CTT and XCTS for a single spinning or boosted black hole has
been performed by Laguna [173].

8.4 Initial data for binary systems

A major topic of contemporary numerical relativity is the computation of the merger of a binary
system of black holes or neutron stars, for such systems are among the most promising sources
of gravitational radiation for the interferometric detectors either groundbased (LIGO, VIRGO,
GEO600, TAMA) or in space (LISA). The problem of preparing initial data for these systems
has therefore received a lot of attention in the past decade.



146 The initial data problem

8.4.1 Helical symmetry

Due to the gravitational-radiation reaction, a relativistic binary system has an inspiral motion,
leading to the merger of the two components. However, when the two bodies are are sufficiently
far apart, one may approximate the spiraling orbits by closed ones. Moreover, it is well known
that gravitational radiation circularizes the orbits very efficiently, at least for comparable mass
systems [57]. We may then consider that the motion is described by a sequence of closed circular
orbits.

The geometrical translation of this physical assumption is that the spacetime (M,g) is
endowed with some symmetry, called helical symmetry . Indeed exactly circular orbits imply
the existence of a one-parameter symmetry group such that the associated Killing vector ℓ obeys
the following properties [132]: (i) ℓ is timelike near the system, (ii) far from it, ℓ is spacelike
but there exists a smaller number T > 0 such that the separation between any point P and its
image χT (P ) under the symmetry group is timelike (cf. Fig. 8.5). ℓ is called a helical Killing

vector, its field lines in a spacetime diagram being helices (cf. Fig. 8.5).
Helical symmetry is exact in theories of gravity where gravitational radiation does not exist,

namely:

• in Newtonian gravity,

• in post-Newtonian gravity, up to the second order,

• in the Isenberg-Wilson-Mathews approximation to general relativity discussed in Sec. 6.6.

Moreover helical symmetry can be exact in full general relativity for a non-axisymmetric system
(such as a binary) with standing gravitational waves [110]. But notice that a spacetime with
helical symmetry and standing gravitational waves cannot be asymptotically flat [141].

To treat helically symmetric spacetimes, it is natural to choose coordinates (t, xi) that are
adapted to the symmetry, i.e. such that

∂t = ℓ. (8.120)

Then all the fields are independent of the coordinate t. In particular,

˙̃γ
ij

= 0 and K̇ = 0. (8.121)

If we employ the XCTS formalism to compute initial data, we therefore get some definite pre-

scription for the free data ˙̃γ
ij

and K̇. On the contrary, the requirements (8.121) do not have
any immediate translation in the CTT formalism.

Remark : Helical symmetry can also be usefull to treat binary black holes outside the scope of
the 3+1 formalism, as shown by Klein [170], who developed a quotient space formalism to
reduce the problem to a three dimensional SL(2, R)/SO(1, 1) sigma model.

Taking into account (8.121) and choosing maximal slicing (K = 0), the XCTS system (8.99)-
(8.101) becomes

D̃iD̃
iΨ − R̃

8
Ψ +

1

8
ÂijÂ

ij Ψ−7 + 2πẼΨ−3 = 0 (8.122)
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D̃j

(
1

Ñ
(L̃β)ij

)

− 16πp̃i = 0 (8.123)

D̃iD̃
i(ÑΨ7) − (ÑΨ7)

[

R̃

8
+

7

8
ÂijÂ

ijΨ−8 + 2π(Ẽ + 2S̃)Ψ−4

]

= 0, (8.124)

where [cf. Eq. (8.90)]

Âij =
1

2Ñ
(L̃β)ij . (8.125)

8.4.2 Helical symmetry and IWM approximation

If we choose, as part of the free data, the conformal metric to be flat,

γ̃ij = fij, (8.126)

then the helically symmetric XCTS system (8.122)-(8.124) reduces to

∆Ψ +
1

8
ÂijÂ

ij Ψ−7 + 2πẼΨ−3 = 0 (8.127)

∆βi +
1

3
DiDjβ

j − (Lβ)ijDj ln Ñ = 16πÑ p̃i (8.128)

∆(ÑΨ7) − (ÑΨ7)

[
7

8
ÂijÂ

ijΨ−8 + 2π(Ẽ + 2S̃)Ψ−4

]

= 0, (8.129)

where

Âij =
1

2Ñ
(Lβ)ij (8.130)

and D is the connection associated with the flat metric f , ∆ := DiDi is the flat Laplacian
[Eq. (8.41)], and (Lβ)ij := Diβj + Djβi − 2

3Dkβ
k f ij [Eq. (6.126)].

We remark that the system (8.127)-(8.129) is identical to the Isenberg-Wilson-Mathews
(IWM) system (6.129)-(6.131) presented in Sec. 6.6: given that Ẽ = Ψ8E, p̃i = Ψ10pi, Ñ =
Ψ−6N , Âij = Ψ6Ãij and ÂijÂ

ij = Ψ12ÃijÃ
ij , Eq. (8.127) coincides with Eq. (6.130), Eq. (8.128)

coincides with Eq. (6.131) and Eq. (8.129) is a combination of Eqs. (6.129) and (6.130). Hence,
within helical symmetry, the XCTS system with the choice K = 0 and γ̃ = f is equivalent to
the IWM system.

Remark : Contrary to IWM, XCTS is not some approximation to general relativity: it provides
exact initial data. The only thing that may be questioned is the astrophysical relevance of
the XCTS data with γ̃ = f .

8.4.3 Initial data for orbiting binary black holes

The concept of helical symmetry for generating orbiting binary black hole initial data has been
introduced in 2002 by Gourgoulhon, Grandclément and Bonazzola [144, 149]. The system of
equations that these authors have derived is equivalent to the XCTS system with γ̃ = f , their
work being previous to the formulation of the XCTS method by Pfeiffer and York (2003) [202].
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Since then other groups have combined XCTS with helical symmetry to compute binary black
hole initial data [95, 18, 19, 83]. Since all these studies are using a flat conformal metric [choice
(8.126)], the PDE system to be solved is (8.127)-(8.129), with the additional simplification Ẽ = 0
and p̃i = 0 (vacuum). The initial data manifold Σ0 is chosen to be R3 minus two balls:

Σ0 = R3\(B1 ∪ B2). (8.131)

In addition to the asymptotic flatness conditions, some boundary conditions must be provided
on the surfaces S1 and S2 of B1 and B2. One choose boundary conditions corresponding to a
non-expanding horizon, since this concept characterizes black holes in equilibrium. We shall not
detail these boundary conditions here; they can be found in Refs. [95, 146]. The condition of non-
expanding horizon provides 3 among the 5 required boundary conditions [for the 5 components
(Ψ, Ñ , βi)]. The two remaining boundary conditions are given by (i) the choice of the foliation
(choice of the value of N at S1 and S2) and (ii) the choice of the rotation state of each black
hole (“individual spin”), as explained in Ref. [83].

Numerical codes for solving the above system have been constructed by

• Grandclément, Gourgoulhon and Bonazzola (2002) [149] for corotating binary black holes;

• Cook, Pfeiffer, Caudill and Grigsby (2004, 2006) [95, 83] for corotating and irrotational
binary black holes;

• Ansorg (2005, 2007) [18, 19] for corotating binary black holes.

Detailed comparisons with post-Newtonian initial data (either from the standard post-Newtonian
formalism [56] or from the Effective One-Body approach [71, 102]) have revealed a very good
agreement, as shown in Refs. [104, 83].

An alternative to (8.131) for the initial data manifold would be to consider the twice-
punctured R3:

Σ0 = R3\{O1, O2}, (8.132)

where O1 and O2 are two points of R3. This would constitute some extension to the two bodies
case of the punctured initial data discussed in Sec. 8.3.3. However, as shown by Hannam,
Evans, Cook and Baumgarte in 2003 [154], it is not possible to find a solution of the helically
symmetric XCTS system with a regular lapse in this case2. For this reason, initial data based on
the puncture manifold (8.132) are computed within the CTT framework discussed in Sec. 8.2.
As already mentioned, there is no natural way to implement helical symmetry in this framework.
One instead selects the free data Âij

TT to vanish identically, as in the single black hole case treated
in Secs. 8.2.5 and 8.2.6. Then

Âij = (L̃X)ij . (8.133)

The vector X must obey Eq. (8.40), which arises from the momentum constraint. Since this
equation is linear, one may choose for X a linear superposition of two Bowen-York solutions
(Sec. 8.2.6):

X = X(P (1),S(1)) + X(P (2),S(2)), (8.134)

2see however Ref. [153] for some attempt to circumvent this
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where X(P (a),S(a)) (a = 1, 2) is the Bowen-York solution (8.69) centered on Oa. This method
has been first implemented by Baumgarte in 2000 [40]. It has been since then used by Baker,
Campanelli, Lousto and Takashi (2002) [31] and Ansorg, Brügmann and Tichy (2004) [20].
The initial data hence obtained are closed from helically symmetric XCTS initial data at large
separation but deviate significantly from them, as well as from post-Newtonian initial data,
when the two black holes are very close. This means that the Bowen-York extrinsic curvature
is bad for close binary systems in quasi-equilibrium (see discussion in Ref. [104]).

Remark : Despite of this, CTT Bowen-York configurations have been used as initial data for
the recent binary black hole inspiral and merger computations by Baker et al. [32, 33, 264]
and Campanelli et al. [73, 74, 75, 76]. Fortunately, these initial data had a relative large
separation, so that they differed only slightly from the helically symmetric XCTS ones.

Instead of choosing somewhat arbitrarily the free data of the CTT and XCTS methods,
notably setting γ̃ = f , one may deduce them from post-Newtonian results. This has been done
for the binary black hole problem by Tichy, Brügmann, Campanelli and Diener (2003) [259],
who have used the CTT method with the free data (γ̃ij , Â

ij
TT) given by the second order post-

Newtonian (2PN) metric. In the same spirit, Nissanke (2006) [195] has provided 2PN free data
for both the CTT and XCTS methods.

8.4.4 Initial data for orbiting binary neutron stars

For computing initial data corresponding to orbiting binary neutron stars, one must solve equa-
tions for the fluid motion in addition to the Einstein constraints. Basically this amounts to
solving ~∇ · T = 0 [Eq. (5.1)] in the context of helical symmetry. One can then show that a
first integral of motion exists in two cases: (i) the stars are corotating, i.e. the fluid 4-velocity
is colinear to the helical Killing vector (rigid motion), (ii) the stars are irrotational, i.e. the
fluid vorticity vanishes. The most straightforward way to get the first integral of motion is by
means of the Carter-Lichnerowicz formulation of relativistic hydrodynamics, as shown in Sec. 7
of Ref. [143]. Other derivations have been obtained in 1998 by Teukolsky [257] and Shibata
[223].

From the astrophysical point of view, the irrotational motion is much more interesting than
the corotating one, because the viscosity of neutron star matter is far too low to ensure the
synchronization of the stellar spins with the orbital motion. On the other side, the irrotational
state is a very good approximation for neutron stars that are not millisecond rotators. Indeed,
for these stars the spin frequency is much lower than the orbital frequency at the late stages of
the inspiral and thus can be neglected.

The first initial data for binary neutron stars on circular orbits have been computed by
Baumgarte, Cook, Scheel, Shapiro and Teukolsky in 1997 [41, 42] in the corotating case, and
by Bonazzola, Gourgoulhon and Marck in 1999 [64] in the irrotational case. These results were
based on a polytropic equation of state. Since then configurations in the irrotational regime
have been obtained

• for a polytropic equation of state [183, 261, 262, 145, 254, 255];

• for nuclear matter equations of state issued from recent nuclear physics computations
[51, 197];
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• for strange quark matter [198, 179].

All these computation are based on a flat conformal metric [choice (8.126)], by solving the
helically symmetric XCTS system (8.127)-(8.129), supplemented by an elliptic equation for the
velocity potential. Only very recently, configurations based on a non flat conformal metric have
been obtained by Uryu, Limousin, Friedman, Gourgoulhon and Shibata [263]. The conformal
metric is then deduced from a waveless approximation developed by Shibata, Uryu and Friedman
[241] and which goes beyond the IWM approximation.

8.4.5 Initial data for black hole - neutron star binaries

Let us mention briefly that initial data for a mixed binary system, i.e. a system composed of
a black hole and a neutron star, have been obtained very recently by Grandclément [147] and
Taniguchi, Baumgarte, Faber and Shapiro [252, 253]. Codes aiming at computing such systems
have also been presented by Ansorg [19] and Tsokaros and Uryu [260].
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9.1 Introduction

Having investigated the initial data problem in the preceding chapter, the next logical step
is to discuss the evolution problem, i.e. the development (Σt,γ) of initial data (Σ0,γ,K).
This constitutes the integration of the Cauchy problem introduced in Sec. 4.4. As discussed in
Sec. 4.4.1, a key feature of this problem is the freedom of choice for the lapse function N and the
shift vector β, reflecting respectively the choice of foliation (Σt)t∈R and the choice of coordinates
(xi) on each leaf Σt of the foliation. These choices are crucial because they determine the specific
form of the 3+1 Einstein system (4.63)-(4.66) that one has actually to deal with. In particular,
depending of the choice of (N,β), this system can be made more hyperbolic or more elliptic.

Extensive discussions about the various possible choices of foliations and spatial coordinates
can be found in the seminal articles by Smarr and York [247, 276] as well as in the review articles
by Alcubierre [5], Baumgarte and Shapiro [44], and Lehner [174].
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9.2 Choice of foliation

9.2.1 Geodesic slicing

The simplest choice of foliation one might think about is the geodesic slicing , for it corresponds
to a unit lapse:

N = 1 . (9.1)

Since the 4-acceleration a of the Eulerian observers is nothing but the spatial gradient of ln N
[cf. Eq. (3.18)], the choice (9.1) implies a = 0, i.e. the worldlines of the Eulerian observers are
geodesics, hence the name geodesic slicing. Moreover the choice (9.1) implies that the proper
time along these worldlines coincides with the coordinate time t.

We have already used the geodesic slicing to discuss the basics feature of the 3+1 Einstein
system in Sec. 4.4.2. We have also argued there that, due to the tendency of timelike geodesics
without vorticity (as the worldlines of the Eulerian observers are) to focus and eventually cross,
this type of foliation can become pathological within a finite range of t.

Example : A simple example of geodesic slicing is provided by the use of Painlevé-Gullstrand
coordinates (t, R, θ, ϕ) in Schwarzschild spacetime (see e.g. Ref. [185]). These coordinates
are defined as follows: R is nothing but the standard Schwarzschild radial coordinate1,
whereas the Painlevé-Gullstrand coordinate t is related to the Schwarzschild time coordinate
tS by

t = tS + 4m

(√

R

2m
+

1

2
ln

∣
∣
∣
∣
∣

√

R/2m − 1
√

R/2m + 1

∣
∣
∣
∣
∣

)

. (9.2)

The metric components with respect to Painlevé-Gullstrand coordinates are extremely sim-
ple, being given by

gµνdxµdxν = −dt2 +

(

dR +

√

2m

R
dt

)2

+ R2(dθ2 + sin2 θ dϕ2). (9.3)

By comparing with the general line element (4.48), we read on the above expression that
N = 1, βi = (

√

2m/R, 0, 0) and γij = diag(1, R2, R2 sin2 θ). Thus the hypersurfaces
t = const are geodesic slices. Notice that the induced metric γ is flat.

Example : Another example of geodesic slicing, still in Schwarzschild spacetime, is provided
by the time development with N = 1 of the initial data constructed in Secs. 8.2.5 and
8.3.3, namely the momentarily static slice tS = 0 of Schwarzschild spacetime, with topology
R × S2 (Einstein-Rosen bridge). The resulting foliation is depicted in Fig. 9.1. It hits the
singularity at t = πm, reflecting the bad behavior of geodesic slicing.

In numerical relativity, geodesic slicings have been used by Nakamura, Oohara and Kojima
to perform in 1987 the first 3D evolutions of vacuum spacetimes with gravitational waves [193].
However, as discussed in Ref. [233], the evolution was possible only for a pretty limited range of
t, because of the focusing property mentioned above.

1in this chapter, we systematically use the notation R for Schwarzschild radial coordinate (areal radius), leaving
the notation r for other types of radial coordinates, such that the isotropic one [cf. Eq. (6.24)]
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Figure 9.1: Geodesic-slicing evolution from the initial slice t = tS = 0 of Schwarzschild spacetime depicted in
a Kruskal-Szekeres diagram. R stands for Schwarzschild radial coordinate (areal radius), so that R = 0 is the
singularity and R = 2m is the event horizon (figure adapted from Fig. 2a of [247]).

9.2.2 Maximal slicing

A very famous type of foliation is maximal slicing, already encountered in Sec. 6.6 and in
Chap. 8, where it plays a great role in decoupling the constraint equations. The maximal

slicing corresponds to the vanishing of the mean curvature of the hypersurfaces Σt:

K = 0 . (9.4)

The fact that this condition leads to hypersurfaces of maximal volume can be seen as follows.
Consider some hypersurface Σ0 and a closed two-dimensional surface S lying in Σ0 (cf. Fig. 9.2).
The volume of the domain V enclosed in S is

V =

∫

V

√
γ d3x, (9.5)

where γ = det γij is the determinant of the metric γ with respect to some coordinates (xi) used
in Σt. Let us consider a small deformation V ′ of V that keeps the boundary S fixed. V ′ is
generated by a small displacement along a vector field v of every point of V, such that v|S = 0.
Without any loss of generality, we may consider that V ′ lies in a hypersurface Σδt that is a
member of some “foliation” (Σt)t∈R such that Σt=0 = Σ0. The hypersurfaces Σt intersect each
other at S, which violates condition (3.2) in the definition of a foliation given in Sec. 3.2.2,
hence the quotes around the word “foliation”. Let us consider a 3+1 coordinate system (t, xi)
associated with the “foliation” (Σt)t∈R and adapted to S in the sense that the position of S in
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Figure 9.2: Deformation of a volume V delimited by the surface S in the hypersurface Σ0.

these coordinates does not depend upon t. The vector ∂t associated to these coordinates is then
related to the displacement vector v by

v = δt ∂t. (9.6)

Introducing the lapse function N and shift vector β associated with the coordinates (t, xi), the
above relation becomes [cf. Eq. (4.31)] v = δt (Nn + β). Accordingly, the condition v|S = 0
implies

N |S = 0 and β|S = 0. (9.7)

Let us define V (t) as the volume of the domain Vt delimited by S in Σt. It is given by a formula
identical to Eq. (9.5), except of course that the integration domain has to be replaced by Vt.
Moreover, the domains Vt lying at fixed values of the coordinates (xi), we have

dV

dt
=

∫

Vt

∂
√

γ

∂t
d3x. (9.8)

Now, contracting Eq. (4.63) with γij and using Eq. (4.62), we get

γij ∂

∂t
γij = −2NK + 2Diβ

i. (9.9)

From the general rule (6.64) for the variation of a determinant,

γij ∂

∂t
γij =

∂

∂t
(ln γ) =

2√
γ

∂
√

γ

∂t
, (9.10)

so that Eq. (9.9) becomes

1√
γ

∂
√

γ

∂t
= −NK + Diβ

i . (9.11)

Let us use this relation to express Eq. (9.8) as

dV

dt
=

∫

Vt

[
−NK + Diβ

i
]√

γ d3x. (9.12)
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Now from the Gauss-Ostrogradsky theorem,
∫

Vt

Diβ
i√γ d3x =

∮

S
βisi

√
q d2y, (9.13)

where s is the unit normal to S lying in Σt, q is the induced metric on S, (ya) are coordinates
on S and q = det qab. Since β vanishes on S [property (9.7)], the above integral is identically
zero and Eq. (9.12) reduces to

dV

dt
= −

∫

Vt

NK
√

γ d3x . (9.14)

We conclude that if K = 0 on Σ0, the volume V enclosed in S is extremal with respect to
variations of the domain delimited by S, provided that the boundary of the domain remains S.
In the Euclidean space, such an extremum would define a minimal surface, the corresponding
variation problem being a Plateau problem [named after the Belgian physicist Joseph Plateau
(1801-1883)]: given a closed contour S (wire loop), find the surface V (soap film) of minimal
area (minimal surface tension energy) bounded by S. However, in the present case of a metric
of Lorentzian signature, it can be shown that the extremum is actually a maximum, hence the
name maximal slicing. For the same reason, a timelike geodesic between two points in spacetime
is the curve of maximum length joining these two points.

Demanding that the maximal slicing condition (9.4) holds for all hypersurfaces Σt, once
combined with the evolution equation (6.90) for K, yields the following elliptic equation for the
lapse function:

DiD
iN = N

[
4π(E + S) + KijK

ij
]

. (9.15)

Remark : We have already noticed that at the Newtonian limit, Eq. (9.15) reduces to the
Poisson equation for the gravitational potential Φ (cf. Sec. 6.5.1). Therefore the maximal
slicing can be considered as a natural generalization to the relativistic case of the canonical
slicing of Newtonian spacetime by hypersurfaces of constant absolute time. In this respect,
let us notice that the “beyond Newtonian” approximation of general relativity constituted
by the Isenberg-Wilson-Mathews approach discussed in Sec. 6.6 is also based on maximal
slicing.

Example : In Schwarzschild spacetime, the standard Schwarzschild time coordinate t defines
maximal hypersurfaces Σt, which are spacelike for R > 2m (R being Schwarzschild radial
coordinate). Indeed these hypersurfaces are totally geodesic: K = 0 (cf. § 2.4.3), so
that, in particular, K = trγK = 0. This maximal slicing is shown in Fig. 9.3. The
corresponding lapse function expressed in terms of the isotropic radial coordinate r is

N =
(

1 − m

2r

)(

1 +
m

2r

)−1
. (9.16)

As shown in Sec. 8.3.3, the above expression can be derived by means of the XCTS formal-
ism. Notice that the foliation (Σt)t∈R does not penetrate under the event horizon (R = 2m)
and that the lapse is negative for r < m/2 (cf. discussion in Sec. 8.3.3 about negative lapse
values).
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Figure 9.3: Kruskal-Szekeres diagram showing the maximal slicing of Schwarzschild spacetime defined by the
standard Schwarzschild time coordinate t. As for Fig. 9.1, R stands for Schwarzschild radial coordinate (areal
radius), so that R = 0 is the singularity and R = 2m is the event horizon, whereas r stands for the isotropic
radial coordinate [cf. Eq. (8.118)].

Besides its nice geometrical definition, an interesting property of maximal slicing is the
singularity avoidance. This is related to the fact that the set of the Eulerian observers of
a maximal foliation define an incompressible flow : indeed, thanks to Eq. (2.77), the condition
K = 0 is equivalent to the incompressibility condition

∇ · n = 0 (9.17)

for the 4-velocity field n of the Eulerian observers. If we compare with the Eulerian observers
of geodesic slicings (Sec. 9.2.1), who have the tendency to squeeze, we may say that maximal-
slicing Eulerian observers do not converge because they are accelerating (DN 6= 0) in order
to balance the focusing effect of gravity. Loosely speaking, the incompressibility prevents the
Eulerian observers from converging towards the central singularity if the latter forms during the
time evolution. This is illustrated by the following example in Schwarzschild spacetime.

Example : Let us consider the time development of the initial data constructed in Secs. 8.2.5
and 8.3.3, namely the momentarily static slice tS = 0 of Schwarzschild spacetime (with the
Einstein-Rosen bridge). A first maximal slicing development of these initial data is that
based on Schwarzschild time coordinate tS and discussed above (Fig. 9.3). The correspond-
ing lapse function is given by Eq. (9.16) and is antisymmetric about the minimal surface
r = m/2 (throat). There exists a second maximal-slicing development of the same initial
data but with a lapse which is symmetric about the throat. It has been found in 1973 by
Estabrook, Wahlquist, Christensen, DeWitt, Smarr and Tsiang [118], as well as Reinhart
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Figure 9.4: Kruskal-Szekeres diagram depicting the maximal slicing of Schwarzschild spacetime defined by the
Reinhart/Estabrook et al. time function t [cf. Eq. (9.18)]. As for Figs. 9.1 and 9.3, R stands for Schwarzschild
radial coordinate (areal radius), so that R = 0 is the singularity and R = 2m is the event horizon, whereas r
stands for the isotropic radial coordinate. At the throat (minimal surface), R = RC where RC is the function of
t defined below Eq. (9.20) (figure adapted from Fig. 1 of Ref. [118]).

[211]. The corresponding time coordinate t is different from Schwarzschild time coordinate
tS, except for t = 0 (initial slice tS = 0). In the coordinates (xα) = (t, R, θ, ϕ), where R is
Schwarzschild radial coordinate, the metric components obtained by Estabrook et al. [118]
(see also Refs. [50, 48, 210]) take the form

gµνdxµdxν = −N2dt2 +

(

1 − 2m

R
+

C(t)2

R4

)−1(

dR +
C(t)

R2
N dt

)2

+ R2(dθ2 + sin2 θdϕ2),

(9.18)
where

N = N(R, t) =

√

1 − 2m

R
+

C(t)2

R4

{

1 +
dC

dt

∫ +∞

R

x4 dx

[x4 − 2mx3 + C(t)2]3/2

}

, (9.19)

and C(t) is the function of t defined implicitly by

t = −C

∫ +∞

RC

dx

(1 − 2m/x)
√

x4 − 2mx3 + C2
, (9.20)

RC being the unique root of the polynomial PC(x) := x4 − 2mx3 + C2 in the interval
(3m/2, 2m]. C(t) varies from 0 at t = 0 to C∞ := (3

√
3/4)m2 as t → +∞. Accordingly,
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RC decays from 2m (t = 0) to 3m/2 (t → +∞). Actually, for C = C(t), RC represents
the smallest value of the radial coordinate R in the slice Σt. This maximal slicing of
Schwarzschild spacetime is represented in Fig. 9.4. We notice that, as t → +∞, the
slices Σt accumulate on a limiting hypersurface: the hypersurface R = 3m/2 (let us recall
that for R < 2m, the hypersurfaces R = const are spacelike and are thus eligible for a 3+1
foliation). Actually, it can be seen that the hypersurface R = 3m/2 is the only hypersurface
R = const which is spacelike and maximal [48]. If we compare with Fig. 9.1, we notice
that, contrary to the geodesic slicing, the present foliation never encounters the singularity.

The above example illustrates the singularity-avoidance property of maximal slicing: while
the entire spacetime outside the event horizon is covered by the foliation, the hypersurfaces “pile
up” in the black hole region so that they never reach the singularity. As a consequence, in that
region, the proper time (of Eulerian observers) between two neighbouring hypersurfaces tends
to zero as t increases. According to Eq. (3.15), this implies

N → 0 as t → +∞. (9.21)

This “phenomenon” is called collapse of the lapse. Beyond the Schwarzschild case discussed
above, the collapse of the lapse is a generic feature of maximal slicing of spacetimes describing
black hole formation via gravitational collapse. For instance, it occurs in the analytic solution
obtained by Petrich, Shapiro and Teukolsky [200] for the maximal slicing of the Oppenheimer-
Snyder spacetime (gravitational collapse of a spherically symmetric homogeneous ball of pres-
sureless matter).

In numerical relativity, maximal slicing has been used in the computation of the (axisymmet-
ric) head-on collision of two black holes by Smarr, Čadež and Eppley in the seventies [245, 244],
as well as in computations of axisymmetric gravitational collapse by Nakamura and Sato (1981)
[191, 194], Stark and Piran (1985) [249] and Evans (1986) [119]. Actually Stark and Piran used
a mixed type of foliation introduced by Bardeen and Piran [36]: maximal slicing near the origin
(r = 0) and polar slicing far from it. The polar slicing is defined in spherical-type coordinates
(xi) = (r, θ, ϕ) by

Kθ
θ + Kϕ

ϕ = 0, (9.22)

instead of Kr
r + Kθ

θ + Kϕ
ϕ = 0 for maximal slicing.

Whereas maximal slicing is a nice choice of foliation, with a clear geometrical meaning, a
natural Newtonian limit and a singularity-avoidance feature, it has not been much used in 3D
(no spatial symmetry) numerical relativity. The reason is a technical one: imposing maximal
slicing requires to solve the elliptic equation (9.15) for the lapse and elliptic equations are usually
CPU-time consuming, except if one make uses of fast elliptic solvers [148, 63]. For this reason,
most of the recent computations of binary black hole inspiral and merger have been performed
with the 1+log slicing, to be discussed in Sec. 9.2.4. Nevertheless, it is worth to note that
maximal slicing has been used for the first grazing collisions of binary black holes, as computed
by Brügmann (1999) [68].

To avoid the resolution of an elliptic equation while preserving most of the good properties
of maximal slicing, an approximate maximal slicing has been introduced in 1999 by Shibata
[224]. It consists in transforming Eq. (9.15) into a parabolic equation by adding a term of the
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type ∂N/∂λ in the right-hand side and to compute the “λ-evolution” for some range of the
parameter λ. This amounts to resolve a heat like equation. Generically the solution converges
towards a stationary one, so that ∂N/∂λ → 0 and the original elliptic equation (9.15) is solved.
The approximate maximal slicing has been used by Shibata, Uryu and Taniguchi to compute
the merger of binary neutron stars [226, 239, 240, 237, 238, 236], as well as by Shibata and
Sekiguchi for 2D (axisymmetric) gravitational collapses [227, 228, 221] or 3D ones [234].

9.2.3 Harmonic slicing

Another important category of time slicing is deduced from the standard harmonic or De

Donder condition for the spacetime coordinates (xα):

�gxα = 0, (9.23)

where �g := ∇µ∇µ is the d’Alembertian associated with the metric g and each coordinate
xα is considered as a scalar field on M. Harmonic coordinates have been introduced by De
Donder in 1921 [106] and have played an important role in theoretical developments, notably in
Choquet-Bruhat’s demonstration (1952, [127]) of the well-posedness of the Cauchy problem for
3+1 Einstein equations (cf. Sec. 4.4.4).

The harmonic slicing is defined by requiring that the harmonic condition holds for the
x0 = t coordinate, but not necessarily for the other coordinates, leaving the freedom to choose
any coordinate (xi) in each hypersurface Σt:

�gt = 0 . (9.24)

Using the standard expression for the d’Alembertian, we get

1√−g

∂

∂xµ

(√−ggµν ∂t

∂xν
︸︷︷︸

=δ0
ν

)

= 0, (9.25)

i.e.
∂

∂xµ

(√−ggµ0
)

= 0. (9.26)

Thanks to the relation
√−g = N

√
γ [Eq. (4.55)], this equation becomes

∂

∂t

(
N
√

γg00
)

+
∂

∂xi

(
N
√

γgi0
)

= 0. (9.27)

From the expression of gαβ given by Eq. (4.49), g00 = −1/N2 and gi0 = βi/N2. Thus

− ∂

∂t

(√
γ

N

)

+
∂

∂xi

(√
γ

N
βi

)

= 0. (9.28)

Expanding and reordering gives

∂N

∂t
− βi ∂N

∂xi
− N

[
1√
γ

∂
√

γ

∂t
− 1√

γ

∂

∂xi

(√
γβi
)

︸ ︷︷ ︸

=Diβi

]

= 0. (9.29)
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Thanks to Eq. (9.11), the term in brackets can be replaced by −NK, so that the harmonic
slicing condition becomes

(
∂

∂t
− Lβ

)

N = −KN2 . (9.30)

Thus we get an evolution equation for the lapse function. This contrasts with Eq. (9.1) for
geodesic slicing and Eq. (9.15) for maximal slicing.

The harmonic slicing has been introduced by Choquet-Bruhat and Ruggeri (1983) [90] as
a way to put the 3+1 Einstein system in a hyperbolic form. It has been considered more
specifically in the context of numerical relativity by Bona and Masso (1988) [60]. For a review
and more references see Ref. [213].

Remark : The harmonic slicing equation (9.30) was already laid out by Smarr and York in
1978 [246], as a part of the expression of de Donder coordinate condition in terms of 3+1
variables.

Example : In Schwarzschild spacetime, the hypersurfaces of constant standard Schwarzschild
time coordinate t = tS and depicted in Fig. 9.3 constitute some harmonic slicing, in addi-
tion to being maximal (cf. Sec. 9.2.2). Indeed, using Schwarzschild coordinates (t, R, θ, ϕ)
or isotropic coordinates (t, r, θ, ϕ), we have ∂N/∂t = 0 and β = 0. Since K = 0 for these
hypersurfaces, we conclude that the harmonic slicing condition (9.30) is satisfied.

Example : The above slicing does not penetrate under the event horizon. A harmonic slicing
of Schwarzschild spacetime (and more generally Kerr-Newman spacetime) which passes
smoothly through the event horizon has been found by Bona and Massó [60], as well as
Cook and Scheel [96]. It is given by a time coordinate t that is related to Schwarzschild
time tS by

t = tS + 2m ln

∣
∣
∣
∣
1 − 2m

R

∣
∣
∣
∣
, (9.31)

where R is Schwarzschild radial coordinate (areal radius). The corresponding expression
of Schwarzschild metric is [96]

gµνdxµdxν = −N2dt2 +
1

N2

(

dR +
4m2

R2
N2 dt

)2

+ R2(dθ2 + sin2 θdϕ2), (9.32)

where

N =

[(

1 +
2m

R

)(

1 +
4m2

R2

)]−1/2

. (9.33)

Notice that all metric coefficients are regular at the event horizon (R = 2m). This har-
monic slicing is represented in a Kruskal-Szekeres diagram in Fig. 1 of Ref. [96]. It is
clear from that figure that the hypersurfaces Σt never hit the singularity (contrary to those
of the geodesic slicing shown in Fig. 9.1), but they come arbitrary close to it as t → +∞.

We infer from the above example that the harmonic slicing has some singularity avoidance
feature, but weaker than that of maximal slicing: for the latter, the hypersurfaces Σt never
come close to the singularity as t → +∞ (cf. Fig. 9.4). This has been confirmed by means of
numerical computations by Shibata and Nakamura [233].
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Remark : If one uses normal coordinates, i.e. spatial coordinates (xi) such that β = 0, then
the harmonic slicing condition in the form (9.28) is easily integrated to

N = C(xi)
√

γ, (9.34)

where C(xi) is an arbitrary function of the spatial coordinates, which does not depend upon
t. Equation (9.34) is as easy to implement as the geodesic slicing condition (N = 1). It is
related to the conformal time slicing introduced by Shibata and Nakamura [232].

9.2.4 1+log slicing

Bona, Massó, Seidel and Stela (1995) [61] have generalized the harmonic slicing condition (9.30)
to (

∂

∂t
− Lβ

)

N = −KN2f(N), (9.35)

where f is an arbitrary function. The harmonic slicing corresponds to f(N) = 1. The geodesic
slicing also fulfills this relation with f(N) = 0. The choice f(N) = 2/N leads to

(
∂

∂t
− Lβ

)

N = −2KN . (9.36)

Substituting Eq. (9.11) for −KN , we obtain
(

∂

∂t
− Lβ

)

N =
∂

∂t
ln γ − 2Diβ

i. (9.37)

If normal coordinates are used, β = 0 and the above equation reduces to

∂N

∂t
=

∂

∂t
ln γ, (9.38)

a solution of which is
N = 1 + ln γ. (9.39)

For this reason, a foliation whose lapse function obeys Eq. (9.36) is called a 1+log slicing . The
original 1+log condition (9.39) has been introduced by Bernstein (1993) [54] and Anninos et al.
(1995) [17] (see also Ref. [62]). Notice that, even when β 6= 0, we still define the 1+log slicing
by condition (9.36), although the “1+log” relation (9.39) does no longer hold.

Remark : As for the geodesic slicing [Eq. (9.1)], the harmonic slicing with zero shift [Eq. (9.34)],
the original 1+log slicing with zero shift [Eq. (9.39)] belongs to the family of algebraic

slicings [204, 44]: the determination of the lapse function does not require to solve any
equation. It is therefore very easy to implement.

The 1+log slicing has stronger singularity avoidance properties than harmonic slicing: it has
been found to “mimic” maximal slicing [17].

Alcubierre has shown in 1997 [4] that for any slicing belonging to the family (9.35), and in
particular for the harmonic and 1+log slicings, some smooth initial data (Σ0,γ) can be found
such that the foliation (Σt) become singular for a finite value of t.
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Remark : The above finding does not contradict the well-posedness of the Cauchy problem
established by Choquet-Bruhat in 1952 [127] for generic smooth initial data by means of
harmonic coordinates (which define a harmonic slicing) (cf. Sec. 4.4.4). Indeed it must be
remembered that Choquet-Bruhat’s theorem is a local one, whereas the pathologies found
by Alcubierre develop for a finite value of time. Moreover, these pathologies are far from
being generic, as the tremendous successes of the 1+log slicing in numerical relativity have
shown (see below).

The 1+log slicing has been used the 3D investigations of the dynamics of relativistic stars
by Font et al. in 2002 [125]. It has also been used in most of the recent computations of binary
black hole inspiral and merger : Baker et al. [32, 33, 264], Campanelli et al. [73, 74, 75, 76],
Sperhake [248], Diener et al. [111], Brügmann et al. [69, 184], and Herrmann et al. [159, 158].
The works [111] and [159] and The first three groups employ exactly Eq. (9.36), whereas the
last two groups are using a modified (“zero-shift”) version:

∂N

∂t
= −2KN. (9.40)

The recent 3D gravitational collapse calculations of Baiotti et al. [28, 29, 30] are based on a
slight modification of the 1+log slicing: instead of Eq. (9.36), these authors have used

(
∂

∂t
− Lβ

)

N = −2N(K − K0), (9.41)

where K0 is the value of K at t = 0.

Remark : There is a basic difference between maximal slicing and the other types of foliations
presented above (geodesic, harmonic and 1+log slicings): the property of being maximal is
applicable to a single hypersurface Σ0, whereas the property of being geodesic, harmonic or
1+log are meaningful only for a foliation (Σt)t∈R. This is reflected in the basic definition
of these slicings: the maximal slicing is defined from the extrinsic curvature tensor only
(K = 0), which characterizes a single hypersurface (cf. Chap. 2), whereas the definitions
of geodesic, harmonic and 1+log slicings all involve the lapse function N , which of course
makes sense only for a foliation (cf. Chap. 3).

9.3 Evolution of spatial coordinates

Having discussed the choice of the foliation (Σt)t∈R, let us turn now to the choice of the coordi-
nates (xi) in each hypersurface Σt. As discussed in Sec. 4.2.4, this is done via the shift vector β.
More precisely, once some coordinates (xi) are set in the initial slice Σ0, the shift vector governs
the propagation of these coordinates to all the slices Σt.

9.3.1 Normal coordinates

As for the lapse choice N = 1 (geodesic slicing, Sec. 9.2.1), the simplest choice for the shift
vector is to set it to zero:

β = 0 . (9.42)
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For this choice, the lines xi = const are normal to the hypersurfaces Σt (cf. Fig. 4.1), hence
the name normal coordinates. The alternative name is Eulerian coordinates, defining the
so-called Eulerian gauge [35]. This is of course justified by the fact that the lines xi = const
are then the worldlines of the Eulerian observers introduced in Sec. 3.3.3.

Besides their simplicity, an advantage of normal coordinates is to be as regular as the foliation
itself: they cannot introduce some pathology per themselves. On the other hand, the major
drawback of these coordinates is that they may lead to a large coordinate shear, resulting in
large values of the metric coefficients γij. This is specially true if rotation is present. For
instance, in Kerr or rotating star spacetimes, the field lines of the stationary Killing vector ξ

are not orthogonal to the hypersurfaces t = const. Therefore, if one wishes to have coordinates
adapted to stationarity, i.e. to have ∂t = ξ, one must allow for β 6= 0.

Despite of the shear problem mentioned above, normal coordinates have been used because of
their simplicity in early treatments of two famous axisymmetric problems in numerical relativity:
the head-on collision of black holes by Smarr, Eppley and Čadež in 1976-77 [245, 244] and the
gravitational collapse of a rotating star by Nakamura in 1981 [191, 194]. More recently, normal
coordinates have also been used in the 3D evolution of gravitational waves performed by Shibata
and Nakamura (1995) [233] and Baumgarte and Shapiro (1999) [43], as well as in the 3D grazing
collisions of binary black holes computed by Brügmann (1999) [68] and Alcubierre et al. (2001)
[6].

9.3.2 Minimal distortion

A very well motivated choice of spatial coordinates has been introduced in 1978 by Smarr and
York [246, 247] (see also Ref. [276]). As discussed in Sec. 6.1, the physical degrees of freedom of
the gravitational field are carried by the conformal 3-metric γ̃. The evolution of the latter with
respect to the coordinates (t, xi) is given by the derivative ˙̃γ := L∂t γ̃, the components of which
are

˙̃γij =
∂γ̃ij

∂t
. (9.43)

Given a foliation (Σt)t∈R, the idea of Smarr and York is to choose the coordinates (xi), and hence
the vector ∂t, in order to minimize this time derivative. There is not a unique way to minimize
˙̃γij ; this can be realized by counting the degrees of freedom: ˙̃γij has 5 independent components2

and, for a given foliation, only 3 degrees of freedom can be controled via the 3 coordinates (xi).
One then proceeds as follows. First one notices that ˙̃γ is related to the distortion tensor Q,
the latter being defined as the trace-free part of the time derivative of the physical metric γ:

Q := L∂tγ − 1

3
(trγL∂tγ)γ, (9.44)

or in components,

Qij =
∂γij

∂t
− 1

3
γkl ∂γkl

∂t
γij . (9.45)

2as a symmetric 3 × 3 matrix, ˙̃γij has a priori 6 components, but one degree of freedom is lost in the demand

det γ̃ij = det fij [Eq. (6.19)], which implies det ˙̃γij = 0 via Eq. (6.7).
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Figure 9.5: Distortion of a spatial domain defined by fixed values of the coordinates (xi).

Q measures the change in shape from Σt to Σt+δt of any spatial domain V which lies at fixed
values of the coordinates (xi) (the evolution of V is then along the vector ∂t, cf. Fig. 9.5).
Thanks to the trace removal, Q does not take into account the change of volume, but only the
change in shape (shear). From the law (6.64) of variation of a determinant,

γkl ∂γkl

∂t
=

∂

∂t
ln γ = 12

∂

∂t
ln Ψ +

∂

∂t
ln f

︸ ︷︷ ︸

=0

= 12
∂

∂t
ln Ψ, (9.46)

where we have used the relation (6.15) between the determinant γ and the conformal factor Ψ,
as well as the property (6.7). Thus we may rewrite Eq. (9.45) as

Qij =
∂γij

∂t
− 4

∂

∂t
ln Ψ γij =

∂

∂t
(Ψ4γ̃ij) − 4Ψ3 ∂Ψ

∂t
γ̃ij = Ψ4 ∂γ̃ij

∂t
. (9.47)

Hence the relation between the distortion tensor and the time derivative of the conformal metric:

Q = Ψ4 ˙̃γ. (9.48)

The rough idea would be to choose the coordinates (xi) in order to minimize Q. Taking into
account that it is symmetric and traceless, Q has 5 independent components. Thus it cannot be
set identically to zero since we have only 3 degrees of freedom in the choice of the coordinates
(xi). To select which part of Q to set to zero, let us decompose it into a longitudinal part and
a TT part, in a manner similar to Eq. (8.9):

Qij = (LX)ij + QTT
ij . (9.49)

LX denotes the conformal Killing operator associated with the metric γ and acting on some
vector field X (cf. Appendix B) 3:

(LX)ij := DiXj + DjXi −
2

3
DkX

k γij (9.50)

3In Sec. 6.6, we have also used the notation L for the conformal Killing operator associated with the flat metric
f , but no confusion should arise in the present context.
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and QTT
ij is both traceless and transverse (i.e. divergence-free) with respect to the metric γ:

DjQTT
ij = 0. X is then related to the divergence of Q by Dj(LX)ij = DjQij . It is legitimate to

relate the TT part to the dynamics of the gravitational field and to attribute the longitudinal
part to the change in γij which arises because of the variation of coordinates from Σt to Σt+δt.
This longitudinal part has 3 degrees of freedom (the 3 components of the vector X) and we
might set it to zero by some judicious choice of the coordinates (xi). The minimal distortion

coordinates are thus defined by the requirement X = 0 or

Qij = QTT
ij , (9.51)

i.e.
DjQij = 0 . (9.52)

Let us now express Q in terms of the shift vector to turn the above condition into an equation
for the evolution of spatial coordinates. By means of Eqs. (4.63) and (9.9), Eq. (9.45) becomes

Qij = −2NKijLβ γij + −1

3

(

−2NK + 2Dkβ
k
)

γij, (9.53)

i.e. (since Lβ γij = Diβj + Djβi)

Qij = −2NAij + (Lβ)ij , (9.54)

where we let appear the trace-free part A of the extrinsic curvature K [Eq. (6.53)]. If we insert
this expression into the minimal distortion requirement (9.52), we get

− 2NDjA
ij − 2AijDjN + Dj(Lβ)ij = 0. (9.55)

Let then use the momentum constraint (4.66) to express the divergence of A as

DjA
ij = 8πpi +

2

3
DiK. (9.56)

Besides, we recognize in Dj(Lβ)ij the conformal vector Laplacian associated with the metric γ,
so that we can write [cf. Eq. (B.11)]

Dj(Lβ)ij = DjD
jβi +

1

3
DiDjβ

j + Ri
jβ

j , (9.57)

where R is the Ricci tensor associated with γ. Thus we arrive at

DjD
jβi +

1

3
DiDjβ

j + Ri
jβ

j = 16πNpi +
4

3
NDiK + 2AijDjN . (9.58)

This is the elliptic equation on the shift vector that one has to solve in order to enforce the
minimal distortion.

Remark : For a constant mean curvature (CMC) slicing, and in particular for a maximal
slicing, the term DiK vanishes and the above equation is slightly simplified. Incidentally,
this is the form originally derived by Smarr and York (Eq. (3.27) in Ref. [246]).
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Another way to introduce minimal distortion amounts to minimizing the integral

S =

∫

Σt

QijQ
ij√γ d3x (9.59)

with respect to the shift vector β, keeping the slicing fixed (i.e. fixing γ, K and N). Indeed, if
we replace Q by its expression (9.54), we get

S =

∫

Σt

[
4N2AijA

ij − 4NAij(Lβ)ij + (Lβ)ij(Lβ)ij
]√

γ d3x. (9.60)

At fixed values of γ, K and N , δN = 0, δAij = 0 and δ(Lβ)ij = (Lδβ)ij , so that the variation
of S with respect to β is

δS =

∫

Σt

[
−4NAij(Lδβ)ij + 2(Lβ)ij(Lδβ)ij

]√
γd3x = 2

∫

Σt

Qij(Lδβ)ij
√

γ d3x. (9.61)

Now, since Q is symmetric and traceless, Qij(Lδβ)ij = Qij(D
iδβj + Djδβi − 2/3Dkδβk γij) =

Qij(D
iδβj + Djδβi) = 2QijD

iδβj . Hence

δS = 4

∫

Σt

QijD
iδβj √γ d3x

= 4

∫

Σt

[
Di
(
Qijδβ

j
)
− DiQij δβj

] √
γ d3x

= 4

∮

∂Σt

Qijδβ
jsi √q d2y − 4

∫

Σt

DiQij δβj √γ d3x (9.62)

Assuming that δβi = 0 at the boundaries of Σt (for instance at spatial infinity), we deduce from
the above relation that δS = 0 for any variation of the shift vector if and only if DiQij = 0.
Hence we recover condition (9.52).

In stationary spacetimes, an important property of the minimal distortion gauge is to be
fulfilled by coordinates adapted to the stationarity (i.e. such that ∂t is a Killing vector): it is
immediate from Eq. (9.44) that Q = 0 when ∂t is a symmetry generator, so that condition (9.52)
is trivially satisfied. Another nice feature of the minimal distortion gauge is that in the weak field
region (radiative zone), it includes the standard TT gauge of linearized gravity [246]. Actually
Smarr and York [246] have advocated for maximal slicing combined with minimal distortion as a
very good coordinate choice for radiative spacetimes, calling such choice the radiation gauge.

Remark : A “new minimal distortion” gauge has been introduced in 2006 by Jantzen and York
[164]. It corrects the time derivative of γ̃ in the original minimal distortion condition by
the lapse function N [cf. relation (3.15) between the coordinate time t and the Eulerian
observer’s proper time τ ], i.e. one requires

Dj

(
1

N
Qij

)

= 0 (9.63)



9.3 Evolution of spatial coordinates 167

instead of (9.52). This amounts to minimizing the integral

S′ =

∫

Σt

(N−1Qij)(N
−1Qij)

√−g d3x (9.64)

with respect to the shift vector. Notice the spacetime measure
√−g = N

√
γ instead of the

spatial measure
√

γ in Eq. (9.59).

The minimal distortion condition can be expressed in terms of the time derivative of the
conformal metric by combining Eqs. (9.48) and (9.52):

Dj(Ψ4 ˙̃γij) = 0 . (9.65)

Let us write this relation in terms of the connection D̃ (associated with the metric γ̃) instead
of the connection D (associated with the metric γ). To this purpose, let us use Eq. (6.81)
which relates the D-divergence of a traceless symmetric tensor to its D̃-divergence: since Qij is
traceless and symmetric, we obtain

DjQ
ij = Ψ−10D̃j

(
Ψ10Qij

)
. (9.66)

Now Qij = γikγjlQkl = Ψ−8γ̃ikγ̃jlQkl = Ψ−4γ̃ikγ̃jl ˙̃γkl; hence

DjQ
ij = Ψ−10D̃j

(

Ψ6γ̃ikγ̃jl ˙̃γkl

)

= Ψ−10γ̃ikD̃l
(
Ψ6 ˙̃γkl

)
. (9.67)

The minimal distortion condition is therefore

D̃j(Ψ6 ˙̃γij) = 0 . (9.68)

9.3.3 Approximate minimal distortion

In view of Eq. (9.68), it is natural to consider the simpler condition

D̃j ˙̃γij = 0, (9.69)

which of course differs from the true minimal distortion (9.68) by a term 6 ˙̃γijD̃
j ln Ψ. Nakamura

(1994) [192, 199] has then introduced the pseudo-minimal distortion condition by replacing
(9.69) by

Dj ˙̃γij = 0 , (9.70)

where D is the connection associated with the flat metric f .
An alternative has been introduced by Shibata (1999) [225] as follows. Starting from

Eq. (9.69), let us express ˙̃γij in terms of A and β: from Eq. (8.88), we deduce that

2NÃij = γ̃ikγ̃jl

[

˙̃γ
kl

+ (L̃β)kl
]

= γ̃jl

[
∂

∂t
(γ̃ikγ̃

kl

︸ ︷︷ ︸

=δl
i

) − γ̃kl ∂γ̃ik

∂t
+ γ̃ik(L̃β)kl

]

= − ˙̃γij + γ̃ikγ̃jl(L̃β)kl, (9.71)
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where Ãij := γ̃ikγ̃jlÃ
kl = Ψ−4Aij . Equation (9.69) becomes then

D̃j
[

γ̃ikγ̃jl(L̃β)kl − 2NÃij

]

= 0, (9.72)

or equivalently (cf. Sec. B.2.1),

D̃jD̃
jβi +

1

3
D̃iD̃jβ

j + R̃i
jβ

j − 2ÃijD̃jN − 2ND̃jÃ
ij = 0. (9.73)

We can express D̃jÃ
ij via the momentum constraint (6.110) and get

D̃jD̃
jβi +

1

3
D̃iD̃jβ

j + R̃i
jβ

j − 2ÃijD̃jN + 4N

[

3ÃijD̃j ln Ψ − 1

3
D̃iK − 4πΨ4pi

]

= 0. (9.74)

At this stage, Eq. (9.74) is nothing but a rewriting of Eq. (9.69) as an elliptic equation for
the shift vector. Shibata [225] then proposes to replace in this equation the conformal vector
Laplacian relative to γ̃ and acting on β by the conformal vector Laplacian relative to the flat
metric f , thereby writing

DjDjβi +
1

3
DiDjβ

j − 2ÃijD̃jN + 4N

[

3ÃijD̃j ln Ψ − 1

3
D̃iK − 4πΨ4pi

]

= 0. (9.75)

The choice of coordinates defined by solving Eq. (9.75) instead of (9.58) is called approximate

minimal distortion.

The approximate minimal distortion has been used by Shibata and Uryu [239, 240] for their
first computations of the merger of binary neutron stars, as well as by Shibata, Baumgarte
and Shapiro for computing the collapse of supramassive neutron stars at the mass-shedding
limit (Keplerian angular velocity) [229] and for studying the dynamical bar-mode instability
in differentially rotating neutron stars [230]. It has also been used by Shibata [227] to devise
a 2D (axisymmetric) code to compute the long-term evolution of rotating neutron stars and
gravitational collapse.

9.3.4 Gamma freezing

The Gamma freezing prescription for the evolution of spatial coordinates is very much related
to Nakamura’s pseudo-minimal distortion (9.70): it differs from it only in the replacement of Dj

by Dj and ˙̃γij by ˙̃γ
ij

:= ∂γ̃ij/∂t:

Dj
˙̃γ
ij

= 0 . (9.76)

The name Gamma freezing is justified as follows: since ∂/∂t and D commute [as a consequence
of (6.7)], Eq. (9.76) is equivalent to

∂

∂t

(
Dj γ̃

ij
)

= 0. (9.77)
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Now, expressing the covariant derivative Dj in terms of the Christoffel symbols Γ̄i
jk of the

metric f with respect to the coordinates (xi), we get

Dj γ̃
ij =

∂γ̃ij

∂xj
+ Γ̄i

jkγ̃
kj + Γ̄j

jk
︸︷︷︸

= 1
2

∂

∂xk ln f

γ̃ik

=
∂γ̃ij

∂xj
+ Γ̃i

jkγ̃
kj +

(

Γ̄i
jk − Γ̃i

jk

)

γ̃kj +
1

2

∂

∂xk
ln γ̃

︸ ︷︷ ︸

=Γ̃j
jk

γ̃ik

=
∂γ̃ij

∂xj
+ Γ̃i

jkγ̃
kj + Γ̃j

jkγ̃
ik

︸ ︷︷ ︸

=D̃j γ̃ij=0

+
(

Γ̄i
jk − Γ̃i

jk

)

γ̃kj

= γ̃jk
(

Γ̄i
jk − Γ̃i

jk

)

, (9.78)

where Γ̃i
jk denote the Christoffel symbols of the metric γ̃ with respect to the coordinates (xi)

and we have used γ̃ = f [Eq. (6.19)] to write the second line. If we introduce the notation

Γ̃i := γ̃jk
(

Γ̃i
jk − Γ̄i

jk

)

, (9.79)

then the above relation becomes
Dj γ̃

ij = −Γ̃i . (9.80)

Remark : If one uses Cartesian-type coordinates, then Γ̄i
jk = 0 and the Γ̃i’s reduce to the con-

tracted Christoffel symbols introduced by Baumgarte and Shapiro [43] [cf. their Eq. (21)].
In the present case, the Γ̃i’s are the components of a vector field Γ̃ on Σt, as it is clear from
relation (9.80), or from expression (9.79) if one remembers that, although the Christoffel
symbols are not the components of any tensor field, the differences between two sets of
them are. Of course the vector field Γ̃ depends on the choice of the background metric f .

By combining Eqs. (9.80) and (9.77), we see that the Gamma freezing condition is equivalent to

∂Γ̃i

∂t
= 0 , (9.81)

hence the name Gamma freezing : for such a choice, the vector Γ̃ does not evolve, in the sense that
L∂tΓ̃ = 0. The Gamma freezing prescription has been introduced by Alcubierre and Brügmann
in 2001 [7], in the form of Eq. (9.81).

Let us now derive the equation that the shift vector must obey in order to enforce the Gamma
freezing condition. If we express the Lie derivative in the evolution equation (6.106) for γ̃ij in
terms of the covariant derivative D [cf. Eq. (A.6)], we get

˙̃γ
ij

= 2NÃij + βkDkγ̃
ij − γ̃kjDkβ

i − γ̃ikDkβ
j +

2

3
Dkβ

k γ̃ij . (9.82)



170 Choice of foliation and spatial coordinates

Taking the flat-divergence of this relation and using relation (9.80) (with the commutation
property of ∂/∂t and D) yields

∂Γ̃i

∂t
= = −2NDjÃ

ij − 2AijDjN + βkDkΓ̃
i − Γ̃kDkβ

i +
2

3
Γ̃iDkβ

k

γ̃jkDjDkβ
i +

1

3
γ̃ijDjDkβ

k. (9.83)

Now, we may use the momentum constraint (6.110) to express DjÃ
ij :

D̃jÃ
ij = −6ÃijD̃j lnΨ +

2

3
D̃iK + 8πΨ4pi, (9.84)

with
D̃jÃ

ij = DjÃ
ij +

(

Γ̃i
jk − Γ̄i

jk

)

Ãkj +
(

Γ̃j
jk − Γ̄j

jk

)

︸ ︷︷ ︸

=0

Ãik, (9.85)

where the “= 0” results from the fact that 2Γ̃j
jk = ∂ ln γ̃/∂xk and 2Γ̄j

jk = ∂ ln f/∂xk, with
γ̃ := det γ̃ij = det fij =: f [Eq. (6.19)]. Thus Eq. (9.83) becomes

∂Γ̃i

∂t
= γ̃jkDjDkβ

i +
1

3
γ̃ijDjDkβ

k +
2

3
Γ̃iDkβ

k − Γ̃kDkβ
i + βkDkΓ̃

i

−2N

[

8πΨ4pi − Ãjk
(

Γ̃i
jk − Γ̄i

jk

)

− 6ÃijDj ln Ψ +
2

3
γ̃ijDjK

]

− 2ÃijDjN.

(9.86)

We conclude that the Gamma freezing condition (9.81) is equivalent to

γ̃jkDjDkβ
i +

1

3
γ̃ijDjDkβ

k +
2

3
Γ̃iDkβ

k − Γ̃kDkβ
i + βkDkΓ̃

i =

2N

[

8πΨ4pi − Ãjk
(

Γ̃i
jk − Γ̄i

jk

)

− 6ÃijDj ln Ψ +
2

3
γ̃ijDjK

]

+ 2ÃijDjN.
(9.87)

This is an elliptic equation for the shift vector, which bears some resemblance with Shibata’s
approximate minimal distortion, Eq. (9.75).

9.3.5 Gamma drivers

As seen above the Gamma freezing condition (9.81) yields to the elliptic equation (9.87) for the
shift vector. Alcubierre and Brügmann [7] have proposed to turn it into a parabolic equation
by considering, instead of Eq. (9.81), the relation

∂βi

∂t
= k

∂Γ̃i

∂t
, (9.88)

where k is a positive function. The resulting coordinate choice is called a parabolic Gamma

driver. Indeed, if we inject Eq. (9.88) into Eq. (9.86), we clearly get a parabolic equation for
the shift vector, of the type ∂βi/∂t = k

[
γ̃jkDjDkβ

i + 1
3 γ̃ijDjDkβ

k + · · ·
]
.
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An alternative has been introduced in 2003 by Alcubierre, Brügmann, Diener, Koppitz,
Pollney, Seidel and Takahashi [9] (see also Refs. [181] and [59]); it requires

∂2βi

∂t2
= k

∂Γ̃i

∂t
−
(

η − ∂

∂t
ln k

)
∂βi

∂t
, (9.89)

where k and η are two positive functions. The prescription (9.89) is called a hyperbolic

Gamma driver [9, 181, 59]. Indeed, thanks to Eq. (9.86), it is equivalent to

∂2βi

∂t2
+

(

η − ∂

∂t
ln k

)
∂βi

∂t
= k

{

γ̃jkDjDkβ
i +

1

3
γ̃ijDjDkβ

k +
2

3
Γ̃iDkβ

k − Γ̃kDkβ
i + βkDkΓ̃

i

−2N

[

8πΨ4pi − Ãjk
(

Γ̃i
jk − Γ̄i

jk

)

− 6ÃijDj ln Ψ +
2

3
γ̃ijDjK

]

− 2ÃijDjN

}

, (9.90)

which is a hyperbolic equation for the shift vector, of the type of the telegrapher’s equation.
The term with the coefficient η is a dissipation term. It has been found by Alcubierre et al. [9]
crucial to add it to avoid strong oscillations in the shift.

The hyperbolic Gamma driver condition (9.89) is equivalent to the following first order
system







∂βi

∂t
= kBi

∂Bi

∂t
=

∂Γ̃i

∂t
− ηBi.

(9.91)

Remark : In the case where k does not depend on t, the Gamma driver condition (9.89) reduces
to a previous hyperbolic condition proposed by Alcubierre, Brügmann, Pollney, Seidel and
Takahashi [10], namely

∂2βi

∂t2
= k

∂Γ̃i

∂t
− η

∂βi

∂t
. (9.92)

Hyperbolic Gamma driver conditions have been employed in many recent numerical compu-
tations:

• 3D gravitational collapse calculations by Baiotti et al. (2005, 2006) [28, 30], with k = 3/4
and η = 3/M , where M is the ADM mass;

• the first evolution of a binary black hole system lasting for about one orbit by Brügmann,
Tichy and Jansen (2004) [70], with k = 3/4NΨ−2 and η = 2/M ;

• binary black hole mergers by

– Campanelli, Lousto, Marronetti and Zlochower (2006) [73, 74, 75, 76], with k = 3/4;

– Baker et al. (2006) [32, 33], with k = 3N/4 and a slightly modified version of
Eq. (9.91), namely ∂Γ̃i/∂t replaced by ∂Γ̃i/∂t − βj∂Γ̃i/∂xj in the second equation;

– Sperhake [248], with k = 1 and η = 1/M .
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Recently, van Meter et al. [264] and Brügmann et al. [69] have considered a modified version of
Eq. (9.91), by replacing all the derivatives ∂/∂t by ∂/∂t − βj∂/∂xj , i.e. writing







∂βi

∂t
− βj ∂βi

∂xj
= kBi

∂Bi

∂t
− βj ∂Bi

∂xj
=

∂Γ̃i

∂t
− βj ∂Γ̃i

∂xj
− ηBi.

(9.93)

In particular, Brügmann et al. [69, 184] have computed binary black hole mergers using (9.93)
with k = 3/4 and η ranging from 0 to 3.5/M , whereas Herrmann et al. [158] have used (9.93)
with k = 3/4 and η = 2/M .

9.3.6 Other dynamical shift gauges

Shibata (2003) [228] has introduced a spatial gauge that is closely related to the hyperbolic
Gamma driver: it is defined by the requirement

∂βi

∂t
= γ̃ij

(

Fj + δt
∂Fj

∂t

)

, (9.94)

where δt is the time step used in the numerical computation and4

Fi := Dj γ̃ij . (9.95)

From the definition of the inverse metric γ̃ij , namely the identity γ̃ikγ̃kj = δi
j , and relation

(9.80), it is easy to show that Fi is related to Γ̃i by

Fi = γ̃ijΓ̃
j −

(

γ̃jk − f jk
)

Dkγ̃ij . (9.96)

Notice that in the weak field region, i.e. where γ̃ij = f ij + hij with fikfjlh
klhij ≪ 1, the second

term in Eq. (9.96) is of second order in h, so that at first order in h, Eq. (9.96) reduces to
Fi ≃ γ̃ijΓ̃

j . Accordingly Shibata’s prescription (9.94) becomes

∂βi

∂t
≃ Γ̃i + γ̃ijδt

∂Fj

∂t
. (9.97)

If we disregard the δt term in the right-hand side and take the time derivative of this equation,
we obtain the Gamma-driver condition (9.89) with k = 1 and η = 0. The term in δt has been
introduced by Shibata [228] in order to stabilize the numerical code.

The spatial gauge (9.94) has been used by Shibata (2003) [228] and Sekiguchi and Shibata
(2005) [221] to compute axisymmetric gravitational collapse of rapidly rotating neutron stars
to black holes, as well as by Shibata and Sekiguchi (2005) [234] to compute 3D gravitational
collapses, allowing for the development of nonaxisymmetric instabilities. It has also been used
by Shibata, Taniguchi and Uryu (2003-2006) [237, 238, 236] to compute the merger of binary
neutron stars, while their preceding computations [239, 240] rely on the approximate minimal
distortion gauge (Sec. 9.3.3).

4let us recall that Di := f ijDj
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9.4 Full spatial coordinate-fixing choices

The spatial coordinate choices discussed in Sec. 9.3, namely vanishing shift, minimal distortion,
Gamma freezing, Gamma driver and related prescriptions, are relative to the propagation of the
coordinates (xi) away from the initial hypersurface Σ0. They do not restrict at all the choice of
coordinates in Σ0. Here we discuss some coordinate choices that fix completely the coordinate
freedom, including in the initial hypersurface.

9.4.1 Spatial harmonic coordinates

The first full coordinate-fixing choice we shall discuss is that of spatial harmonic coordinates.
They are defined by

DjD
jxi = 0 , (9.98)

in full analogy with the spacetime harmonic coordinates [cf. Eq. (9.23)]. The above condition
is equivalent to

1√
γ

∂

∂xj

(√
γγjk ∂xi

∂xk
︸︷︷︸

=δi
k

)

= 0, (9.99)

i.e.
∂

∂xj

(√
γγij

)
= 0. (9.100)

This relation restricts the coordinates to be of Cartesian type. Notably, it forbids the use of
spherical-type coordinates, even in flat space, for it is violated by γij = diag(1, r2, r2 sin2 θ). To
allow for any type of coordinates, let us rewrite condition (9.100) in terms of a background flat
metric f (cf. discussion in Sec. 6.2.2), as

Dj

[(
γ

f

)1/2

γij

]

= 0 , (9.101)

where D is the connection associated with f and f := det fij is the determinant of f with
respect to the coordinates (xi).

Spatial harmonic coordinates have been considered by Čadež [72] for binary black holes
and by Andersson and Moncrief [16] in order to put the 3+1 Einstein system into an elliptic-
hyperbolic form and to show that the corresponding Cauchy problem is well posed.

Remark : The spatial harmonic coordinates discussed above should not be confused with space-
time harmonic coordinates; the latter would be defined by �gxi = 0 [spatial part of
Eq. (9.23)] instead of (9.98). Spacetime harmonic coordinates, as well as some gener-
alizations, are considered e.g. in Ref. [11].
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9.4.2 Dirac gauge

As a natural way to fix the coordinates in his Hamiltonian formulation of general relativity (cf.
Sec. 4.5), Dirac [116] has introduced in 1959 the following condition:

∂

∂xj

(

γ1/3γij
)

= 0. (9.102)

It differs from the definition (9.100) of spatial harmonic coordinates only by the power of the
determinant γ. Similarly, we may rewrite it more covariantly in terms of the background flat
metric f as [63]

Dj

[(
γ

f

)1/3

γij

]

= 0 . (9.103)

We recognize in this equation the inverse conformal metric [cf. Eqs. (6.15) and (6.22)], so that
we may write:

Dj γ̃
ij = 0 . (9.104)

We call this condition the Dirac gauge. It has been first discussed in the context of numerical
relativity in 1978 by Smarr and York [246] but disregarded in profit of the minimal distortion
gauge (Sec. 9.3.2), for the latter leaves the freedom to choose the coordinates in the initial
hypersurface. In terms of the vector Γ̃ introduced in Sec. 9.3.4, the Dirac gauge has a simple
expression, thanks to relation (9.80):

Γ̃i = 0 . (9.105)

It is then clear that if the coordinates (xi) obey the Dirac gauge at all times t, then they belong to
the Gamma freezing class discussed in Sec. 9.3.4, for Eq. (9.105) implies Eq. (9.81). Accordingly,
the shift vector of Dirac-gauge coordinates has to satisfy the Gamma freezing elliptic equation
(9.87), with the additional simplification Γ̃i = 0:

γ̃jkDjDkβ
i +

1

3
γ̃ijDjDkβ

k = 2N

[

8πΨ4pi − Ãjk
(

Γ̃i
jk − Γ̄i

jk

)

− 6ÃijDj ln Ψ +
2

3
γ̃ijDjK

]

+2ÃijDjN.

(9.106)
The Dirac gauge, along with maximal slicing, has been employed by Bonazzola, Gourgoulhon,

Grandclément and Novak [63] to devise a constrained scheme5 for numerical relativity, that has
been applied to 3D evolutions of gravitational waves. It has also been used by Shibata, Uryu
and Friedman [241] to formulate waveless approximations of general relativity that go beyond
the IWM approximation discussed in Sec. 6.6. Such a formulation has been employed recently
to compute quasi-equilibrium configurations of binary neutron stars [263]. Since Dirac gauge is
a full coordinate-fixing gauge, the initial data must fulfill it. Recently, Lin and Novak [180] have
computed equilibrium configurations of rapidly rotating stars within the Dirac gauge, which
may serve as initial data for gravitational collapse.

5the concept of constrained scheme will be discussed in Sec. 10.2
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10.1 Introduction

Even after having selected the foliation and the spatial coordinates propagation (Chap. 9), there
remains various strategies to integrate the 3+1 Einstein equations, either in their original form
(4.63)-(4.66), or in the conformal form (6.105)-(6.110). In particular, the constraint equations
(4.65)-(4.66) or (6.109)-(6.110) may be solved or not during the evolution, giving rise to respec-
tively the so-called free evolution schemes and the constrained schemes. We discuss here the
two types of schemes (Sec. 10.2 and 10.3), and present afterwards a widely used free evolution
scheme: the BSSN one (Sec. 10.4).

Some review articles on the subject are those by Stewart (1998) [250], Friedrich and Rendall
(2000) [135], Lehner (2001) [174], Shinkai and Yoneda (2002,2003) [243, 242], Baumgarte and
Shapiro (2003) [44], and Lehner and Reula (2004) [175].

10.2 Constrained schemes

A constrained scheme is a time scheme for integrating the 3+1 Einstein system in which some
(partially constrained scheme) or all (fully constrained scheme) of the four constraints
are used to compute some of the metric coefficients at each step of the numerical evolution.

In the eighties, partially constrained schemes, with only the Hamiltonian constraint enforced,
have been widely used in 2-D (axisymmetric) computations (e.g. Bardeen and Piran [36], Stark
and Piran [249], Evans [119]). Still in the 2-D axisymmetric case, fully constrained schemes have



176 Evolution schemes

been used by Evans [120] and Shapiro and Teukolsky [222] for non-rotating spacetimes, and by
Abrahams, Cook, Shapiro and Teukolsky [3] for rotating ones. More recently the (2+1)+1
axisymmetric code of Choptuik, Hirschmann, Liebling and Pretorius (2003) [85] is based on a
constrained scheme too.

Regarding 3D numerical relativity, a fully constrained scheme based on the original 3+1 Ein-
stein system (4.63)-(4.66) has been used to evolve a single black hole by Anderson and Matzner
(2005) [14]. Another fully constrained scheme has been devised by Bonazzola, Gourgoulhon,
Grandclément and Novak (2004) [63], but this time for the conformal 3+1 Einstein system
(6.105)-(6.110). The latter scheme makes use of maximal slicing and Dirac gauge (Sec. 9.4.2).

10.3 Free evolution schemes

10.3.1 Definition and framework

A free evolution scheme is a time scheme for integrating the 3+1 Einstein system in which
the constraint equations are solved only to get the initial data, e.g. by following one of the
prescriptions discussed in Chap. 8. The subsequent evolution is performed via the dynamical
equations only, without enforcing the constraints. Actually, facing the 3+1 Einstein system
(4.63)-(4.66), we realize that the dynamical equation (4.64), coupled with the kinematical rela-
tion (4.63) and some choices for the lapse function and shift vector (as discussed in Chap. 9), is
sufficient to get the values of γ, K, N and β at all times t, from which we can reconstruct the
full spacetime metric g.

A natural question which arises then is : to which extent does the metric g hence obtained
fulfill the Einstein equation (4.1) ? The dynamical part, Eq. (4.64), is fulfilled by construction,
but what about the constraints (4.65) and (4.66) ? If they were violated by the solution (γ,K)
of the dynamical equation, then the obtained metric g would not satisfy Einstein equation. The
key point is that, as we shall see in Sec. 10.3.2, provided that the constraints are satisfied at
t = 0, the dynamical equation (4.64) ensures that they are satisfied for all t > 0.

10.3.2 Propagation of the constraints

Let us derive evolution equations for the constraints, or more precisely, for the constraint viola-
tions. These evolution equations will be consequences of the Bianchi identities1. We denote by
G the Einstein tensor:

G := 4R − 1

2
4R g, (10.1)

so that the Einstein equation (4.1) is written

G = 8πT . (10.2)

The Hamiltonian constraint violation is the scalar field defined by

H := G(n,n) − 8πT (n,n) , (10.3)

1the following computation is inspired from Frittelli’s article [136]
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i.e.

H = 4R(n,n) +
1

2
4R − 8πE, (10.4)

where we have used the relations g(n,n) = −1 and T (n,n) = E [Eq. (4.3)]. Thanks to the
scalar Gauss equation (2.95) we may write

H =
1

2

(
R + K2 − KijK

ij
)
− 8πE . (10.5)

Similarly we define the momentum constraint violation as the 1-form field

M := −G(n, ~γ(.)) + 8πT (n, ~γ(.)) . (10.6)

By means of the contracted Codazzi equation (2.103) and the relation T (n, ~γ(.)) = −p [Eq. (4.4)],
we get

Mi = DjK
j
i − DiK − 8πpi , (10.7)

From the above expressions, we see that the Hamiltonian constraint (4.65) and the momentum
constraint (4.66) are equivalent to respectively

H = 0 (10.8)

Mi = 0. (10.9)

Finally we define the dynamical equation violation as the spatial tensor field

F := ~γ∗ 4R − 8π~γ∗

(

T − 1

2
T g

)

. (10.10)

Indeed, let us recall that the dynamical part of the 3+1 Einstein system, Eq. (4.64) is nothing
but the spatial projection of the Einstein equation written in terms of the Ricci tensor 4R, i.e.
Eq. (4.2), instead of the Einstein tensor, i.e. Eq. (10.2) (cf. Sec. 4.1.3). Introducing the stress
tensor S = ~γ∗T [Eq. (4.7)] and using the relations T = S −E [Eq. (4.12)] and ~γ∗g = γ, we can
write F as

F = ~γ∗ 4R − 8π

[

S +
1

2
(E − S)γ

]

. (10.11)

From Eq. (4.13), we see that the dynamical part of Einstein equation is equivalent to

F = 0. (10.12)

This is also clear if we replace ~γ∗ 4R in Eq. (10.11) by the expression (3.45): we immediately
get Eq. (4.64).

Let us express ~γ∗(G − 8πT ) in terms of F . Using Eq. (10.1), we have

~γ∗(G − 8πT ) = ~γ∗ 4R − 1

2
4Rγ − 8πS. (10.13)
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Comparing with Eq. (10.11), we get

~γ∗(G − 8πT ) = F − 1

2

[
4R + 8π(S − E)

]
γ. (10.14)

Besides, the trace of Eq. (10.11) is

F = trγF = γijFij = γµνFµν

= γµνγρ
µ

︸ ︷︷ ︸

=γρν

γσ
ν
4Rρσ − 8π

[

S +
1

2
(E − S) × 3

]

= γρσ4Rρσ + 4π(S − 3E) = 4R + 4Rρσ nρnσ + 4π(S − 3E). (10.15)

Now, from Eq. (10.4), 4Rρσ nρnσ = H − 4R/2 + 8πE, so that the above relation becomes

F = 4R + H − 1

2
4R + 8πE + 4π(S − 3E)

= H +
1

2

[
4R + 8π(S − E)

]
. (10.16)

This enables us to write Eq. (10.14) as

~γ∗(G − 8πT ) = F + (H − F )γ. (10.17)

Similarly to the 3+1 decomposition (4.10) of the stress-energy tensor, the 3+1 decomposition
of G − 8πT is

G − 8πT = ~γ∗(G − 8πT ) + n ⊗ M + M ⊗ n + H n ⊗ n, (10.18)

~γ∗(G − 8πT ) playing the role of S, M that of p and H that of E. Thanks to Eq. (10.17), we
may write

G − 8πT = F + (H − F )γ + n ⊗ M + M ⊗ n + H n ⊗ n , (10.19)

or, in index notation,

Gαβ − 8πTαβ = Fαβ + (H − F )γαβ + nαMβ + Mαnβ + Hnαnβ. (10.20)

This identity can be viewed as the 3+1 decomposition of Einstein equation (10.2) in terms of
the dynamical equation violation F , the Hamiltonian constraint violation H and the momentum
constraint violation M .

The next step consists in invoking the contracted Bianchi identity :

~∇ · G = 0 , (10.21)

i.e.
∇µGαµ = 0 . (10.22)

Let us recall that this identity is purely geometrical and holds independently of Einstein equation.
In addition, we assume that the matter obeys the energy-momentum conservation law (5.1) :

~∇ · T = 0 . (10.23)

In view of the Bianchi identity (10.21), Eq. (10.23) is a necessary condition for the Einstein
equation (10.2) to hold.
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Remark : We assume here specifically that Eq. (10.23) holds, because in the following we do
not demand that the whole Einstein equation is satisfied, but only its dynamical part, i.e.
Eq. (10.12).

As we have seen in Chap. 5, in order for Eq. (10.23) to be satisfied, the matter energy density
E and momentum density p (both relative to the Eulerian observer) must obey to the evolution
equations (5.12) and (5.23).

Thanks to the Bianchi identity (10.21) and to the energy-momentum conservation law
(10.23), the divergence of Eq. (10.19) leads to, successively,

∇µ (Gµ
α − 8πT µ

α) = 0

∇µ [Fµ
α + (H − F )γµ

α + nµMα + Mµnα + Hnµnα] = 0,

∇µFµ
α + Dα(H − F ) + (H − F ) (∇µnµnα + nµ∇µnα) − KMα + nµ∇µMα

+∇µMµ nα − MµKµα + nµ∇µH nα − HKnα + HDα ln N = 0,

∇µFµ
α + Dα(H − F ) + (2H − F )(Dα lnN − Knα) − KMα + nµ∇µMα,

+∇µMµ nα − KαµMµ + nµ∇µH nα = 0, (10.24)

where we have used Eq. (3.20) to express the ∇n in terms of K and D ln N (in particular
∇µnµ = −K). Let us contract Eq. (10.24) with n: we get, successively,

nν∇µFµ
ν + (2H − F )K + nνnµ∇µMν −∇µMµ − nµ∇µH = 0,

−Fµ
ν∇µnν + (2H − F )K − Mνn

µ∇µnν −∇µMµ − nµ∇µH = 0,

KµνFµν + (2H − F )K − MνDν ln N −∇µMµ − nµ∇µH = 0. (10.25)

Now the ∇-divergence of M is related to the D-one by

DµMµ = γρ
µγσ

ν∇ρM
σ = γρ

σ∇ρM
σ = ∇ρM

ρ + nρnσ∇ρM
σ

= ∇µMµ − MµDµ ln N. (10.26)

Thus Eq. (10.25) can be written

nµ∇µH = −DµMµ − 2MµDµ lnN + K(2H − F ) + KµνFµν . (10.27)

Noticing that

nµ∇µH =
1

N
mµ∇µH =

1

N
Lm H =

1

N

(
∂

∂t
− Lβ

)

H, (10.28)

where m is the normal evolution vector (cf. Sec. 3.3.2), we get the following evolution equation
for the Hamiltonian constraint violation

(
∂

∂t
− Lβ

)

H = −Di(NM i) − M iDiN + NK(2H − F ) + NKijFij . (10.29)

Let us now project Eq. (10.24) onto Σt:

γνα∇µFµ
ν + Dα(H − F ) + (2H − F )Dα ln N − KMα + γα

νn
µ∇µMν − Kα

µMµ = 0. (10.30)
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Now the ∇-divergence of F is related to the D-one by

DµFµα = γρ
µγµ

σγνα∇ρF
σ
ν = γρ

σγνα∇ρF
σ
ν = γνα (∇ρF

ρ
ν + nρnσ∇ρF

σ
ν)

= γνα (∇ρF
ρ
ν − F σ

νnρ∇ρnσ)

= γνα∇µFµ
ν − FαµDµ ln N. (10.31)

Besides, we have

γα
νn

µ∇µMν =
1

N
γα

νmµ∇µMν =
1

N
γα

ν (Lm Mν + Mµ∇µmν)

=
1

N
[Lm Mα + γα

νM
µ(∇µN nν + N∇µnν)]

=
1

N
Lm Mα − Kα

µMµ, (10.32)

where property (3.32) has been used to write γα
νLm Mν = Lm Mα.

Thanks to Eqs. (10.31) and (10.32), and to the relation Lm = ∂/∂t−Lβ , Eq. (10.30) yields
an evolution equation for the momentum constraint violation:

(
∂

∂t
− Lβ

)

M i = −Dj(NF ij) + 2NKi
jM

j + NKM i + NDi(F − H) + (F − 2H)DiN .

(10.33)
Let us now assume that the dynamical Einstein equation is satisfied, then F = 0 [Eq. (10.12)]

and Eqs. (10.29) and (10.33) reduce to
(

∂

∂t
− Lβ

)

H = −Di(NM i) + 2NKH − M iDiN (10.34)

(
∂

∂t
− Lβ

)

M i = −Di(NH) + 2NKi
jM

j + NKM i + HDiN. (10.35)

If the constraints are satisfied at t = 0, then H|t=0 = 0 and M i|t=0 = 0. The above system gives
then

∂H

∂t

∣
∣
∣
∣
t=0

= 0 (10.36)

∂M i

∂t

∣
∣
∣
∣
t=0

= 0. (10.37)

We conclude that, at least in the case where all the fields are analytical (in order to invoke the
Cauchy-Kovalevskaya theorem),

∀t ≥ 0, H = 0 and M i = 0, (10.38)

i.e. the constraints are preserved by the dynamical evolution equation (4.64). Even if the
hypothesis of analyticity is relaxed, the result still holds because the system (10.34)-(10.35) is
symmetric hyperbolic [136].

Remark : The above result on the preservation of the constraints in a free evolution scheme
holds only if the matter source obeys the energy-momentum conservation law (10.23).
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10.3.3 Constraint-violating modes

The constraint preservation property established in the preceding section adds some substantial
support to the concept of free evolution scheme. However this is a mathematical result and it does
not guarantee that numerical solutions will not violate the constraints. Indeed numerical codes
based on free evolution schemes have been plagued for a long time by the so-called constraint-

violating modes. The latter are solutions (γ,K, N,β) which satisfy F = 0 up to numerical
accuracy but with H 6= 0 and M 6= 0, although if initially H = 0 and M = 0 (up to numerical
accuracy). The reasons for the appearance of these constraint-violating modes are twofold: (i)
due to numerical errors, the conditions H = 0 and M = 0 are slightly violated in the initial
data, and the evolution equations amplify (in most cases exponentially !) this violation and
(ii) constraint violations may flow into the computational domain from boundary conditions
imposed at timelike boundaries. Notice that the demonstration in Sec. 10.3.2 did not take into
account any boundary and could not rule out (ii).

An impressive amount of works have then been devoted to this issue (see [243] for a review
and Ref. [167, 217] for recent solutions to problem (ii)). We mention hereafter shortly the
symmetric hyperbolic formulations, before discussing the most successful approach to date: the
BSSN scheme.

10.3.4 Symmetric hyperbolic formulations

The idea is to introduce auxiliary variables so that the dynamical equations become a first-order
symmetric hyperbolic system, because these systems are known to be well posed (see e.g. [250,
214]). This comprises the formulation developed in 2001 by Kidder, Scheel and Teukolsky [168]
(KST formulation), which constitutes some generalization of previous formulations developed
by Frittelli and Reula (1996) [137] and by Andersson and York (1999) [13], the latter being
known as the Einstein-Christoffel system.

10.4 BSSN scheme

10.4.1 Introduction

The BSSN scheme is a free evolution scheme for the conformal 3+1 Einstein system (6.105)-
(6.110) which has been devised by Shibata and Nakamura in 1995 [233]. It has been re-analyzed
by Baumgarte and Shapiro in 1999 [43], with a slight modification, and bears since then the
name BSSN for Baumgarte-Shapiro-Shibata-Nakamura.

10.4.2 Expression of the Ricci tensor of the conformal metric

The starting point of the BSSN formulation is the conformal 3+1 Einstein system (6.105)-(6.110).
One then proceeds by expressing the Ricci tensor R̃ of the conformal metric γ̃, which appears
in Eq. (6.108), in terms of the derivatives of γ̃. To this aim, we consider the standard expression
of the Ricci tensor in terms of the Christoffel symbols Γ̃k

ij of the metric γ̃ with respect to the
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coordinates (xi):

R̃ij =
∂

∂xk
Γ̃k

ij −
∂

∂xj
Γ̃k

ik + Γ̃k
ijΓ̃

l
kl − Γ̃k

ilΓ̃
l
kj. (10.39)

Let us introduce the type
(

1
2

)
tensor field ∆ defined by

∆k
ij := Γ̃k

ij − Γ̄k
ij , (10.40)

where the Γ̄k
ij ’s denote the Christoffel symbols of the flat metric f with respect to the coor-

dinates (xi). As already noticed in Sec. 9.3.4, the identity (10.40) does define a tensor field,
although each set of Christoffel symbols, Γ̃k

ij or Γ̄k
ij, is by no means the set of components of

any tensor field. Actually an alternative expression of ∆k
ij, which is manifestly covariant, is

∆k
ij =

1

2
γ̃kl (Diγ̃lj + Dj γ̃il −Dlγ̃ij) , (10.41)

where Di stands for the covariant derivative associated with the flat metric f . It is not difficult
to establish the equivalence of Eqs. (10.40) and (10.41): starting from the latter, we have

∆k
ij =

1

2
γ̃kl

(
∂γ̃lj

∂xi
− Γ̄m

ilγ̃mj − Γ̄m
ij γ̃lm +

∂γ̃il

∂xj
− Γ̄m

jiγ̃ml − Γ̄m
jlγ̃im

−∂γ̃ij

∂xl
+ Γ̄m

liγ̃mj + Γ̄m
lj γ̃im

)

= Γ̃k
ij +

1

2
γ̃kl
(
−2Γ̄m

ij γ̃lm

)
= Γ̃k

ij − γ̃klγ̃lm
︸ ︷︷ ︸

=δk
m

Γ̄m
ij

= Γ̃k
ij − Γ̄k

ij , (10.42)

hence we recover Eq. (10.40).

Remark : While it is a well defined tensor field, ∆ depends upon the background flat metric
f , which is not unique on the hypersurface Σt.

A useful relation is obtained by contracting Eq. (10.40) on the indices k and j:

∆k
ik = Γ̃k

ik − Γ̄k
ik =

1

2

∂

∂xi
ln γ̃ − 1

2

∂

∂xi
ln f, (10.43)

where γ̃ := det γ̃ij and f := det fij. Since by construction γ̃ = f [Eq. (6.19)], we get

∆k
ik = 0 . (10.44)

Remark : If the coordinates (xi) are of Cartesian type, then Γ̄k
ij = 0, ∆k

ij = Γ̃k
ij and Di =

∂/∂xi. This is actually the case considered in the original articles of the BSSN formalism
[233, 43]. We follow here the method of Ref. [63] to allow for non Cartesian coordinates,
e.g. spherical ones.
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Replacing Γ̃k
ij by ∆k

ij +Γ̄k
ij [Eq. (10.40)] in the expression (10.39) of the Ricci tensor yields

R̃ij =
∂

∂xk
(∆k

ij + Γ̄k
ij) −

∂

∂xj
(∆k

ik + Γ̄k
ik) + (∆k

ij + Γ̄k
ij)(∆

l
kl + Γ̄l

kl)

−(∆k
il + Γ̄k

il)(∆
l
kj + Γ̄l

kj)

=
∂

∂xk
∆k

ij +
∂

∂xk
Γ̄k

ij −
∂

∂xj
∆k

ik − ∂

∂xj
Γ̄k

ik + ∆k
ij∆

l
kl + Γ̄l

kl∆
k
ij

+Γ̄k
ij∆

l
kl + Γ̄k

ijΓ̄
l
kl − ∆k

il∆
l
kj − Γ̄l

kj∆
k
il − Γ̄k

il∆
l
kj − Γ̄k

ilΓ̄
l
kj. (10.45)

Now since the metric f is flat, its Ricci tensor vanishes identically, so that

∂

∂xk
Γ̄k

ij −
∂

∂xj
Γ̄k

ik + Γ̄k
ijΓ̄

l
kl − Γ̄k

ilΓ̄
l
kj = 0. (10.46)

Hence Eq. (10.45) reduces to

R̃ij =
∂

∂xk
∆k

ij −
∂

∂xj
∆k

ik + ∆k
ij∆

l
kl + Γ̄l

kl∆
k
ij + Γ̄k

ij∆
l
kl − ∆k

il∆
l
kj

−Γ̄l
kj∆

k
il − Γ̄k

il∆
l
kj. (10.47)

Property (10.44) enables us to simplify this expression further:

R̃ij =
∂

∂xk
∆k

ij + Γ̄l
kl∆

k
ij − Γ̄l

kj∆
k
il − Γ̄k

il∆
l
kj − ∆k

il∆
l
kj

=
∂

∂xk
∆k

ij + Γ̄k
kl∆

l
ij − Γ̄l

ki∆
k
lj − Γ̄l

kj∆
k
il − ∆k

il∆
l
kj. (10.48)

We recognize in the first four terms of the right-hand side the covariant derivative Dk∆
k
ij , hence

R̃ij = Dk∆
k
ij − ∆k

il∆
l
kj. (10.49)

Remark : Even if ∆k
ik would not vanish, we would have obtained an expression of the Ricci

tensor with exactly the same structure as Eq. (10.39), with the partial derivatives ∂/∂xi

replaced by the covariant derivatives Di and the Christoffel symbols Γ̃k
ij replaced by the

tensor components ∆k
ij . Indeed Eq. (10.49) can be seen as being nothing but a particular

case of the more general formula obtained in Sec. 6.3.1 and relating the Ricci tensors
associated with two different metrics, namely Eq. (6.44). Performing in the latter the
substitutions γ → γ̃, γ̃ → f , Rij → R̃ij , R̃ij → 0 (for f is flat), D̃i → Di and Ck

ij →
∆k

ij [compare Eqs. (6.30) and (10.40)] and using property (10.44), we get immediately
Eq. (10.49).

If we substitute expression (10.41) for ∆k
ij into Eq. (10.49), we get

R̃ij =
1

2
Dk

[

γ̃kl (Diγ̃lj + Dj γ̃il −Dlγ̃ij)
]

− ∆k
il∆

l
kj

=
1

2

{

Dk

[

Di(γ̃
klγ̃lj
︸ ︷︷ ︸

δk
j

) − γ̃ljDiγ̃
kl + Dj(γ̃

klγ̃il
︸ ︷︷ ︸

δk
i

) − γ̃ilDj γ̃
kl

]

−Dkγ̃
kl Dlγ̃ij − γ̃klDkDlγ̃ij

}
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−∆k
il∆

l
kj

=
1

2

(

−Dkγ̃lj Diγ̃
kl − γ̃ljDkDiγ̃

kl −Dkγ̃il Dj γ̃
kl − γ̃ilDkDj γ̃

kl −Dkγ̃
kl Dlγ̃ij

−γ̃klDkDlγ̃ij

)

− ∆k
il∆

l
kj. (10.50)

Hence we can write, using DkDi = DiDk (since f is flat) and exchanging some indices k and l,

R̃ij = −1

2

(

γ̃klDkDlγ̃ij + γ̃ikDjDlγ̃
kl + γ̃jkDiDlγ̃

kl
)

+ Qij(γ̃,Dγ̃) , (10.51)

where

Qij(γ̃,Dγ̃) := −1

2

(

Dkγ̃lj Diγ̃
kl + Dkγ̃il Dj γ̃

kl + Dkγ̃
kl Dlγ̃ij

)

− ∆k
il∆

l
kj (10.52)

is a term which does not contain any second derivative of γ̃ and which is quadratic in the first
derivatives.

10.4.3 Reducing the Ricci tensor to a Laplace operator

If we consider the Ricci tensor as a differential operator acting on the conformal metric γ̃, its
principal part (or principal symbol, cf. Sec. B.2.2) is given by the three terms involving second
derivatives in the right-hand side of Eq. (10.51). We recognize in the first term, γ̃klDkDlγ̃ij,
a kind of Laplace operator acting on γ̃ij . Actually, for a weak gravitational field, i.e. for
γ̃ij = f ij + hij with fikfjlh

klhij ≪ 1, we have, at the linear order in h, γ̃klDkDlγ̃ij ≃ ∆f γ̃ij,
where ∆f = fklDkDl is the Laplace operator associated with the metric f . If we combine
Eqs. (6.106) and (6.108), the Laplace operator in R̃ij gives rise to a wave operator for γ̃ij,
namely

[(
∂

∂t
− Lβ

)2

− N2

Ψ4
γ̃klDkDl

]

γ̃ij = · · · (10.53)

Unfortunately the other two terms that involve second derivatives in Eq. (10.51), namely
γ̃ikDjDlγ̃

kl and γ̃jkDiDlγ̃
kl, spoil the elliptic character of the operator acting on γ̃ij in R̃ij,

so that the combination of Eqs. (6.106) and (6.108) does no longer lead to a wave operator.

To restore the Laplace operator, Shibata and Nakamura [233] have considered the term Dlγ̃
kl

which appears in the second and third terms of Eq. (10.51) as a variable independent from γ̃ij.
We recognize in this term the opposite of the vector Γ̃ that has been introduced in Sec. 9.3.4
[cf. Eq. (9.80)]:

Γ̃i = −Dj γ̃
ij . (10.54)

Equation (10.51) then becomes

R̃ij =
1

2

(

−γ̃klDkDlγ̃ij + γ̃ikDjΓ̃
k + γ̃jkDiΓ̃

k
)

+ Qij(γ̃,Dγ̃) . (10.55)
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Remark : Actually, Shibata and Nakamura [233] have introduced the covector Fi := Dj γ̃ij

instead of Γ̃i. As Eq. (9.96) shows, the two quantities are closely related. They are even
equivalent in the linear regime. The quantity Γ̃i has been introduced by Baumgarte and
Shapiro [43]. It has the advantage over Fi to encompass all the second derivatives of γ̃ij

that are not part of the Laplacian. If one use Fi, this is true only at the linear order (weak
field region). Indeed, by means of Eq. (9.96), we can write

R̃ij =
1

2

(

−γ̃klDkDlγ̃ij + DjFi + DiFj + hklDiDkγ̃jl + hklDiDkγ̃jl

)

+ Q′
ij(γ̃,Dγ̃),

(10.56)
where hkl := γ̃kl − fkl. When compared with (10.55), the above expression contains the
additional terms hklDiDkγ̃jl and hklDiDkγ̃jl, which are quadratic in the deviation of γ̃

from the flat metric.

The Ricci scalar R̃, which appears along R̃ij in Eq. (6.108), is deduced from the trace of
Eq. (10.55):

R̃ = γ̃ijR̃ij =
1

2

(

− γ̃klγ̃ijDkDlγ̃ij + γ̃ij γ̃ik
︸ ︷︷ ︸

=δj
k

DjΓ̃
k + γ̃ij γ̃jk

︸ ︷︷ ︸

=δi
k

DiΓ̃
k

)

+ γ̃ijQij(γ̃,Dγ̃)

=
1

2

[

γ̃klDk

(
γ̃ijDlγ̃ij

)
+ γ̃klDkγ̃

ij Dlγ̃ij + 2DkΓ̃
k
]

+ γ̃ijQij(γ̃,Dγ̃). (10.57)

Now, from Eq. (10.41), γ̃ijDlγ̃ij = 2∆k
lk, and from Eq. (10.44), ∆k

lk = 0. Thus the first term
in the right-hand side of the above equation vanishes and we get

R̃ = DkΓ̃
k + Q(γ̃,Dγ̃) , (10.58)

where

Q(γ̃,Dγ̃) :=
1

2
γ̃klDkγ̃

ij Dlγ̃ij + γ̃ijQij(γ̃,Dγ̃) (10.59)

is a term that does not contain any second derivative of γ̃ and is quadratic in the first derivatives.
The idea of introducing auxiliary variables, such as Γ̃i or Fi, to reduce the Ricci tensor to a

Laplace-like operator traces back to Nakamura, Oohara and Kojima (1987) [193]. In that work,
such a treatment was performed for the Ricci tensor R of the physical metric γ, whereas in
Shibata and Nakamura’s study (1995) [233], it was done for the Ricci tensor R̃ of the conformal
metric γ̃. The same considerations had been put forward much earlier for the four-dimensional
Ricci tensor 4R. Indeed, this is the main motivation for the harmonic coordinates mentioned in
Sec. 9.2.3: de Donder [106] introduced these coordinates in 1921 in order to write the principal
part of the Ricci tensor as a wave operator acting on the metric coefficients gαβ :

4Rαβ = −1

2
gµν ∂

∂xµ

∂

∂xν
gαβ + Qαβ(g,∂g), (10.60)

where Qαβ(g,∂g) is a term which does not contain any second derivative of g and which is
quadratic in the first derivatives. In the current context, the analogue of harmonic coordinates
would be to set Γ̃i = 0, for then Eq. (10.55) would resemble Eq. (10.60). The choice Γ̃i = 0
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corresponds to the Dirac gauge discussed in Sec. 9.4.2. However the philosophy of the BSSN
formulation is to leave free the coordinate choice, allowing for any value of Γ̃i. In this respect,
a closer 4-dimensional analogue of BSSN is the generalized harmonic decomposition introduced
by Friedrich (1985) [133] and Garfinkle (2002) [139] (see also Ref. [151, 182]) and implemented
by Pretorius for the binary black hole problem [206, 207, 208].

The allowance for any coordinate system means that Γ̃i becomes a new variable, in addition
to γ̃ij , Ãij , Ψ, K, N and βi. One then needs an evolution equation for it. But we have already
derived such an equation in Sec. 9.3.4, namely Eq. (9.86). Equation (10.54) is then a constraint
on the system, in addition to the Hamiltonian and momentum constraints.

10.4.4 The full scheme

By collecting together Eqs. (6.105)-(6.108), (10.55), (10.58) and (9.86), we can write the complete
system of evolution equations for the BSSN scheme:

(
∂

∂t
− Lβ

)

Ψ =
Ψ

6

(

D̃iβ
i − NK

)

(10.61)

(
∂

∂t
− Lβ

)

γ̃ij = −2NÃij −
2

3
D̃kβ

k γ̃ij (10.62)

(
∂

∂t
− Lβ

)

K = −Ψ−4
(

D̃iD̃
iN + 2D̃i lnΨ D̃iN

)

+ N

[

4π(E + S) + ÃijÃ
ij +

K2

3

]

(10.63)
(

∂

∂t
− Lβ

)

Ãij = −2

3
D̃kβ

k Ãij + N

[

KÃij − 2γ̃klÃikÃjl − 8π

(

Ψ−4Sij −
1

3
Sγ̃ij

)]

+Ψ−4

{

− D̃iD̃jN + 2D̃i ln Ψ D̃jN + 2D̃j ln Ψ D̃iN

+
1

3

(

D̃kD̃
kN − 4D̃k ln Ψ D̃kN

)

γ̃ij

+N

[
1

2

(

−γ̃klDkDlγ̃ij + γ̃ikDjΓ̃
k + γ̃jkDiΓ̃

k
)

+ Qij(γ̃,Dγ̃)

−1

3

(

DkΓ̃
k + Q(γ̃,Dγ̃)

)

γ̃ij − 2D̃iD̃j ln Ψ + 4D̃i lnΨ D̃j ln Ψ

+
2

3

(

D̃kD̃
k ln Ψ − 2D̃k ln Ψ D̃k ln Ψ

)

γ̃ij

]}

.

(10.64)
(

∂

∂t
− Lβ

)

Γ̃i =
2

3
Dkβ

k Γ̃i + γ̃jkDjDkβ
i +

1

3
γ̃ijDjDkβ

k − 2ÃijDjN

−2N

[

8πΨ4pi − Ãjk∆i
jk − 6ÃijDj ln Ψ +

2

3
γ̃ijDjK

] , (10.65)

where Qij(γ̃,Dγ̃) and Q(γ̃,Dγ̃) are defined by Eqs. (10.52) and (10.59) and we have used
Lβ Γ̃i = βkDkΓ̃

i − Γ̃kDkβ
i to rewrite Eq. (9.86). These equations must be supplemented with
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the constraints (6.109) (Hamiltonian constraint), (6.110) (momentum constraint), (6.19) (“unit”
determinant of γ̃ij), (6.74) (Ã traceless) and (10.54) (definition of Γ̃):

D̃iD̃
iΨ − 1

8
R̃Ψ +

(
1

8
ÃijÃ

ij − 1

12
K2 + 2πE

)

Ψ5 = 0 (10.66)

D̃jÃij + 6ÃijD̃
j ln Ψ − 2

3
D̃iK = 8πpi (10.67)

det(γ̃ij) = f (10.68)

γ̃ijÃij = 0 (10.69)

Γ̃i + Dj γ̃
ij = 0 . (10.70)

The unknowns for the BSSN system are Ψ, γ̃ij , K, Ãij and Γ̃i. They involve 1 + 6 + 1 +
6 + 3 = 17 components, which are evolved via the 17-component equations (10.61)-(10.65). The
constraints (10.66)-(10.70) involve 1 + 3 + 1 + 1 + 3 = 9 components, reducing the number of
degrees of freedom to 17− 9 = 8. The coordinate choice, via the lapse function N and the shift
vector βi, reduces this number to 8 − 4 = 4 = 2 × 2, which corresponds to the 2 degrees of
freedom of the gravitational field expressed in terms of the couple (γ̃ij , Ãij).

The complete system to be solved must involve some additional equations resulting from the
choice of lapse N and shift vector β, as discussed in Chap. 9. The well-posedness of the whole
system is discussed in Refs. [55] and [152], for some usual coordinate choices, like harmonic
slicing (Sec. 9.2.3) with hyperbolic gamma driver (Sec. 9.3.5).

10.4.5 Applications

The BSSN scheme is by far the most widely used evolution scheme in contemporary numerical
relativity. It has notably been used for computing gravitational collapses [229, 227, 221, 234,
28, 29, 30], mergers of binary neutron stars [226, 239, 240, 237, 238, 236] and mergers of binary
black holes [32, 33, 264, 73, 74, 75, 76, 248, 111, 69, 184, 159, 158]. In addition, most recent
codes for general relativistic MHD employ the BSSN formulation [117, 235, 231, 140].
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Lie derivative
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A.1 Lie derivative of a vector field

A.1.1 Introduction

Genericaly the “derivative” of some vector field v on M is to be constructed for the variation
δv of v between two neighbouring points p and q. Naively, one would write δv = v(q) − v(p).
However v(q) and v(p) belong to different vector spaces: Tq(M) and Tp(M). Consequently the
subtraction v(q) − v(p) is ill defined. To proceed in the definition of the derivative of a vector
field, one must introduce some extra-structure on the manifold M: this can be either some
connection ∇ (as the Levi-Civita connection associated with the metric tensor g), leading to
the covariant derivative ∇v or another vector field u, leading to the derivative of v along u

which is the Lie derivative discussed in this Appendix. These two types of derivative generalize
straightforwardly to any kind of tensor field. For the specific kind of tensor fields constituted
by differential forms, there exists a third type of derivative, which does not require any extra
structure on M: the exterior derivative (see the classical textbooks [189, 265, 251] or Ref. [143]
for an introduction).

A.1.2 Definition

Consider a vector field u on M, called hereafter the flow. Let v be another vector field on M,
the variation of which is to be studied. We can use the flow u to transport the vector v from one
point p to a neighbouring one q and then define rigorously the variation of v as the difference
between the actual value of v at q and the transported value via u. More precisely the definition
of the Lie derivative of v with respect to u is as follows (see Fig. A.1). We first define the image
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Figure A.1: Geometrical construction of the Lie derivative of a vector field: given a small
parameter λ, each extremity of the arrow λv is dragged by some small parameter ε along u, to
form the vector denoted by Φε(λv). The latter is then compared with the actual value of λv at
the point q, the difference (divided by λε) defining the Lie derivative Lu v.

Φε(p) of the point p by the transport by an infinitesimal “distance” ε along the field lines of u

as Φε(p) = q, where q is the point close to p such that −→pq = εu(p). Besides, if we multiply the
vector v(p) by some infinitesimal parameter λ, it becomes an infinitesimal vector at p. Then

there exists a unique point p′ close to p such that λv(p) =
−→
pp′. We may transport the point p′

to a point q′ along the field lines of u by the same “distance” ε as that used to transport p to

q: q′ = Φε(p
′) (see Fig. A.1).

−→
qq′ is then an infinitesimal vector at q and we define the transport

by the distance ε of the vector v(p) along the field lines of u according to

Φε(v(p)) :=
1

λ

−→
qq′. (A.1)

Φε(v(p)) is vector in Tq(M). We may then subtract it from the actual value of the field v at q
and define the Lie derivative of v along u by

Lu v := lim
ε→0

1

ε
[v(q) − Φε(v(p))] . (A.2)

If we consider a coordinate system (xα) adapted to the field u in the sense that u = e0

where e0 is the first vector of the natural basis associated with the coordinates (xα), then the
Lie derivative is simply given by the partial derivative of the vector components with respect to
x0:

(Lu v)α =
∂vα

∂x0
. (A.3)

In an arbitrary coordinate system, this formula is generalized to

Lu vα = uµ ∂vα

∂xµ
− vµ ∂uα

∂xµ
, (A.4)
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where use has been made of the standard notation Lu vα := (Lu v)α. The above relation shows
that the Lie derivative of a vector with respect to another one is nothing but the commutator
of these two vectors:

Lu v = [u,v] . (A.5)

A.2 Generalization to any tensor field

The Lie derivative is extended to any tensor field by (i) demanding that for a scalar field f ,
Lu f = 〈df,u〉 and (ii) using the Leibniz rule. As a result, the Lie derivative Lu T of a tensor

field T of type
(

k
ℓ

)

is a tensor field of the same type, the components of which with respect to

a given coordinate system (xα) are

Lu Tα1...αk

β1...βℓ
= uµ ∂

∂xµ
Tα1...αk

β1...βℓ
−

k∑

i=1

T
α1...

i
↓
σ...αk

β1...βℓ

∂uαi

∂xσ
+

ℓ∑

i=1

Tα1...αk

β1... σ
↑

i

...βℓ

∂uσ

∂xβi
.

(A.6)
In particular, for a 1-form,

Lu ωα = uµ ∂ωα

∂xµ
+ ωµ

∂uµ

∂xα
. (A.7)

Notice that the partial derivatives in Eq. (A.6) can be remplaced by any connection without
torsion, such as the Levi-Civita connection ∇ associated with the metric g, yielding

Lu Tα1...αk

β1...βℓ
= uµ∇µTα1...αk

β1...βℓ
−

k∑

i=1

T
α1...

i
↓
σ...αk

β1...βℓ
∇σuαi +

ℓ∑

i=1

Tα1...αk

β1... σ
↑

i

...βℓ
∇βi

uσ.

(A.8)
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Conformal Killing operator and
conformal vector Laplacian
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In this Appendix, we investigate the main properties of two important vectorial operators
on Riemannian manifolds: the conformal Killing operator and the associated conformal vector
Laplacian. The framework is that of a single three-dimensional manifold Σ, endowed with
a positive definite metric (i.e. a Riemannian metric). In practice, Σ is embedded in some
spacetime (M,g), as being part of a 3+1 foliation (Σt)t∈R, but we shall not make such an
assumption here. For concreteness, we shall denote Σ’s Riemannian metric by γ̃, because in
most applications of the 3+1 formalism, the conformal Killing operator appears for the metric
γ̃ conformally related to the physical metric γ and introduced in Chap. 6. But again, we shall
not use the hypothesis that γ̃ is derived from some “physical” metric γ. So in all what follows,
γ̃ can be replaced by the physical metric γ or any other Riemannian metric, as for instance the
background metric f introduced in Chap. 6 and 7.

B.1 Conformal Killing operator

B.1.1 Definition

The conformal Killing operator L̃ associated with the metric γ̃ is the linear mapping from
the space T (Σ) of vector fields on Σ to the space of symmetric tensor fields of type

(2
0

)
defined

by

∀v ∈ T (Σ), (L̃v)ij := D̃ivj + D̃jvi − 2

3
D̃kv

k γ̃ij , (B.1)
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where D̃ is the Levi-Civita connection associated with γ̃ and D̃i := γ̃ijD̃j . An immediate
property of L̃ is to be traceless with respect to γ̃, thanks to the −2/3 factor: for any vector v,

γ̃ij(L̃v)ij = 0. (B.2)

B.1.2 Behavior under conformal transformations

An important property of L̃ is to be invariant, except for some scale factor, with respect to
conformal transformations. Indeed let us consider a metric γ conformally related to γ̃:

γ = Ψ4γ̃. (B.3)

In practice γ will be the metric induced on Σ by the spacetime metric g and Ψ the conformal
factor defined in Chap. 6, but we shall not employ this here. So γ and γ̃ are any two Riemannian
metrics on Σ that are conformally related (we could have called them γ1 and γ2) and Ψ is simply
the conformal factor between them. We can employ the formulæ derived in Chap. 6 to relate
the conformal Killing operator of γ̃, L̃, with that of γ, L say. Formula (6.35) gives

Djvi = γjkDkv
i = Ψ−4γ̃jk

[

D̃kv
i + 2

(

vlD̃l ln Ψ δi
k + viD̃k lnΨ − D̃i ln Ψ γ̃klv

l
)]

= Ψ−4
[

D̃jvi + 2
(

vkD̃k ln Ψ γ̃ij + viD̃j ln Ψ − vjD̃i ln Ψ
)]

. (B.4)

Hence
Divj + Djvi = Ψ−4

(

D̃ivj + D̃jvi + 4vkD̃k ln Ψ γ̃ij
)

(B.5)

Besides, from Eq. (6.36),

− 2

3
Dkv

k γij = −2

3

(

D̃kv
k + 6vkD̃k ln Ψ

)

Ψ−4γ̃ij . (B.6)

Adding the above two equations, we get the simple relation

(Lv)ij = Ψ−4(L̃v)ij . (B.7)

Hence the conformal Killing operator is invariant, up to the scale factor Ψ−4, under a conformal
transformation.

B.1.3 Conformal Killing vectors

Let us examine the kernel of the conformal Killing operator, i.e. the subspace ker L̃ of T (Σ)
constituted by vectors v satisfying

(L̃v)ij = 0. (B.8)

A vector field which obeys Eq. (B.8) is called a conformal Killing vector. It is the generator
of some conformal isometry of (Σ, γ̃). A conformal isometry is a diffeomorphism Φ : Σ → Σ
for which there exists some scalar field Ω such that Φ∗γ̃ = Ω2γ̃. Notice that any isometry
is a conformal isometry (corresponding to Ω = 1), which means that every Killing vector is
a conformal Killing vector. The latter property is obvious from the definition (B.1) of the
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conformal Killing operator. Notice also that any conformal isometry of (Σ, γ̃) is a conformal
isometry of (Σ,γ), where γ is a metric conformally related to γ̃ [cf. Eq. (B.3)]. Of course, (Σ, γ̃)
may not admit any conformal isometry at all, yielding ker L̃ = {0}. The maximum dimension of
ker L̃ is 10 (taking into account that Σ has dimension 3). If (Σ, γ̃) is the Euclidean space (R3,f),
the conformal isometries are constituted by the isometries (translations, rotations) augmented
by the homotheties.

B.2 Conformal vector Laplacian

B.2.1 Definition

The conformal vector Laplacian associated with the metric γ̃ is the endomorphism ∆̃L of
the space T (Σ) of vector fields on Σ defined by taking the divergence of the conformal Killing
operator:

∀v ∈ T (Σ), ∆̃L vi := D̃j(L̃v)ij . (B.9)

From Eq. (B.1),

∆̃L vi = D̃jD̃
ivj + D̃jD̃

jvi − 2

3
D̃iD̃kv

k

= D̃iD̃jv
j + R̃i

jv
j + D̃jD̃

jvi − 2

3
D̃iD̃jv

j

= D̃jD̃
jvi +

1

3
D̃iD̃jv

j + R̃i
jv

j , (B.10)

where we have used the contracted Ricci identity (6.42) to get the second line. Hence ∆̃L vi is a
second order operator acting on the vector v, which is the sum of the vector Laplacian D̃jD̃

jvi,
one third of the gradient of divergence D̃iD̃jv

j and the curvature term R̃i
jv

j :

∆̃L vi = D̃jD̃
jvi +

1

3
D̃iD̃jv

j + R̃i
jv

j (B.11)

The conformal vector Laplacian plays an important role in 3+1 general relativity, for solving
the constraint equations (Chap. 8), but also for the time evolution problem (Sec. 9.3.2). The
main properties of ∆̃L have been first investigated by York [274, 275].

B.2.2 Elliptic character

Given p ∈ Σ and a linear form ξ ∈ T ∗
p (Σ), the principal symbol of ∆̃L with respect to p and ξ

is the linear map P(p,ξ) : Tp(Σ) → Tp(Σ) defined as follows (see e.g. [101]). Keep only the terms

involving the highest derivatives in ∆̃L (i.e. the second order ones): in terms of components,
the operator is then reduced to

vi 7−→ γ̃jk ∂

∂xj

∂

∂xk
vi +

1

3
γ̃ik ∂

∂xk

∂

∂xj
vj (B.12)
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Replace each occurrence of ∂/∂xj by the component ξj of the linear form ξ, thereby obtaining
a mapping which is no longer differential, i.e. that involves only values of the fields at the point
p; this is the principal symbol of ∆̃L at p with respect to ξ:

P(p,ξ) : Tp(Σ) −→ Tp(Σ)

v = (vi) 7−→ P(p,ξ)(v) =

(

γ̃jk(p)ξjξk vi +
1

3
γ̃ik(p)ξkξjv

j

)

,
(B.13)

The differential operator ∆̃L is said to be elliptic on Σ iff the principal symbol P(p,ξ) is an
isomorphism for every p ∈ Σ and every non-vanishing linear form ξ ∈ T ∗

p (Σ). It is said to be
strongly elliptic if all the eigenvalues of P(p,ξ) are non-vanishing and have the same sign. To

check whether it is the case, let us consider the bilinear form P̃(p,ξ) associated to the endomor-
phism P(p,ξ) by the conformal metric:

∀(v,w) ∈ Tp(Σ)2, P̃(p,ξ)(v,w) = γ̃
(
v, P(p,ξ)(w)

)
. (B.14)

Its matrix P̃ij is deduced from the matrix P i
j of P(p,ξ) by lowering the index i with γ̃(p). We

get

P̃ij = γ̃kl(p)ξkξl γ̃ij(p) +
1

3
ξiξj. (B.15)

Hence P̃(p,ξ) is clearly a symmetric bilinear form. Moreover it is positive definite for ξ 6= 0: for
any vector v ∈ Tp(Σ) such that v 6= 0, we have

P̃(p,ξ)(v,v) = γ̃kl(p)ξkξl γ̃ij(p)vivj +
1

3
(ξiv

i)2 > 0, (B.16)

where the > 0 follows from the positive definite character of γ̃. P̃(p,ξ) being positive definite
symmetric bilinear form, we conclude that P(p,ξ) is an isomorphism and that all its eigenvalues

are real and strictly positive. Therefore ∆̃L is a strongly elliptic operator.

B.2.3 Kernel

Let us now determine the kernel of ∆̃L. Clearly this kernel contains the kernel of the conformal
Killing operator L̃. Actually it is not larger than that kernel:

ker ∆̃L = ker L̃ . (B.17)

Let us establish this property. For any vector field v ∈ T (Σ), we have
∫

Σ
γ̃ijv

i∆̃L vj
√

γ̃ d3x =

∫

Σ
γ̃ijv

iD̃l(L̃v)jl
√

γ̃ d3x

=

∫

Σ

{

D̃l

[

γ̃ijv
i(L̃v)jl

]

− γ̃ijD̃lv
i (L̃v)jl

}√

γ̃ d3x

=

∮

∂Σ
γ̃ijv

i(L̃v)jls̃l

√

q̃ d2y −
∫

Σ
γ̃ijD̃lv

i (L̃v)jl
√

γ̃ d3x,

(B.18)

where the Gauss-Ostrogradsky theorem has been used to get the last line. We shall consider
two situations for (Σ,γ):
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• Σ is a closed manifold, i.e. is compact without boundary;

• (Σ, γ̃) is an asymptotically flat manifold, in the sense made precise in Sec. 7.2.

In the former case the lack of boundary of Σ implies that the first integral in the right-hand side
of Eq. (B.18) is zero. In the latter case, we will restrict our attention to vectors v which decay
at spatial infinity according to (cf. Sec. 7.2)

vi = O(r−1) (B.19)

∂vi

∂xj
= O(r−2), (B.20)

where the components are to be taken with respect to the asymptotically Cartesian coordinate
system (xi) introduced in Sec. 7.2. The behavior (B.19)-(B.20) implies

vi(L̃v)jl = O(r−3), (B.21)

so that the surface integral in Eq. (B.18) vanishes. So for both cases of Σ closed or asymptotically
flat, Eq. (B.18) reduces to

∫

Σ
γ̃ijv

i∆̃L vj
√

γ̃ d3x = −
∫

Σ
γ̃ijD̃lv

i (L̃v)jl
√

γ̃ d3x. (B.22)

In view of the right-hand side integrand, let us evaluate

γ̃ij γ̃kl(L̃v)ik(L̃v)jl = γ̃ij γ̃kl(D̃
ivk + D̃kvi)(L̃v)jl − 2

3
D̃mvm γ̃ikγ̃ij

︸ ︷︷ ︸

=δk
j

γ̃kl(L̃v)jl

=
(

γ̃klD̃jv
k + γ̃ijD̃lv

i
)

(L̃v)jl − 2

3
D̃mvm γ̃jl(L̃v)jl

︸ ︷︷ ︸

=0

= 2γ̃ijD̃lv
i (L̃v)jl, (B.23)

where we have used the symmetry and the traceless property of (L̃v)jl to get the last line. Hence
Eq. (B.22) becomes

∫

Σ
γ̃ijv

i∆̃L vj
√

γ̃ d3x = −1

2

∫

Σ
γ̃ij γ̃kl(L̃v)ik(L̃v)jl

√

γ̃ d3x. (B.24)

Let us assume now that v ∈ ker ∆̃L: ∆̃L vj = 0. Then the left-hand side of the above equation
vanishes, leaving ∫

Σ
γ̃ij γ̃kl(L̃v)ik(L̃v)jl

√

γ̃ d3x = 0. (B.25)

Since γ̃ is a positive definite metric, we conclude that (L̃v)ij = 0, i.e. that v ∈ ker L̃. This
demonstrates property (B.17). Hence the “harmonic functions” of the conformal vector Lapla-
cian ∆̃L are nothing but the conformal Killing vectors (one should add “which vanish at spatial
infinity as (B.19)-(B.20)” in the case of an asymptotically flat space).
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B.2.4 Solutions to the conformal vector Poisson equation

Let now discuss the existence and uniqueness of solutions to the conformal vector Poisson equa-
tion

∆̃L vi = Si , (B.26)

where the vector field S is given (the source). Again, we shall distinguish two cases: the closed
manifold case and the asymptotically flat one. When Σ is a closed manifold, we notice first
that a necessary condition for the solution to exist is that the source must be orthogonal to any
vector field in the kernel, in the sense that

∀C ∈ ker L̃,

∫

Σ
γ̃ijC

iSj
√

γ̃ d3x = 0. (B.27)

This is easily established by replacing Sj by ∆̃L vi and performing the same integration by part
as above to get ∫

Σ
γ̃ijC

iSj
√

γ̃ d3x = −1

2

∫

Σ
γ̃ij γ̃kl(L̃C)ik(L̃v)jl

√

γ̃ d3x. (B.28)

Since, by definition (L̃C)ik = 0, Eq. (B.27) follows. If condition (B.27) is fulfilled (it may be
trivial since the metric γ̃ may not admit any conformal Killing vector at all), it can be shown that
Eq. (B.26) admits a solution and that this solution is unique up to the addition of a conformal
Killing vector.

In the asymptotically flat case, we assume that, in terms of the asymptotically Cartesian
coordinates (xi) introduced in Sec. 7.2

Si = O(r−3). (B.29)

Moreover, because of the presence of the Ricci tensor in ∆̃L, one must add the decay condition

∂2γ̃ij

∂xk∂xl
= O(r−3) (B.30)

to the asymptotic flatness conditions introduced in Sec. 7.2 [Eqs. (7.1) to (7.4)]. Indeed Eq. (B.30)
along with Eqs. (7.1)-(7.2) guarantees that

R̃ij = O(r−3). (B.31)

Then a general theorem by Cantor (1979) [78] on elliptic operators on asymptotically flat man-
ifolds can be invoked (see Appendix B of Ref. [246] as well as Ref. [91]) to conclude that the
solution of Eq. (B.26) with the boundary condition

vi = 0 when r → 0 (B.32)

exists and is unique. The possibility to add a conformal Killing vector to the solution, as in the
compact case, does no longer exist because there is no conformal Killing vector which vanishes
at spatial infinity on asymptotically flat Riemannian manifolds.

Regarding numerical techniques to solve the conformal vector Poisson equation (B.26), let us
mention that a very accurate spectral method has been developed by Grandclément et al. (2001)
[148] in the case of the Euclidean space: (Σ, γ̃) = (R3,f). It is based on the use of Cartesian
components of vector fields altogether with spherical coordinates. An alternative technique,
using both spherical components and spherical coordinates is presented in Ref. [63].
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[17] P. Anninos, J. Massó, E. Seidel, W.-M. Suen, and J. Towns : Three-dimensional numerical
relativity: The evolution of black holes, Phys. Rev. D 52, 2059 (1995).

[18] M. Ansorg : Double-domain spectral method for black hole excision data, Phys. Rev. D
72, 024018 (2005).

[19] M. Ansorg: Multi-Domain Spectral Method for Initial Data of Arbitrary Binaries in Gen-
eral Relativity, preprint gr-qc/0612081.
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[46] T.W. Baumgarte, N. Ó Murchadha, and H.P. Pfeiffer : Einstein constraints: Uniqueness
and non-uniqueness in the conformal thin sandwich approach, Phys. Rev. D 75, 044009
(2007).

[47] R. Beig : Arnowitt-Deser-Misner energy and g00, Phys. Lett. 69A, 153 (1978).

[48] R. Beig : The maximal slicing of a Schwarzschild black hole, Ann. Phys. (Leipzig) 11, 507
(2000).

[49] R. Beig and W. Krammer : Bowen-York tensors, Class. Quantum Grav. 21, S73 (2004).
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available at http://www.luth.obspm.fr/IHP06/

[104] T. Damour, E. Gourgoulhon, and P. Grandclément : Circular orbits of corotating binary
black holes: comparison between analytical and numerical results, Phys. Rev. D 66, 024007
(2002).

http://www.livingreviews.org/lrr-2000-5
http://www.numdam.org/item?id=AFST_1899_2_1_4_385_0
http://www.luth.obspm.fr/IHP06/


206 BIBLIOGRAPHY
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conformal Killing vectors, 127
conformal lapse, 140
conformal metric, 83, 86
conformal thin sandwich, 140

conformal time slicing, 161
conformal transformation, 83
conformal transverse traceless, 129
conformal vector Laplacian, 127, 195
conformally flat, 84
constant mean curvature, 130
constrained scheme, 175
constraint-violating modes, 181
constraints, 64
contracted Codazzi relation, 36
contracted Gauss relation, 35
cotangent space, 16
Cotton tensor, 84
Cotton-York tensor, 84
CTS, 140
CTT, 129

De Donder, 159
Dirac gauge, 174
distortion tensor, 163
dominant energy condition, 111
dynamical equation violation, 177

Einstein tensor, 176
Einstein-Christoffel system, 181
Einstein-Rosen bridge, 135
elliptic, 196
embedding, 19
Eulerian coordinates, 163
Eulerian gauge, 163
Eulerian observer, 42
extended conformal thin sandwich, 141
extrinsic curvature tensor, 24

fiducial observers, 43
first fundamental form of Σ, 21
fluid coordinate velocity, 77
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foliation, 40
free evolution scheme, 176
fully constrained scheme, 175

future, 16

Gamma freezing, 168
Gauss relation, 35

Gaussian curvature, 22
Gaussian normal coordinates, 62
geodesic slicing, 62, 152

globally hyperbolic, 39

Hamiltonian constraint, 54
Hamiltonian constraint violation, 176
harmonic, 159

harmonic decomposition
generalized, 186

harmonic slicing, 159

helical Killing vector, 146
helical symmetry, 146
hole, 115

hyperbolic Gamma driver, 171
hypersurface, 19

induced metric on Σ, 21

intrinsic curvature, 22
inverse conformal metric, 87
Isenberg-Wilson-Mathews approximation, 100

isolated bodies, 103
IWM, 100

Killing vector, 116
Komar angular momentum, 121

Komar mass, 116
Komar mass of the hole, 118
KST formulation, 181

lapse function, 41
leaf, 40
Levi-Civita connection, 22

Lichnerowicz equation, 98
Lie derivative, 190
Lie dragged, 42

locally nonrotating observers, 43
longitudinal part, 127

Lorentz factor, 76

matter energy density, 52
matter momentum density, 52
matter stress tensor, 52
maximal slicing, 153
maximal slicings, 100
mean curvature, 24
minimal distortion, 165
minimal surface, 133
momentarily static, 132
momentum constraint, 54
momentum constraint violation, 177

non-expanding horizon, 148
normal coordinates, 163
normal evolution vector, 42
null, 21

orthogonal projector onto Σ, 29

parabolic Gamma driver, 170
partially constrained scheme, 175
past, 16
perfect fluid, 75
Plateau problem, 155
Poincaré transformations, 105
polar slicing, 158
positive Yamabe class, 130
principal curvatures, 24
principal directions, 24
principal part, 62
principal symbol, 195
proper baryon number density, 78
proper internal energy, 80
proper rest-mass energy density, 80
pseudo-minimal distortion, 167
pull-back mapping, 20
puncture, 136
push-forward mapping, 20

quasi-isotropic gauge, 114
quasi-linear, 63

radiation gauge, 166
Ricci equation, 48
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Ricci identity, 18
Ricci scalar, 19
Ricci tensor, 18
Riemann curvature tensor, 18

scalar curvature, 19
scalar Gauss relation, 35
second fundamental form, 24
shape operator, 23
shift vector, 56
singularity avoidance, 156
slice, 40
slicing, 40
spacelike, 21
spacetime connection, 16
spatial coordinates, 55
spatial harmonic coordinates, 173
spatial infinity, 104
Spi group, 105
static, 132
stationary, 116, 132
strongly elliptic, 196
superluminal shift, 57
supertranslations, 105

tangent space, 16
tangent to Σ, 30
tensor density of weight, 85
Theorema Egregium, 35
time orientable, 15
time symmetric, 132
time vector, 55
timelike, 21
totally geodesic hypersurfaces, 33
transverse part, 127

velocity relative to the Eulerian observer, 77

weak energy condition, 111
Weingarten map, 23
Weyl conformal curvature tensor, 19

XCTS, 141

ZAMO, 43
zero-angular-momentum observers, 43


	Introduction
	Geometry of hypersurfaces
	Introduction
	Framework and notations
	Spacetime and tensor fields
	Scalar products and metric duality
	Curvature tensor

	Hypersurface embedded in spacetime
	Definition
	Normal vector
	Intrinsic curvature
	Extrinsic curvature
	Examples: surfaces embedded in the Euclidean space R3

	Spacelike hypersurface
	The orthogonal projector
	Relation between K and n
	Links between the  and D connections

	Gauss-Codazzi relations
	Gauss relation
	Codazzi relation


	Geometry of foliations
	Introduction
	Globally hyperbolic spacetimes and foliations
	Globally hyperbolic spacetimes
	Definition of a foliation

	Foliation kinematics
	Lapse function
	Normal evolution vector
	Eulerian observers
	Gradients of n and m
	Evolution of the 3-metric
	Evolution of the orthogonal projector

	Last part of the 3+1 decomposition of the Riemann tensor
	Last non trivial projection of the spacetime Riemann tensor
	3+1 expression of the spacetime scalar curvature


	3+1 decomposition of Einstein equation
	Einstein equation in 3+1 form
	The Einstein equation
	3+1 decomposition of the stress-energy tensor
	Projection of the Einstein equation

	Coordinates adapted to the foliation
	Definition of the adapted coordinates
	Shift vector
	3+1 writing of the metric components
	Choice of coordinates via the lapse and the shift

	3+1 Einstein equation as a PDE system
	Lie derivatives along m as partial derivatives
	3+1 Einstein system

	The Cauchy problem
	General relativity as a three-dimensional dynamical system
	Analysis within Gaussian normal coordinates
	Constraint equations
	Existence and uniqueness of solutions to the Cauchy problem

	ADM Hamiltonian formulation
	3+1 form of the Hilbert action
	Hamiltonian approach


	3+1 equations for matter and electromagnetic field
	Introduction
	Energy and momentum conservation
	3+1 decomposition of the 4-dimensional equation
	Energy conservation
	Newtonian limit
	Momentum conservation

	Perfect fluid
	kinematics
	Baryon number conservation
	Dynamical quantities
	Energy conservation law
	Relativistic Euler equation
	Further developments

	Electromagnetic field
	3+1 magnetohydrodynamics

	Conformal decomposition
	Introduction
	Conformal decomposition of the 3-metric
	Unit-determinant conformal ``metric''
	Background metric
	Conformal metric
	Conformal connection

	Expression of the Ricci tensor
	General formula relating the two Ricci tensors
	Expression in terms of the conformal factor
	Formula for the scalar curvature

	Conformal decomposition of the extrinsic curvature
	Traceless decomposition
	Conformal decomposition of the traceless part

	Conformal form of the 3+1 Einstein system
	Dynamical part of Einstein equation
	Hamiltonian constraint
	Momentum constraint
	Summary: conformal 3+1 Einstein system

	Isenberg-Wilson-Mathews approximation to General Relativity

	Asymptotic flatness and global quantities
	Introduction
	Asymptotic flatness
	Definition
	Asymptotic coordinate freedom

	ADM mass
	Definition from the Hamiltonian formulation of GR
	Expression in terms of the conformal decomposition
	Newtonian limit
	Positive energy theorem
	Constancy of the ADM mass

	ADM momentum
	Definition
	ADM 4-momentum

	Angular momentum
	The supertranslation ambiguity
	The ``cure''
	ADM mass in the quasi-isotropic gauge

	Komar mass and angular momentum
	Komar mass
	3+1 expression of the Komar mass and link with the ADM mass
	Komar angular momentum


	The initial data problem
	Introduction
	The initial data problem
	Conformal decomposition of the constraints

	Conformal transverse-traceless method
	Longitudinal/transverse decomposition of "705EAij
	Conformal transverse-traceless form of the constraints
	Decoupling on hypersurfaces of constant mean curvature
	Lichnerowicz equation
	Conformally flat and momentarily static initial data
	Bowen-York initial data

	Conformal thin sandwich method
	The original conformal thin sandwich method
	Extended conformal thin sandwich method
	XCTS at work: static black hole example
	Uniqueness of solutions
	Comparing CTT, CTS and XCTS

	Initial data for binary systems
	Helical symmetry
	Helical symmetry and IWM approximation
	Initial data for orbiting binary black holes
	Initial data for orbiting binary neutron stars
	Initial data for black hole - neutron star binaries


	Choice of foliation and spatial coordinates
	Introduction
	Choice of foliation
	Geodesic slicing
	Maximal slicing
	Harmonic slicing
	1+log slicing

	Evolution of spatial coordinates
	Normal coordinates
	Minimal distortion
	Approximate minimal distortion
	Gamma freezing
	Gamma drivers
	Other dynamical shift gauges

	Full spatial coordinate-fixing choices
	Spatial harmonic coordinates
	Dirac gauge


	Evolution schemes
	Introduction
	Constrained schemes
	Free evolution schemes
	Definition and framework
	Propagation of the constraints
	Constraint-violating modes
	Symmetric hyperbolic formulations

	BSSN scheme
	Introduction
	Expression of the Ricci tensor of the conformal metric
	Reducing the Ricci tensor to a Laplace operator
	The full scheme
	Applications


	Lie derivative
	Lie derivative of a vector field
	Introduction
	Definition

	Generalization to any tensor field

	Conformal Killing operator and conformal vector Laplacian
	Conformal Killing operator
	Definition
	Behavior under conformal transformations
	Conformal Killing vectors

	Conformal vector Laplacian
	Definition
	Elliptic character
	Kernel
	Solutions to the conformal vector Poisson equation



