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ABSTRACT
Recent observations of supermassive black holes have brought us new information on black hole magnetospheres. This may help
us to understand the mechanisms involved in such magnetospheres, especially the origin of the observed powerful jets. In the
double beam paradigm, pairs can be created in the black hole magnetosphere filling the polar axis region. In these models, some
pairs are falling onto the black hole in the form of an inflow, while the remaining pairs are outflowing in the form of a spine jet.
Our purpose in this paper is to build a complete and consistent description of this inflow-outflow structure. By knowing the MHD
field on the black hole horizon allows us to properly calculate the amount of extracted angular momentum and energy from the
black hole. In this way we get a consistent method to calculate the energy flux decomposition into Penrose and Blandford-Znajek
processes on the horizon. We assume ideal, steady and axisymmetric MHD fluids. Both the outflow and the inflow structures,
where there is no injection of pairs are described near the axis by meridional self-similar MHD models. We match the inflow
and the outflow solutions of these models in order to get the required double flow structure. The matching of these two flows
requires the creation of pairs on the stagnation layer, which separates the two flows. We present three solutions by showing three
different types of energetic interaction between the MHD fields and the black hole. In all solutions, angular momentum and
Poynting flux are extracted from the black hole. Globally, in all three solutions more energy is absorbed than extracted from
the black hole. In the first one, the energy exchange with the black hole is dominated by the mass, thermal and kinetic energies
of the flow and consequently there is no extraction of energy. In the second solution, the Penrose process dominates at large
colatitudes. The third solution is Poynting flux dominated at mid colatitudes. The magnetic field is fitted to the values obtained
from the observation of the black hole silouette in M87. For the two last solutions the mass injection rate is on the upper limit
of the estimation range that is obtained via pair creation from the hard photons coming from the accretion disk. The Poynting
power of these solutions is mainly due to the power brought in by the pair injection. In the last inflow solution, the isorotation
pulsation is equal to one half of the black hole one and the extracted Poynting flux from the black hole comparable to the one
obtained by the free force assumption. Our inflow/outflow solutions are promising to describe the plasma flow along the polar
axis where gap formation could be prevented. They furnish an outflow with a power expected for extragalactic jets.
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INTRODUCTION

The recent images taken by the Event Horizon Telescope of the
M87 black hole have brought us new information on the black hole
magnetosphere, such as the estimation of the diameter of its photon
ring, or the value of its surrounding magnetic field (Event Horizon
Telescope Collaboration 2019, 2021). This can help us to understand
the mechanisms involved in such magnetospheres, especially the
origin of their observed powerful jets.
Despite recent progress on the magnetohydrodynamics (MHD)

of rotating black holes (e.g. Yao et al. (2021), Huang et al. (2019),
Pu & Takahashi (2020)), several properties of their plasma-filled
magnetospheres are not completely known. In particular, the energy
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release at the base of jets from Active Galactic Nuclei (AGN) and
GammaRayBursts (GRB)may be explained via severalmechanisms,
depending on the geometry and the physical content of the black hole
magnetosphere. The extraction of rotational energy from spinning
black holes started to be theoretically investigated already in the
1970’s (Penrose & Floyd 1971) and continued afterwards.

A necessary condition for an extraction mechanism to take place
is the existence of an ergo-region in the immediate vicinity of the
black hole horizon. In the case where the black hole is pervaded with
a magnetic field, this extraction may take place in two different ways.
The extraction occurs either via the plasma itself or via the electro-
magnetic field. If the plasma inertia dominates, we have the so-called
generalised Penrose mechanism. If the Poynting flux dominates, we
have the so-called generalised Blandford-Znajek mechanism. Strictly
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speaking, the Blandford-Znajek mechanism applies in a force free
magnetosphere.
Penrose (1969) was the first to propose a mechanical process for

extracting black hole energy, using the splitting of particles in the
ergosphere. This process happens if one of the particle resulting from
the splitting falls onto the black hole with negative energy and the
other one reaches infinitywithmore energy than the entering particle.
On the other hand, neglecting the plasma inertia, Blandford &

Znajek (1977) proposed a stationary model for energy extraction
via the Poynting flux of the bulk electromagnetic field threading the
black hole. In this model, where the fluid energy flux is negligible,
they developed a perturbation method for the force-free equations
of electrodynamics as a function of the black hole spin parameter.
Then, they applied this analytical description to a split monopole
configurationmodelling a black hole surrounded by an accretion disc.
Thus they showed that, for a given black hole angular momentum
variation, the energy extracted from the black hole can reach 50% of
the maximum extractable energy.
These two fundamental mechanisms and their application to astro-

physical phenomena are still discussed for different reasons. For ex-
ample, causality agreement in the extraction of black hole rotational
energy has been clearly established only for the Penrose process. The
Blandford-Znajek mechanism does not explained how the electro-
magnetic Poynting flux is causally produced and how the black hole
rotational energy is reduced (Punsly & Coroniti 1990, Komissarov
2009, Koide & Baba 2014, Toma & Takahara 2016).
The expected very low rate of particle production with a relative

velocity between the two fragments larger than 2/2, seems to pro-
duce a very inefficient Penrose process (Bardeen et al. 1972, Wald
1974). Yet, Wagh et al. (1985) showed that the electromagnetic field
may provide the required energy to put one fragment onto a negative
energy orbit, without any constraint on its relative velocity (for a re-
view of the mechanical Penrose-type processes seeWagh &Dadhich
1989). Then, a magnetic Penrose process could be extremely effi-
cient in the entire range of expected magnetic fields (Dadhich et al.
2018). The plasma within the ergo-region plays the role of negative
energy particles in the rotational energy extraction from the black
hole. Time-dependent numerical simulations tend to support that the
energy is supplied into jets from the rotational energy of the black
hole (Koide et al. 2002, Komissarov 2004, Komissarov &McKinney
2007, McKinney et al. 2012). However, simulations (e.g., Komis-
sarov (2005) and McKinney (2006)) show that the Penrose process
seems to be a transient phenomenon, which is lately replaced by a
pure electromagnetic mechanism similar to the original Blandford-
Znajek one.
In this study, we consider AGN jets, produced in the immediate

environment of rotating supermassive black holes. Jets are multi-
component outflows. Most present models are based on having a
faster, mainly leptonic, core flow (the spine jet) surrounded by an
outer hadronic component with mildly relativistic speeds (the sheath
layer or disk wind). This two stream model was firstly proposed by
Sol et al. (1989) and allowed to get a unification scheme for BL
Lac and radiogalaxy sources emission (Ghisellini et al. 2005). The
disk wind component (proton-electron) can be modelled by radially
self-similar models including the effects of magnetic fields, gravity
and enthalpy (Vlahakis & Königl (2003), Ceccobello et al. (2018)).
For the inner spine jet, we proposed in Chantry et al. (2018) an
extension, in Kerr metric, of meridionally self-similar models (Sauty
& Tsinganos 1994, Meliani et al. 2006, Globus et al. 2014). This
non-force free model is adapted to describe the spine jet close to
its polar axis. The Chantry et al. (2018) model was built without

neglecting the light cylinder radius and allowed to define a magnetic
collimation criterion.

In steady, axisymmetric and ideal MHD, the mass flux is a con-
served quantity along the magnetic flux tubes. Material slides along
magnetic flux tubes. Thus to have a jet one needs to have mass in-
jection within the flow. Since, sufficiently close to the system axis,
magnetic flux tubes are necessarily anchored onto the black hole hori-
zon. Therefore, the only way to obtain an outflow on such tubes is to
inject, at some location above the horizon. The main process capable
of mass loading is the creation of electron/positron pairs. Levinson
& Rieger (2011) estimate the amount of pairs produced from the
hard photons emitted by a radiatively inefficient accretion disk. The
authors conclude that the disk could not produce enough pairs to ob-
tain the necessary Goldreich-Julian charge density in the black hole
magnetosphere (Hirotani & Pu 2016 and references therein). Addi-
tionally, because of this low charge density, an electric gap forms,
accelerating the particles along the flow. Due to an inverse Compton
mechanism, the acceleration goes together with an increase of hard
photon production. This induces the creation of additional pairs.
These gap models have been studied extensively in the literature
(Beskin et al. 1992; Hirotani & Okamoto 1998; Hirotani et al. 2016;
Hirotani&Pu 2016; Levinson&Segev 2017). In particle-in-cell sim-
ulations (Crinquand et al. 2021), the magnetic reconnection on the
equatorial plane and the formation of an intermittent spark gap lead
to bursts of pair creation near the inner light cylinder. During these
bursts, the density of pairs can reach values more than a thousand
times the Goldreich-Julian density.

Camenzind (1986), Takahashi et al. (1990), and Hirotani et al.
(1992) developed a general formalism allowing to solve the longitu-
dinal fluid motion in a Kerr metric for a steady, axisymmetric, and
magnetised flow in ideal MHD. This method requires that the geom-
etry of the poloidal field lines is given, in order to solve the Bernoulli
equation along the poloidal magnetic lines. Another way to deduce
the field line shape is to solve the transverse Grad-Shafranov equa-
tion (see. Nitta et al. 1991, Beskin & Par’ev 1993 and Gourgoulhon
et al. 2011). For a fixed geometry of the magnetic field lines, several
approaches have been used to match the inflow and outflow solutions
with loading terms localised on the stagnation surface (Globus &
Levinson 2013, Pu et al. 2015, Pu & Takahashi 2020). For example,
Huang et al. (2019) pursue this inflow/outflowmatching approach by
using the numerical methods introduced by Nathanail & Contopou-
los (2014) to solve the Grad-Shafranov equation in the force-free ap-
proximation. Globus & Levinson (2014) used the Camenzind (1986)
formalism with loading terms, controlling the magnitude of the bulk
mass flux. In this paper, we present inflow/outflow solutions, contin-
uing the meridionally self-similar model developed in Chantry et al.
(2018), wherein we did not have loading terms. Additionally, this
model can produce inflow solutions by reversing the flow direction.

The loading ofmatter occurs in a thin layer at the stagnation surface
separating the inflow from the outflow. We solve the MHD equations
for the inflow and outflow parts, satisfying the matching conditions
at the stagnation surface in (see Sec.2).

This allows us to correctly quantify the energy and angularmomen-
tum exchanges between the rotating black hole and the magnetised
flow surrounding it, without assuming force-free conditions. Hence,
we may deduce from this model the mass, angular momentum and
energy injected at the stagnation surface.

In Sec. 1, we derive the MHD equations for an ideal plasma in a
Kerr metric under the assumptions of axisymmetry and steadiness.
Furthermore, the 3+1 formalism is used with a mass loading term.
In Sec. 2, we present the adopted model by assuming an injection
layer and discussing the matching conditions that follow. In Sec. 3

MNRAS 000, 1–25 (2021)



Meridionally self-similar double flows 3

we analyse three inflow/outflow solutions. In particular, we discuss
the role of the magnitude of the mass injection rate, the kinetic and
dynamical behaviour of the flows, as well as the interaction between
the black hole and the MHD fields.

1 INFLOW AND OUTFLOW VIA PAIR INJECTION

We model the problem under the assumptions of stationarity and
axisymmetry. This means that all physical quantities in our study are
invariant with time and along the azimuthal coordinate. We also con-
sider an ideal relativistic plasma in which takes place pair creation.

1.1 General Relativistic MHD Equations

The extraction of rotational energy from a central supermassive black
hole is a mechanism suspected to play a dominant role in the forma-
tion of flows around it. Those energy extraction mechanisms are not
limited a priori to the Penrose, or the Blandford-Znajek processes.
One can generalise the problem of energy extraction by studying
directly the Noether currents associated to the energy and angular
momentum, see Lasota et al. (2014). In any case, the simplest space-
time for this study is the Kerr space-time. It allows one to study those
interactions between the black hole and the surrounding hydromag-
netic field.
Choosing a Kerr space-time implies that we neglect the self-

gravitation of the energy-momentum tensor field (plasma + radia-
tion + electromagnetic fields). It is a reasonable assumption, because
a perturbation to the Kerr metric due to the self-gravitation of the
energy-momentum field is negligible compared to Kerr metric.
We call spine jet the outflow around the rotation axis launched

from the vicinity of the black hole magnetosphere. The source of the
spine jet energy could be the injection ofmatter/energy (pair creation,
flow of energy in the magnetosphere or, any other mechanism), or
the extraction of rotational energy from the black hole.
We construct a semi-analytical magnetohydrodynamic model

(MHD) based on the self-similar technique, in a general relativis-
tic frame. This model has already been presented in Chantry et al.
(2018) and is an extension in a Kerr metric of a similar model devel-
oped in a Schwarzschildmetric (Meliani et al. 2006). Here we present
the combination of outflow and inflow solutions in order to describe
the jet from the black hole up to large distances. The outflow starts at
some stagnation radius to reach a large distance and the inflow starts
also at the same stagnation radius to fall into the black hole horizon
(Fig. 1).
Let (M; g) be the Kerr manifold using the usual Boyer-Lindquist

map coordinates. Its line element is,

ds2 = − d
2Δ

Σ2 c2dt2 +s2
(
di − l

c
cdt

)2
+ d

2

Δ
dr2 + d2d\2 , (1)

where,

Δ = A2 + A2
60

2 − 2A6A , d2 = A2 + A2
60

2 cos2 \ ,

s =
Σ

d
sin \ , l =

2A2
602A

Σ2 ,

Σ2 = (A2 + A2
60

2)2 − A2
60

2Δ sin2 \ ,

with

0 =
J2

M2G
, A6 =

GM
22 ,

the dimensionless black hole spin (0 ≤ 0 < 1) and the gravitational

Figure 1. Schematic representation of the inflow/outflow configuration in the
poloidal plane. The black surface corresponds to the black hole horizon and
the light grey shaded region to the ergo-region. The blue lines and arrows
correspond to the magnetic field lines anchored on the black hole horizon
and reaching infinity. The green lines correspond to those lines of the black
hole magnetosphere which link the disk to the black hole. The magenta lines
and arrow corresponds to the magnetic field line anchored in the disk and
reaching infinity. The blurred blue zone corresponds to the region where we
expect that pair creation is efficient. The red zone corresponds to the disk
and the blurred red zones correspond to the accretion column. The dashed
blue line corresponds to the stagnation surface, and the black dotted line to
the slow-magneto-sonic transition, the black dashed line corresponds to the
Alfvénic transition. The dashed orange line corresponds to the position of the
inner and outer light cylinders.

radius, respectively. We note that J is the angular momentum of the
massive central object and M its mass. Also note thats corresponds
to the usual Boyer-Lindquist cylindrical coordinate, i.e. 2cs is the
perimeter of the circle centered on the axis at constant C, \, and A.
AKerr space-time has twoKilling vectors,( = (1/2)@t and / = @>

associated to stationarity and axisymmetry of this space-time. We
will use the Boyer-Lindquist time coordinate C, to construct the 3+1
foliation of the Kerr space-time,

M =
⋃
C ∈R

ΣC where ΣC = {" ∈ M | C (") = C} .

This foliation implies the existence of a fiducial observer whose 4-
velocity is aligned with the direction of the C gradient. For a circular
space-time as theKerr space-time [Gourgoulhon (2010)], this fiducial
observer is called the zero-angular-momentum observer (ZAMO).
The ZAMO 4-velocity of the Kerr space-time is,

n =
1
ℎ
(( − #) , (2)

where ℎ =
dg
dC

is the lapse function converting Boyer-Lindquist time
to ZAMO proper time,

ℎ =

(
1 − ABA

d2 + V
iVi

)1/2
=
d

Σ

√
Δ , (3)

and # = −l
2
@i is the shift vector of the ZAMO, where l is the

ZAMO shift pulsation.
For convenience, we also introduce an orthonormal basis
(n, eA , e\ , ei) associated with the natural base (mC , mA , m\ , mi),

ℎA eA = @A , ℎ\e\ = @ \ , ℎiei = @i , (4)
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with,

ℎA =
d
√
Δ
, ℎ\ = d , ℎi = s . (5)

This frame is associated to the ZAMO observer everywhere outside
of the black hole horizon. Nevertheless n becomes singular on the
horizon and cannot represent the four-speed of an observer. Then
the physical interpretation of a non-invariant quantity like a vector
field component is not obvious on the horizon. We introduce for the
components of each vector A the notation,

A = �`@` = �
ˆ̀ e` . (6)

We also denote by � = {" ∈ M | A (") = A� } the black hole hori-
zon where we have, A� = A6

(
1 +
√

1 − 02
)
.

1.2 Particle number continuity

Here, we consider a scenario where highly energetic photons or rela-
tivistic neutrinos, which are in the very close black hole vicinity, load
the magnetosphere with electron-positron plasma via the mechanism
of pair creation,

W + W 
 4+ + 4− , (7)
a + ā 
 4+ + 4− . (8)

In the following, we refer to neutrinos or photons as the radiative
component and index quantities linked to these with A . In a medium
composed of radiation and leptonic plasma, the mechanism of pair
creation implies a modified expression of the particle number conti-
nuity equation. For electrons and positrons, Eqs. (7) and (8) we get,
respectively,

∇ · =+u+ =
1
2

X4=created
+

X3Vu+Xg+
, ∇ · =−u− =

1
2

X4=created
−

X3Vu−Xg−
, (9)

where =− (=+) is the electron (positron) number density, u− (u+)
the 4-velocity of the electron (positron) fluid, X3Vu− (or X3Vu+ )
is the elementary volume in the reference frame of the electron
(positron) fluid, Xg+ (Xg−) is the positron (electron) fluid proper
time and X4=created

− (X4=created
+ ) is the total injection of electrons

(positrons) due to photon or neutrino annihilation in the respective
elementary time and volume.
For each process, Eq. (7) or (Eq. 8), the number of created elec-

trons is equal to the number of created positrons, which is also equal
to the number of disappearing photons for the first process, Eq. (7)
or neutrinos for the second one, Eq. (8). This exchange of differ-
ent components implies that the electron-positron fluid component
d0u=̂<4 (=+u+ + =−u−) is no longer conserved,

∇ · (d0u + <4NA ) = 0
3+1 formalism

=⇒ ∇ · d0ℎWV? = 2ℎ:< ,
(10)

where∇ indicates the covariant derivative on the spatial ΣC manifold,
NA is the Feynman number 4-current of radiative component and d0
is the mass density in the electron-positron fluid reference frame.
The second equation derives from the steadiness and axisymmetry
assumptions.

The term 2:< =
X4<created

X3VuXgu
in Eq. (9) and Eq.(10) corresponds

to the rate of the created electron-positron mass per unit volume
measured in the fluid reference frame and per fluid proper time unit.
X3Vu is the elementary volume in the fluid reference frame and Xgu
is the elementary proper time.

Then, 2ℎ:< is the rate of created electron-positron mass per unit
volume measured by the ZAMO and per unit time in the Boyer-
Lindquist coordinates. We have,

2ℎ:< = −2<4ℎ∇ · NA =
X4<created

X3VZAMOXC
. (11)

We remind that X3Vu = WX3VZAMO, Xg = WXgu and Xg = ℎXC.

1.3 4-current and Maxwell’s equations

For both pair creation processes the initial particles are not charged,
so the source terms of the electromagnetic field j are due only to the
electron-positron plasma, j = 4 (=+u+ − =−u−). Hence, the 3+1 de-
composition of Maxwell’s equations in a Kerr space-time maintains
their ordinary expressions,

∇ · E = 4cd4 , (12)
∇ · B = 0 , (13)

∇ × (ℎE) =
(
B · ∇l

2

)
sei , (14)

∇ × (ℎB) = 4cℎ
2

J −
(
E · ∇l

2

)
sei , (15)

where d4 is the electric charge density and J the charged current mea-
sured by the ZAMO j = d4n + J. We also assume infinite electrical
conductivity,

E + V × B
2

= 0 . (16)

1.4 Euler’s equation and effective enthalpy equation

The momentum and the energy equations, respectively the Euler’s
equation and the first law of thermodynamics, are obtained using
the 3+1 decomposition of the energy-momentum conservation. Here
our energy-momentum tensor is composed of the electro-magnetic
part TEM, the electron-positron part TFL and the radiative part TA .
We note that TMHD = TFL + TEM is the MHD part of the energy-
momentum tensor and k = −∇·TA = ∇·TMHD is the 4-force exerted
by radiation on the fluid of pairs. It may also include Compton
or Inverse-Compton forces due to pair creation. We will focus our
attention on the motion and dynamics of the electron-positron fluid.
We make the additional assumption that the distribution function of
the considered electron-positron plasma (<++<−) 5 = <+ 5++<− 5−
is isotropic in velocity around a fluid reference frame four velocity u.
It implies that if we decompose the four-velocity in the fluid reference
frame u% = W% (u +W%/2), then for each position in space-time
we have 5 (u%) = 5 ( | |W% | |). With these assumptions the energy-
momentum of the pair plasma is,

TFL = d0b2
2u ⊗ u + %g , (17)

where % is an effective pressure. Here, the effective enthalpy per unit
mass in the fluid frame b, which plays a role in the fluid inertia, differs
from that obtained for ideal fluids with relativistic temperatures, in
thermodynamical equilibrium. We have beq (Θ) (where Θ = %/d02

2

the dimensionless temperature, given by Synge law (see Synge 1957,
Chernikov 1963,Marle 1969) or the Taub-Matthews equation of state
(see Mathews 1971). The difference X4/22 = b − beq (Θ) is positive
where the wings of the distribution function are larger than those of
thermodynamics equilibrium fluid and negative in the reverse case.
For more details see part 3.3.2 of Chantry (2018).
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From the previous equations, we deduce the 3+1 decomposition,

d0W (V · ∇) (WbV) + d0bW
2
[
22∇ ln ℎ + sl+

î

ℎ
∇ lnl

]
+ ∇%

= d4E +
J × B
2
+ (k · n) n + k − Wb2:<V ,

(18)

where V is the speed of the electron-positron fluid measured by the
ZAMO. Note that the mechanism of pair creation produces forces on
the electron-positron fluid. One force comes from the direct effect of
the radiative components, the second one comes from the variation
of the inertia due to the transformation. In Huang et al. (2019) the
assumption is added that in our notations reads k = 22 (∇ · d0u) u.
This assumption leads to some differences in the treatment of the
matching conditions compared to ours, as we will see below.
The projection of the conservation of energy-momentum equation

along the electron-positron fluid 4-velocity in the comoving frame
finally gives,

d0
(
Vp · ∇

)
(b22) =

(
Vp · ∇

)
% − 2

W
k · u . (19)

The additional term
2

W
k · u corresponds to the way the injection of

pairs contributes to the effective internal enthalpy.

1.5 Integrals of motion

The first integrals derived from Maxwell equations in Chantry et al.
(2018) are still valid here because those equations are not modified by
the introduction of pair production. Thus, because of axisymmetry,
magnetic flux conservation can be written,

Bp =
∇� × ei

s
, (20)

with mi� = 0. Faraday’s induction law (Eq. 14) leads immediately to
the existence of an electrical potentialΦ, such that ℎE =

l

2
∇�−∇Φ.

Axisymmetry also implies that miΦ = 0. From the symmetries and
Ohm’s law for infinite electrical conductivity, Eq. (16), we deduce
that the poloidal velocity and the poloidal magnetic field are aligned.
Hence, there is a function Ψ� such that,

Ψ�B? = 4cd0ℎWV? . (21)

Inserting this result into Eq. (10) we can interpret Ψ� as the mass
flux per unit magnetic flux on a given magnetic flux tube. Combining
the continuity equation, Eq. (10), the divergence-free property of the
magnetic field , Eq. (13) together with the previous equation we get,

B? · ∇Ψ� = 4c2ℎ:< , (22)

which governs how the mass flux per unit of magnetic fluxΨ� varies
along a poloidal field line. Together with Ohm’s law, Eq. (16), we
get,

2∇Φ =
[
l + 1

s

(
ℎ+ î − Ψ��

î

4cd0W

)]
∇� .

The "electrical" potential Φ is then a function of the magnetic flux
function �,Φ = Φ(�). We may introduce the so-called frequency of
isorotation, which is a function of the magnetic flux,

Ω(�) ≡ 2 3Φ
3�

with E = −Ω − l
ℎ2
∇� . (23)

We introduce the poloidal Mach number,

"2
Alf = ℎ

2 +p2

+2
Alf

=
4cℎ2d0bW

2+p2

�p2 =
bΨ�

2

4cd0
. (24)

Following Lasota et al. (2014), we calculate Noether’s current
densities associated to the two space-time Killing vectors,

MMHD = TMHD ( . , /) , (25)
PMHD = −TMHD ( . , () . (26)

MMHD (PMHD) corresponds respectively to the Noether’s current
density, also called fluxes, associated with the symmetry generator /
((). In what follows, we will refer to these quantities as the Noether’s
angular momentum and energy current or flux of the MHD part of
the energy-momentum tensor.

From Eq. (17), the previous equation and the usual 3+1 decompo-
sition of the electromagnetic energy-momentum tensor allow to get
the poloidal component of these Noether’s current densities,

ℎMMHD,p =
Ψ�!

4c2
B? , (27)

ℎPMHD,p =
Ψ�E
4c2

B? , (28)

where,

! = s

(
Wb+ î − ℎ�

î

Ψ�

)
, (29)

E = Wbℎ22
(
1 + sl+

î

ℎ22

)
− ℎsΩ

Ψ�
� î , (30)

are the usual specific angular momentum and specific energy. Using
k = ∇ · TMHD and the Killing vector definition we get,

∇ ·
(
ℎMMHD,p

)
= ℎk · / , (31)

∇ ·
(
ℎPMHD,p

)
= −ℎk · ( , (32)

which leads to,

B? · ∇ (Ψ�!) = 4cℎ(k · /) , (33)
B? · ∇ (Ψ�E) = −4c2ℎ(k · () . (34)

Those equations describe how the angular momentum and energy
flux of the MHD fields evolve along a poloidal field line. Thus the
mass flux, the angular momentum and the energy of the fluid plus
the electromagnetic fields are loaded by the mechanism of pair cre-
ation. Therefore the isorotational functions remains a constant along
a poloidal field line.

1.6 Energetic balance on the black hole horizon

It is well known that a Kerr black hole can transfer part of its rota-
tional energy to its environment. The processes of Penrose & Floyd
(1971) and Blandford & Znajek (1977) explain how aKerr black hole
may transfer part of its rotational energy to particles, or the electro-
magnetic field. Penrose’s process involves particles and Blandford-
Znajek’s process force-free MHD fields obtained by a perturbation
method, expanding the spin for radial or paraboloidal fields. In fact,
the black hole may transfer angular momentum and rotational energy
to the plasma, as explained and discussed in Lasota et al. (2014).

In our configuration, we consider the interaction between the non
force-free magnetised fluid and the black hole. We neglect how the
radiation exchanges energy and angular momentum with the Kerr
black hole. The exchange of rotational energy of angular momentum
is determined by the value of the TMHD tensor at the horizon of
the black hole. As in Lasota et al. (2014), we can integrate Noether’s
flux conservation equations Eqs. (31) - (32), or the equivalent system,
but this time in the volume of space-time between two neighbouring
flux tubes T� and T�+d� anchored on the horizon of the black hole
(see Fig. 2). This integration is performed for radii between A� and
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T�T�+3�

SC = H ∩ ΣC

Asta
N?

N?

P?

P?

A�

W W

4+
4−

Figure 2. Schematic representation of two neighbouring flux tubes T� and
T�+3� anchored in the black hole horizon at the A� radius. The stagnation
surface is defined as the surface with null poloidal speed (+? = 0). It is the
red disk labelled with Asta. #? and %? are the poloidal fluxes of particle and
Noether’s energy in the outflow and inflow.

A > A� and for a time interval between C and C + dC. In fact, we could
directly integrate Eqs. (33)-(34) and also Eq. (22) along a poloidal
field line anchored into the black hole (see Fig. 2),

d ¤"
d�

= Ψ�,� (�) +
∫ ℓ

0

4cℎ2:<
| | Bp | |

����
�=cst

dℓ , (35)

Ψ�! = Ψ�,� !� (�) +
∫ ℓ

0

4cℎk · /
| | Bp | |

����
�=cst

dℓ , (36)

ΨAE = Ψ�,�E� (�) −
∫ ℓ

0

4cℎ2k · (
| | Bp | |

����
�=cst

dℓ . (37)

These equations are easily interpreted, since the mass flux, the an-
gular momentum and the energy, per unit magnetic flux, at a given
point of a poloidal field line are composed of the contribution of the
black hole and the injection of mass, angular momentum and energy,
respectively, due to the radiation.
Horizon is a one-way hyper-surface, then Ψ�,� < 0. Energy

is extracted from the black hole if Ψ�,�E� (�) > 0, which is
equivalent to E� < 0. The black horizon absorbs negative energy
per unit mass E� (see also Toma & Takahara (2016)).
Then, followingChristodoulou (1970) andThorne (1987) the black

hole physical parameters evolve in time, according to,

A� − A6
2A� A6

32Mirr22

3C3�
= −

(
Ψ�,�E� − l�Ψ�,� !�

)
, (38)

32J
3C3�

= −Ψ�,� !� , (39)

32M22

3C3�
= −Ψ�,�E� . (40)

where "irr,

"irr = "

√
1 +
√

1 − 02

2
, (41)

is the irreducible mass of the black hole. Here we apply the for-
mulation given by Thorne (1987) to link the Noether’s energy and
angular momentum flux on the black hole horizon to the black hole
parameter.
In order to interpret physically the energy, it is useful to decompose

the energy flux in its different physical contributions,

ΦE = Ψ�E = Ψ�Wbℎ22
(
1 + sl+

q̂

ℎ22

)
− ℎsΩ� î = ΦFL +ΦEM .

(42)

The first term is the Noether energy flux of the fluid ΦFL. The
Noether Poynting flux ΦEM corresponds to the electromagnetic en-
ergy flux. The fluid term ΦFL is composed of two terms. The first
term ΦM = Ψ�Wbℎ2

2 (negative on the black hole horizon) contains
the absorption by the black hole of pure massive energy, plus the
internal and the kinetic energy of the fluid. We must have Wb−→+∞
on the horizon in order to let ℎWb finite and non-zero. The second
term is ΦLT = Ψ�Wbsl+

î that we call the Lense-Thirring term. It
can be positive. Its sign will depend on the sign of + î). Note also
that the pair fluid contribution ΦFL can be re-wrote as,

ΦFL = −Ψ�b22 (u · () . (43)

As a consequence, ΦFL can be positive in an inflow (Ψ� < 0), only
if ( is not a time-like future oriented vector, that is to say in the
ergo-region.

Blandford & Znajek (1977) show that under certain conditions
the Poynting flux can be transported to infinity, meaning that the
electromagnetic field is fed by the rotation energy of the Kerr black
hole. We say that the electromagnetic extraction process is active
where ΦEM |� > 0. We also says that the pair fluid process is active
where ΦFL |� = ΦM |� + ΦLT |� > 0.

The null energy condition applying to TMHD on the horizon (see
Lasota et al. 2014) writes,

ΦE |� ≤ Ψ�! |� l� , (44)

which implies the impossibility of generalised energy extraction
(ΦE |� > 0) for non rotating black hole. With regard to Eq.(38), this
condition implies the increasing of the irreducible mass, which also
implies an increase of the black hole entropy.

We can pursue the calculation of this decomposition, by inverting
the motion integrals system on the black hole horizon. For the details
of the inversion procedure, see Chantry et al. (2018). The result on
the horizon is,

ΦM
��
�
= −

"2
Alf

���
�

"2
Alf

���
�
+s2

�
(Ω − l� )2/22

(Ψ�!l� − Ψ�E) ,

(45)

ΦLT
��
�
= Ψ�!l� +

s2
�
l� (Ω − l� )/22

"2
Alf

���
�
+s2

�
(Ω − l� )2/22

(Ψ�!l� − Ψ�E) ,

(46)

ΦEM
��
�
=

s2
�
Ω(l� −Ω)/22

"2
Alf

���
�
+s2

�
(Ω − l� )2/22

(Ψ�!l� − Ψ�E) ,

(47)

where each quantity is evaluated on the black hole horizon.
We focus our attention on a generic field line. Let us now consider

the case where injection on this line is entirely located on a point
A = A� > A� . We also suppose that injection on this line is sufficient
to have both an inflow (Ψ� ≤ 0 for A < A� ), and an outflow (Ψ� > 0
for A ≥ A� ). On this line there is no injection :<, k = 0 except at
the injection point (black dot in the left part of Fig.2). We should
now look at the conditions that the extractions process imposes on
the position of the starting point, which is the injection point at AI.
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A�

A�

�

A�

H

Figure 3. Representation of a typical poloidal velocity and magnetic field
line. The injection of pairs is supposed to be located on the black dot outside
the ergosphere, A� > A� . Without a magnetic field, energy extraction is
impossible, if the injection point is outside the ergo-region.

In the case of a pure pair fluid, without electro-magnetic field,
ΦEM = 0, on the section of the poloidal field line going from the
black hole to the location of injection (A� ≤ A ≤ AI) (see Fig.
3), we have Ψ� = Cst < 0. In addition Eqs.(37 and 42) imply
that for all A ∈]A� ; A� [ we have Ψ�E(A) = ΦFL (A) = Cst. In this
case, the fluid extraction process cannot be active if the injection
is located outside of the ergosphere. Indeed, if the injection starts
outside of the ergosphere (AI ≥ AE), then for a point outside of the
ergosphere and below the injection point (A� ≤ A ≤ AI) ΦFL,H =

ΦFL (A) = −Ψ�b22 (u · () < 0. In this zone, −Ψ�(A) > 0 (A < A� )
and (u · () < 0 because outside of the ergosphere ( is time-like and
future oriented. This is equivalent to the necessity in the Penrose
process to get the fission of the particles inside the ergosphere.
In the MHD case, we can have extraction via a process of fluid

extraction and have a point of injection outside of the ergosphere
because we can have exchange between the ideal fluid energy flux
and the Poynting flux. Thus, in this case, the Poynting flux increases
as one moves out of the ergosphere while the ideal fluid flux be-
came positive inside the ergosphere, being negative outside of the
ergosphere. Eq.47) implies that the electromagnetic process is active
where 0 < Ω < l� , which is a result already obtained by Blandford
& Znajek (1977).

2 THE MODEL ON THE BLACK HOLE HORIZON AND
ON THE PAIR CREATION LAYER

2.1 Symmetries of the model

In the Newtonian case (` = ; = 0) or with a non rotating black hole
; = 0 the system of equations in the appendix C of Chantry et al.
(2018), a and _ appears only with a square, and then is invariant
under the transformation a ←→ −a or _ ←→ −_. This property
is due to the symmetry of ideal, axisymmetric and stationary MHD
equations in Newtonian gravity or around a Schwarzschild black
hole. Nevertheless, in Kerr configuration the Lense-Thirring term
breaks the previous symmetry. The model system of equations (Eqs
(C.3) and (C.4) of Chantry et al. (2018)) is invariant under sign
transformations preserving the product _a;. Then the model system

of equations is invariant under the following transformations,
_ ←→ −_
a ←→ −a
; ←→ ;

,


; ←→ −;
a ←→ −a
_ ←→ _

or

; ←→ −;
_ ←→ −_
a ←→ a

.

(48)

This question of symmetry of the various models is postponed in a
future work.

2.2 Inflow/outflow model with a thin layer

A careful look of the self-similar model developed in Chantry et al.
(2018) shows that it produces inflow and outflow solutions, starting
from the radius where the poloidal velocity of the flow is zero. This
radius defines the stagnation radius and the stagnation sphere.

We build inflow solution by taking negative values of a. Taking a
negative means that we allow the value of +★ to be negative. Thus it
becomes the radial component of velocity at the intersection of the
Alfvén surface and the axis.

However a negative is not sufficient to distinguish an inflow from
an outflow one. A solution can be interpreted as a physical inflow
only if it accelerates from the stagnation surface towards the black
hole horizon, crossing first the slow magnetosonic surface and then
the Alfvén/Fast magneto surface before reaching the horizon.

In order to describe the MHD field, from horizon to infinite, we
need to use source of material to match under some continuity con-
ditions (matching conditions) an inflow to an outflow. We propose
here to link an outflow and an inflow solutions of the self-similar
model, which have the same stagnation radius, with a thin injection
(pair creation or other processes) layer at the level of the stagnation
surface.

Indeed this means that the pair creation terms :< and k are null
except at the stagnation surface of the solution (a sphere). Similar
kind of double flow are exposed in Globus & Levinson (2013) or
Huang et al. (2019). In the followingwewill use the notations adopted
in the Chantry et al. (2018) model. We also use in and out index to
refer to a quantity calculated just down the stagnation radius (for
inflow) and just up the stagnation radius (for outflow).

The electro-magnetic field source is only due to the electron-
positron four-current. Nevertheless the creation of pairs or other
processes on this thin layer can be at the origin of current and charge
density in the layer, which will imply some discontinuity of some
components of the electromagnetic fields. The surface electromag-
netic sources are then located on the stagnation surface.

2.3 Matching conditions for both flows

First, let us consider some thin layer at the stagnation surface posi-

tion (A ∈
[
Asta −

ΔA

2
; Asta +

ΔA

2

]
) where the pairs are created. The

Maxwell-Flux Eq.(13), the Maxwell-Faraday Eq.(14) and the as-
sumptions of axisymmetry and ideality (Eq.16) ensure the continuity
of the magnetic flux and the isorotation function along the field line
of magnetic field,{

B? · ∇� = 0
B? · ∇Ω = 0

=⇒
ΔA→0

{
[� (Asta, \)]out

in = 0

[Ω (Asta, \)]out
in = 0

. (49)

We require the same stagnation radius for both the inflow and the
outflow, assuming ΔA → 0. Thus the two flows coincide on the
stagnation surface,

Aout
sta = A

in
sta = Asta . (50)
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8 L. Chantry et al.

The stagnation surface is spherical. This induces a continuity of the
radial magnetic field component �Â and, as a consequence, of m\ �.
Thus, the integration of the Maxwell-Flux Eq. (13) on a infinitesimal
volume around the stagnation surface leads that the magnetic field
component �Â , perpendicular to this surface, has to be continuous.
It is equivalent to the continuity of m\ �,

[m\ � ( Asta , \)]out
in = 0 . (51)

Matching inflow and outflow solutions of the meridional self-similar
model (Chantry et al. 2018), the continuity of m\ � is directly obtained
from the continuity of themagnetic flux (first line of Eq.49) and from,

�in/out = �★in/out 5in/out (') sin2 \ . (52)

Here ' corresponds to the dimensionless radius ' = A/A★, where
A★ is the Alfvén radius. Finally, Eq.(51) does not add a matching
constraint since it is equivalent to the continuity of the magnetic field
component �Â across the stagnation layer.

In the same way, the integration of Maxwell-Faraday Eq.(14) on
a small surface delimited by a small loop, using the continuity of
the magnetic flux, induces that the latitudinal electric field compo-
nent, � \̂ , is also continuous on the stagnation layer. We may have a
discontinuity of the derivative mA � on the stagnation layer, and this
jump is due to the toroidal surface current flux, � îf , and the surface
charge density, f4. After integrating the Maxwell-Gauss Eq.(12) and
the Maxwell-Ampere Eq.(15), we get,
−Ω − l
ℎℎA 2

[mA � ( Asta , \)]out
in = 4cf4 ,

1
sℎA

[mA � ( Asta , \)]out
in =

4c
2
�
î
f ,

(53)

where the surface current is defined by � :̂f = lim
ΔA→0

∫ Asta+ΔA/2
Asta−ΔA/2 � :̂dA,

with : = \ or i.
As in Chantry et al. (2018), the equations (Eqs.23,24,29,30) can

be reversed in order to get the expression of the � î component as
a function of the different physical quantities. The toroidal magnetic
field is also linked to the intensity of the charges, which cross the
surface inside a circle CA , \ = {" ∈ Σ | \ (") = \, A (") = A}. In
order to calculate the intensity of the charges across this surface
per unit Boyer-Lindquist time C, we need to calculate the flux of
ℎJ across this surface. We use ℎJ instead of J because the current
flux J is calculated in the ZAMO proper time. Thus we are able
to show, in the frame of our assumptions, that � (A, \) =

∫
DA,\ ℎJ ·

dS = ℎ2s� î

2 . Under axisymmetric and stationarity condition the
poloidal electromagnetic Noether’s flux can be expressed as PEM,p =

−sΩ� î4c2 B? = − �Ω
2cℎ22 B? .

The matching conditions induced by possible electromagnetic sur-
face sources do not impose the continuity of the global current inten-
sity, �, across the stagnation surface. The current is also proportional
to the Poynting flux per unit magnetic flux, ΦEM = −2Ω�2 ). The
global current can be expressed from the inversion of the motion
integrals as it has been done in Chantry et al. (2018) using the cylin-
drical radius per unit of light cylinder radius, G = s (Ω−l)

ℎ2
. For the

current we get,

2�
2
= −Ψ�!

1 −
"2

Alf +
s2Ω(Ω−l)

22

"2
Alf − ℎ

2 (
1 − G2) −

Ψ�E
22

s2 (Ω − l)
"2

Alf − ℎ
2 (

1 − G2) .
(54)

It implies that the continuity of the global current requires another

Figure 4. The current intensity 9 \̂ in the stagnation layer of thickness ΔA
creates a discontinuity of the global current function � .

constraint on how the injected angular momentum ΔΨ�! is related
to the injected energy ΔΨ�E. Since there is no physical reason to
have this requirement, our way of matching can support to have a
discontinuity in the global current.

Eqs.(22,33,34) imply the discontinuity of Ψ�, Ψ�! and Ψ�E on
the stagnation layer. In other words the r.h.s of those three equations
are zero except onto the stagnation surface itself where they are
equal to a Dirac delta function. Thus from Eq.(54), we also get a
discontinuity of the current intensity, �, which is equivalent to a
discontinuity for � î , becoming a discontinuity on the Poynting flux.
It implies the presence of some meridional � \̂f surface current.

A paradox seems to appear because chargesmay accumulate some-
where on the stagnation layer, due to the existence of non null � \̂f .
To solve it, we use a schematic view of constant intensity � tube in
the poloidal surface (see Fig. 4).

In our assumptions ΔA → 0 and we get a discontinuity of the
intensity function, which implies a discontinuity of ℎ� Â . It is linked
to the variation with \ of the surface current � \̂f . Using the charge
conservation, we can calculate the jump of the radial current at a
co-latitude \,

ℎ� Âin (Asta) = ℎ� Âout (Asta) +
1

Σ sin \
m

m\

(
d sin \� \̂f

)
. (55)

Integrating this equation in order to let appear the discontinuity of
the current function, we get,

�in = �out + 2cd(Asta, \) sin \� \̂f . (56)

For each component of the flow, the parameters of the physical
quantities are normalised to their ownAlfvén radius. Thus,we need to
adjust the two components of the flows, such that they correspond to
a black hole of a given mass and spin. From the previous discussion,
we also get a continuity of the isorotation function and the radial
magnetic field component. Then, the matching conditions write,[
A6

]out
in = 0, [0]out

in = 0, [Ω]out
in = 0,

[
�Â

]out
in = 0. (57)

The first three conditions combine with assumption Eq.(50) lead
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to the three following jump conditions for the parameters,

[
'sta
`

]out

in
= 0 ,[

;

`

]out

in
= 0 ,[

`3

2
(
1 + ;2

)2 +
_`3/2

a

√
1 − `

1 + ;2

]out

in

= 0 .

(58)

We use those three conditions for numerical matching. Note that
the third condition ensures the continuity of the isorotation function
across the stagnation surface.
The last equation of Eqs. (57) and Eq. (50) relate the dimension

of the Alfvén radius and magnetic field magnitude of the two flows,
A in
★

Aout
★

=
`out
`in

�in
★

�out
★

=

(
`in
`out

)2
5out
5in

(59)

The second equation ensures the continuity of the magnetic flux. It
imposes the ratio between �in

★ and �out
★ without bringing any extra

constraint. As already seen above, the continuity of the radial mag-
netic field component Eq.(51) is directly derived from the continuity
of the magnetic flux in our model.
Here we do not impose continuity of the Poynting flux between

the inflow and the outflow because pair creation can induce the
production of Poynting flux. Discontinuity of the Poynting flux is
equivalent to discontinuity of the total current intensity � (see Fig. 4
).

2.4 Energetic balance at the stagnation surface

Once, we have the inflow and outflow solutions from our semi-
analytical model, which satisfy the system of Eqs.(58), we deduce
the mass injection rate :< of the pair creation and the 4-force k of
the radiation field on the fluid of pairs. This includes the Compton,
inverse Compton and pair creation. These terms take the following
forms,

:< = :<,sta (\) X (A − Asta) , (60)
k = ksta (\) X (A − Asta) . (61)

The integration on the stagnation surface of Eqs.22, 33 and34 gives
the variation of the mass, angular momentum and energy fluxes. On
the stagnation surface we get the following system,

Ψout
�
(�) = Ψin

�
(�) + 4c2ℎℎA

�Â
:<,sta (\sta (�)) , (62)

(Ψ�!)out (�) = (Ψ�!)in (�) +
4cℎℎA
�Â

/ · ksta (\sta (�)) , (63)

(Ψ�E)out (�) = (Ψ�E)in (�) −
4c2ℎℎA
�Â

( · ksta (\sta (�)) .
(64)

In the outflow, the mass flux is positive, i.e. directed outwards,
whereas in the inflow, it is negative, i.e. directed inwards. Applying
the first condition to Eq.62 implies that for each colatitude we have
4c2ℎ
�Â

:<,sta (\ (�)) ≥
(
−Ψin

�
(�)

)
, which means that the rate of pair

creation needs to be sufficient to reverse the mass flux. The mass,
angular momentum and energy injected per unit time and per unit

dimensionless magnetic flux U, evaluated for the inflow solution, are
given by the following expressions,

d2"Inj
dCdU

= ¤"★Inj
4
`2

out

(
�out
�in

)4
[
2Ψout

�

�out
★

−
(
�2

in
�2

out

)
2Ψin

�

�in
★

]
, (65)

d2�Inj
dCdU

= ¤�★Inj
8
`3

out

(
�out
�in

)4
[
Ψout
�
!out

�out
★ Aout

★

−
(
`out�2

in
`in�2

out

)
Ψin
�
!in

�in
★ A

in
★

]
,

(66)

d2�Inj
dCdU

= ¤�★Inj
4
`2

out

(
�out
�in

)4
[
Ψout
�
Eout

�out
★ 2

−
(
�2

in
�2

out

)
Ψin
�
Ein

�in
★ 2

]
, (67)

with the following constants for the injection,

¤"★Inj =
A6

2�in
★

2

22
, ¤�★Inj =

A6
3�in
★

2

2
, ¤�★Inj =

2A6
2�in
★

2

2
. (68)

To get an order of magnitude for these quantities, we need the black
hole mass and the value of the magnetic field at the Alfvén surface on
the axis for the outflow �out

★ . For M87 the mass of the supermassive
black hole is "� ≈ (6.6 ± 0.4) × 109"� (Gebhardt et al. 2011).
On the axis of the M87 jet, Kino et al. (2014) give at the distance
of 20A6 a magnetic field of the order of few Gauss, �(20A6) ≈
5 ± 4 G. In our model, along the axis �A = �★/�2 (see Chantry
et al. 2018). We restrain ourselves to solutions with Asta < 20A6.
In a recent publication, the Event Horizon Telescope Collaboration
uses polarised emission imaging to estimate the magnetic field. They
obtain a typical value of � ≈ 1− 30 G in the region near the horizon.
They also use a one-zone isothermal sphere model to estimate the
magnitude of the magnetic field and get ≈ 5 G at 5A6. For solutions
with Asta < 5A6 we prefer to use the last observational constrain to
fix the value of �out

★ . Then �in
★ is calculated using the last equation

of Eq.(59).
Since the fluxes are conserved in the inflow, along a givenmagnetic

field line, which crosses the horizon of the black hole, and using
Eqs.39 and 40), the fluxes are related to the variations of the black
hole mass, angular momentum and energy. This writes,

(Ψ�!)out (�) = − 3
2�H
3C3�

(\H (�)) +
4cℎ
�Â

b · ksta (\sta (�)) , (69)

(Ψ�E)out (�) = − 3
2"H2

2

3C3�
(\H (�)) −

4c2ℎ
�Â

[ · ksta (\sta (�)) .
(70)

Thus for a line, which crosses the black hole horizon, the flux at
infinity is constituted from the flux given by extraction from the black
hole and the flux given by the photons which are transformed into
pairs.

In the frame of the model proposed by Chantry et al. (2018), the
rate at which energy is extracted from the rotating black hole is,

− 3��
3C

=

∫ ��

0
Ψ�E3� = �2

★,inA
2
B2

ℎ2
★a

2`3/2 ¤F (U� , X, 41) , (71)

with,

¤F (U� , X, 41) =
2

3X

{
(1 + XU� )3/2

(
1 + 341U�

5
− 241

5X

)
− 1 + 241

5X

}
≈
X→0

U� +
41U

2
�

2
+
XU2
�

4

(
1 + 241U�

3

)
.
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Solution _ ^ X a ; ` Π★ 41

M1 I1 0.036 0.468 0.075 −1.79 0.12 0.442 1.4 −0.21
O1 0.985 0.230 1.328 0.386 1.016 × 10−2 3.758 × 10−2 6.892 × 10−3

M2 I2 0.392 1.341 0.355 −1.562 0.17 0.807 0.859 −0.349
O2 0.998 0.280 1.296 0.234 6.502 × 10−3 3.012 × 10−2 6.892 × 10−3

M3 I3 0.388 5.898 0.259 −1.443 0.25 0.978 0.275 −0.555
O3 1.171 0.291 1.319 0.600 4.767 × 10−2 0.184 −6, 268 × 10−2

Table 1. Input parameters for the three solutions. For each of them, the first line presents the parameters for the inflow solution and the second line the parameters
for the outflow solutions. The parameter _ is the dimensionless ratio of angular momentum flux per unit of magnetic flux. The parameter ^ is the deviation
from spherical symmetry of the pressure, while X is the deviation from spherical symmetry of the number density/enthalpy ratio. a is the escape speed per unit
velocity of the fluid at the Alfvén point, along the polar axis. ; is the dimensionless black hole spin and ` the Schwarzschild radius per unit Alfvén radius. Π★ is
the dimensionless pressure at the Alfvén point along the polar axis and 41 the deviation from spherical symmetry of the total energy.

Solution 0 Ω/l� Asta/AH Wmax,ax b★

M1 I1 0.5429 6.2167×10−2 3.1777 15 3430
O1 0.5410 6.2047×10−2 3.1771 1.47 1.42

M2 I2 0.4316 9.6912×10−2 1.5031 11 1360
O2 0.4316 9.6912 ×10−2 1.5031 4 1.5

M3 I3 0.5189 0.5022 1.1755 12 1470
O3 0.5189 0.5022 1.1750 10 19.6

Table 2.We give 0 the dimensionless black hole spin,Ω/l� the dimension-
less isorotation frequency and Asta/A� the dimensionless stagnation radius
using minimal matching conditions, for the three solutions M1, M2 and M3.
The two last columns give the maximum Lorentz factor along the fluid axis
and the effective enthalpy b★ at the Alfvén point, on the polar axis.

3 DOUBLE FLOW SOLUTIONS

3.1 Parameters of three matching solutions

As explained in Chantry et al. (2018), a complete solution is fully
determined by eleven parameters. Eight of them (_, ^, X, a, ;, `,Π★
and 41) are the input parameters, which are required to solve the
ordinary differential equations system (see Appendix C of Chantry
et al. 2018). For the outflow solution, the Π★ value is automatically
adapted by lowering its value to the limiting value to avoid oscilla-
tions in the jet. Thus the non-oscillating outflows are determined by
seven input parameters. Conversely, inflows are determined by eight
parameters, as Π★ remains free.

A necessary condition, to extract energy from the black hole, is
to choose negative values of 41 for the inflow solution. In this case,
it is possible to inject negative energy (see Eq.(60) of Chantry et al.
2018), as long as the black hole accretes enough magnetic flux. The
magnetic flux on the equator of the black hole horizon must be higher
than the minimum threshold value. In dimensionless form, it writes
as U� > −1/41. In Tab.(1), we give the set of input parameters
used for building three inflow/outflow solutions of the meridionally
self-similar model.
We show in Tab.(2) the output results of our three solutions, under

minimal matching conditions Eq.(58). We give 0 the usual dimen-
sionless black hole spin in unit of the gravitational radius,Ω/l� the
isorotation frequency in unit of angular velocity on the black hole
horizon, and Asta/A� the stagnation radius in unit of black hole hori-
zon radius. We also give, for the three global solutions, the maximum
Lorentz factor and b★ the effective enthalpy at the Alfvén point, both
along the polar axis.

We choose the input parameters, both for the inflow and the out-
flow, in order to satisfy specific conditions for the solutions and to
match them under the minimal conditions. We require the final out-
flow Lorentz factor on the axis to be higher than 10. The variation
of the Lorentz factor with the magnetic flux in the inflow is negative
or null on the north pole horizon. Thus, we use numerical gradient
descent techniques in the parameter space (see Appendix C).

We start by building three inflow solutions with different kind
of energy exchange with the black hole that satisfy our constraints.
Then using the numerical descent technique, we build three outflow
solutions matching, each matching one of our inflow solution.We get
a discrepancy for 0, Ω/l� and Asta/A� between the inflow solution
(I1, I2 or I3) and the outflow solution (O1,O2 and O3 respectively)
lower than 10−2. The parameters are listed in Tab.(2). The numerical
value of Wmax,ax is not infinite on the black hole horizon, along
the axis. It is numerically impossible to get an inflow solution with
W = +∞ on the horizon so we choose to have Wmax,ax > 10. We
could tune Π★ in the inflow to get this constrain for W close to the
horizon. As explained in AppendixA, this implies that theΠ function
behaviour near the horizon is close to ln(' − '� ), but at a smaller
radius starts to behave as 1/('− '� ). Instead of adapting the inflow
Π★ in order to increase Wmax,ax, we prefer to keep a degree of freedom
to solve the difficulties of the matching conditions. Let us also remind
that, in the outflow with high asymptotic Lorentz factor, this factor
deviates slightly from its maximal value in the asymptotic regime.
This is due to numerical reasons, because it is not possible to get a
sufficiently precise value ofΠ★ to tune it to the non oscillating value.

To obtain the solution we also need to fix the value of the three
parameters " , �★ and b★. The geometry and the velocity profiles
of one solution are not depending on these free parameters. We set
the black hole mass to 6.6 × 109"� , which is the value mention in
Gebhardt et al. (2011) for the M87 black hole mass. This is within
the range measured by the Event Horizon Telescope Collaboration,
" = 6.5 ± 0.7 × 109"� . As discussed above, we use observational
constraints to fix themagnitude of the second parameter, themagnetic
field strength �★. Since the solutionM1 has a stagnation radius larger
than 5A6, we use �(20A6) ≈ 1G and we take �★,out ≈ �2

out (20A6)G.
For solutions M2 and M3 the stagnation radius is lower than 5A6,
then we use �(5A6) ≈ 4.9G and we take �★,out ≈ 4.9�2

out (5A6)G.
We put in Tab.(3) the values of �in

★ obtained for each solution.

Once the value of �★ is determined, the value of d★b★ is known
from the definition of the Alfvén surface. From Eqs.(73) and (74)
of Chantry et al. (2018), the effective enthalpy and the mass density
fields are scaled by the factors b★ and d★, respectively. Once b★ is
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given, both the effective enthalpy and the mass density field scaling
are fixed .
We choose b★ for the outflow solution as in Chantry et al. (2018),

such that the effective internal energy at infinity on the axis reduces
to the internal energy of a gas at thermodynamic equilibrium.
Zamaninasab et al. (2014) define a scaling-law Φ/jet =

5
/

√
¤"2

( AB
2

)2
between the magnetic flux of the jet and the total

disk accretion rate ¤" . They deduce from observations a value of
5
/
∼ 50. They assume that the jet power is the result of a pure

Blandford-Znajek mechanism. Thus they deduce that the black hole
magnetic flux ΦBH.

We use a similar scaling law for the black hole magnetic flux

ΦBH = 5

√
¤"Inf2

( AB
2

)2
and the inflow mass rate. Our scaling factor

5 must be larger than 5/ since the magnetic flux of the jet is only part
of the one threading the black hole in the inflow zone. We choose
5 ∼ 150, a value three times higher than 5

/
∼ 50, because we choose

¤"inf of order one tenth of ¤" for the same magnetic fluxΦBH. In our
model the efficiency to create magnetic flux from the pair inflow is
higher that the one deduced from standard Blandford-Znajek theory
applied in the jet at 1 pc. This scaling law is used to define the value
of b★ in the inflow.
Thus, from the model we can derive,

Φ2
BH ≈

√
`b★W★

(
1 +

√
1 −

(
2;
`

)2
)

|a |ℎ★�2
�

¤"inf2
( AB

2

)2
, (72)

which leads to,

b★ =
|a |ℎ★�2

�

√
`W★

(
1 +
√

1 − 02
) 5 2 , (73)

where all the quantities are evaluated in the inflow.

3.2 Field line geometry with quasi-isotropic coordinates

Fig.(5) shows the fieldline geometry of the matching solutions. We
plot for each solution a zooming view of the field lines close to the
environment of the black hole for the inflow, and a larger view of
the outflow, including the external light cylinder. Instead of using
a simple Cartesian version of the Boyer-Lindquist coordinates, or
what is called pseudo-Cartesian coordinates, we opted for the use of
so-called quasi-isotropic coordinates. In Chantry et al. (2020) we dis-
cussed in details their properties. This choice of coordinates presents
two main advantages. First, it allows a conformal representation and
therefore a correct representation of the angles. Thus the property
of the orthogonal field line penetration into the horizon is correctly
visualized. Secondly, these coordinates expand the representation in
the black hole environment, which allows to show more details in
this area.
We plot in the left panel of Fig.(5) the poloidal field geometry

only for the open field lines linking the black hole horizon to infinity
(� < �mag). First, our model (inflow and outflow) is deduced from
an expansion to second order of the colatitude in Euler’s equations.
This explains why it is physically relevant close to the axis and in the
region with small colatitudes. For a given second order expansion
in colatitude we should quantify the deviation to the equilibrium of
Euler’s equations and normalize with the strongest volumic force to
estimate the region of validity. This calculation is quite complicated,

and we decide to examine the solutions inside of the region defined
by the last open field line which contains the region of validity.

Second, we cannot use our model for the magnetospheric dead
zone (� > �mag and A < Amag). It would induce artificial source
terms on the equatorial plane with A� < A < Amag. For A > Amag
the source terms could be explained by the presence of the accretion
disk but we prefer to avoid this region in our modelling.

As explained in Takahashi et al. (1990), the stagnation surface and
the injection are located between the two light cylinders. All the field
lines are continuous but not C1 at the stagnation surface. On this
surface there is a kink in the fieldlines related to the surface current
density. Two different trends are observed for the the expansion factor
of the streamlines �. In the matching solutions M1 and M2, the field
lines are flaring more in the starting region of the inflow than at the
base of the outflow �sta,in ≥ �sta,out. The situation is the opposite
for the M3 solution �sta,in ≤ �sta,out. The corotation surface location
appears below the stagnation surface for the solution M1 and above
for the solutions M2 and M3. The larger isΩ, the smaller is the mean
radius of the corotation surface.

We also observe different sizes for the inflow. The size of the last
open line in the magnetosphere is significantly larger for the M2
solution. The size of the magnetosphere of the M2 solution reaches
on the equatorial plane an approximate value of 75A6. This is slightly
larger than the Alfvén radius of the outflow. While for the other
solutions, the magnetosphere is located inside the Alfvén surface
and reaches approximately 40A6 for solution M1 and 8A6 for solution
M3, on the equatorial plane. The open lines represent 14% of the
total magnetic flux passing through the black hole horizon for M1,
less than 1% for M2 and around 8, 5% for M3.

3.3 Interface between inflow and outflow

The interface corresponds to the region with poloidal velocities close
to zero. This region, in our model, is the one where the flow is loaded
via creation of pairs or any other mechanism. In fact, the matching
of the inflow and the outflow solutions puts some constraints on
the loading terms, as detailed in Subsec. (2.4). Once the matching
of the two solutions is obtained the injection or loading terms can
be calculated. First, we discuss the surface charge density and the
toroidal current flux sources we obtain at this interface. Then we
explain how we inject mass, angular momentum and energy.

3.3.1 Electromagnetic sources on the stagnation surface

The electromagnetic sources on the stagnation surface are fully de-
termined by f4 and � \̂f because the ratio of f4 on � îf is given by
Eq.(53),

f42

� î
= −s (Ω − l)

ℎ2
= −G , (74)

where G is the dimensionless cylindrical radius.
First, let us note that the sign of f4 is the same as the one of
−(�sta,out −�sta,in) (Ω−l)sta. We plot f4 and � \̂ on Fig.(6). For the
M1 solution, the corotation surface is located below the stagnation
surface where Ω > l. We observe that �sta,out < �sta,in and the
flaring of the poloidal field lines increases where they cross the stag-
nation surface (see Fig.(5)). These two facts explain the positive sign
of f4 and the negative one of � î . For M2, the corotation surface is
above the stagnation surface. The same increase of the magnetic field
line flaring occurs at the crossing of the stagnation surface implying
f4 < 0. For the last solution M3, the corotation surface is also above
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Figure 5. Poloidal field lines on two different scales for the three solutions (M1 top solution, M2 middle one and M3 bottom one). On the left we zoom inside
the stagnation radius, and on the right the scale encloses the outer light cylinder radius. The red arrows represent the mass flux d0ℎWV? and the thin blue lines,
the poloidal magnetic field lines. The thick blue line marks the last open magnetic field line of the flow connected to the black hole. The yellow line represents
the position of the corotation surface where Ω = l. The cyan circle corresponds to the stagnation surface, the green ones to the slow-magnetosonic surfaces
and the magenta ones to the Alfvén surfaces. The light cylinder surfaces are marked both in black. The magnetosphere is represented in purple, the open line
flow region in light red. The region where we expect the disk wind is in green, the ergoregion in light gray and the inner horizon region in black. We used
quasi-isotropic coordinates to plot this figure.
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Figure 6. Surface electromagnetic sources as a function of the colatitude
for the different solutions. The top solution is M1, the middle one M2 and
the bottom one is M3. In red, the surface density of charge is plotted as a
function of the colatitude and, in blue, we plot the dimensionless toroidal
surface current. The vertical dotted green lines represent the colatitude on the
stagnation surface of the last open poloidal magnetic field lines.

the stagnation surface but the flaring of the magnetic poloidal lines
decreases across the stagnation surface implying �sta,out > �sta,in
and f4 > 0.

As it can be seen on Fig.(6), � \̂f is negative for M1 and positive for
M2 et M3. The sign of � \̂f is determined by the direction of the shift
at the stagnation surface of the current line with � = cst (see Fig.(4)
where � \̂f < 0). A positive surface current � \̂f implies a decreasing

of the current � across the stagnation surface (see Eq.(56) and then a
increasing of the Poynting flux ∝ −�Ω.

3.3.2 Loading terms

The loading terms bring mass, angular momentum and energy to the
MHD fields and to the black hole. Here these quantities are the result
of the minimal matching conditions given by Eq.(58).

The injection terms are proportional to the scaling factor Eq.(68)
determined by the value of �in

★ . We already gave an estimation of
the magnetic field along the polar axis at the Alfvén radius for the
M87 black hole (see Tab.(3)). We found �★,out ≈ �2

out (20A6)G for
M1 and �★,out ≈ 4.9�2

out (5A6)G for M2 and M3. From this value,
we can estimate, for the inflow solution, the alfvénic magnetic field
on the axis �★,in and the magnetic field on the black hole horizon
�� . For the three solutions we get a magnetic field on the black hole
horizon between 300 and 600 Gauss. Eq.(68) allows us to estimate,
for the inflow solution, the constant values for the mass, energy
and angular momentum injected per unit time and dimensionless
magnetic flux, U. These quantities have been calculated for the three
global inflow/outflow solutions as shown in Tab.(3).

Now,we can compare the physical quantities for the threematching
solutions with the ones obtained by other works. They depend on the
considered phenomena and injection models. For example, let us
evaluate the amount of mass that can be injected via pair creation
from hard photons emitted by the accretion disk. Following Levinson
& Segev (2017), the injection rate per unit volume is estimated as
fWW=

2
W2, where =W is the density of hard photons with an energy

nW (nW > 1 MeV ≈ 2<422). We use the Thomson cross section
fWW ≈ 6, 6 × 10−25 cm2 for estimating the cross section of pair
production. Now let introduce the dimensionless radius of the hottest
part of the disk 'W = AW/A6, the dimensionless mass < = "/"� ,
and the dimensionless luminosity ℓW = !W/!Edd, where !W is the
luminosity of hard photons and !Edd the Eddington luminosity. Then
the luminosity, coming essentially from the disk, is related to the
photon density !W = 4cA2

W=W2nW , which leads to,

=W ≈ 1022 ℓW

<'2
W

cm−3 . (75)

Then we estimate the mass injection rate,

¤"Inj ≈ 1, 6 × 1020 ℓ
2
W<

'4
W

g.s−1 . (76)

Using values of luminosity mentioned in Prieto et al. (2016) forM87,
we get ℓW ∼ 10−7−10−4. Taking< ≈ 6×109 and 'W ∼ 10−102, see
Event Horizon Telescope Collaboration 2019 for the dimension of
the emission ring. Note that Event Horizon Telescope Collaboration
(2021) have shown, using their library of disc models, that the inner
radius of the disk lays within ≈ 10 − 20A6. From these estimates,
we get ¤"Inj = 108 − 1020 g.s−1. The factor '−4

W makes this estimate
extremely sensitive to the value of 'W . Calculations based on Pu
et al. (2015), with different matching conditions, lead to similar
conclusions.

Nevertheless,manyworks (Levinson&Rieger 2011,Hirotani et al.
2016) show that this injection does not allow to reach the Goldreich-
Julian density necessary for the screening of the transverse electric
field. In this case, spark gap may form (Levinson & Segev 2017)
along the magnetic field. The electric acceleration combined with
Compton and Inverse Compton processes allow an additional source
of pair production. This mechanism leads to mass injection in the
lower range, up to 1011−10126.B−1, which is a bit low for ourmodels.
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Solution �in
★ �� ¤"★

Inj
¤�★Inj

¤�★Inj
(cm−1/2.g1/2.s−1) (cm−1/2.g1/2.s−1) (g.s−1) (g.cm2.s−1) (erg.s−1)

M1 8, 7 × 101 5, 84 × 102 1.21 × 1023 3.56 × 1048 1.09 × 1044

M2 8, 2 × 101 4.7 × 102 1, 1 × 1023 3.2 × 1048 9.8 × 1043

M3 1, 3 × 102 3, 19 × 102 2.62 × 1023 7.7 × 1048 2.36 × 1044

Table 3. In the first and second columns we give the estimated values of the magnetic field on the inflowAlfvénic point and on the black hole horizon, respectively.
In the three last columns we plot the constant values for the mass, angular momentum, and energy per infinitesimal intervals of time and of dimensionless
magnetic flux for a black hole mass equal to the one of M87. Each line corresponds to one of the three inflow/outflow solutions of the meridional self-similar
model. We use � (20A6) ≈ 1G to calculate �out

★ for the solution M1 since the stagnation radius is around 5A6 and � (5A6) ≈ 4.9G for the two other solutions,
M2 and M3.

However, recent works with particle-in-cell simulations (e.g. Crin-
quand et al. (2021)) explore the dynamics of the formation of such
gap and the role of magnetic reconnection allowing to visualise the
location of pair formation. Their conclusions tend to suggest that
gaps are intermittent. Thus, we use more recent radiative GRMHD
simulations to give a more precise estimation of the mass injection
rate (Yao et al. 2021). Fig.(10) of this publication gives an average
in time of the pair production rate as a function of the radial dis-
tance in a region close of the axis. Assuming spherical symmetry
and the value mentioned in this plot for the MAD W18 disk model,
we can estimate the total injected mass. We obtain a total amount of
2.5<3

9 × 1014 g.s−1, where the black hole mass is <9 × 109"� . For
M87, it gives a total injected mass ≈ 8 × 1016 g.s−1. This amount is
sufficient to screen the electric field and avoid the formation of the
spark gap along the axis region close to the black hole.

Globus & Levinson (2013) explored the injected critical mass for
which no extraction occurs. For a cold flow and a magnetic flux
≈ 1027 G.cm2, which crosses the black hole, the mass flux limit
find by the authors depends from the value of 0 and \ but is around
1025 − 1030 g.s−1.

In Tab.(4), we put the minimum, the maximum and the mean
value of the injected mass per unit time and per unit dimensionless
magnetic flux. After integration for � < �mag, we obtained the
total injected mass and the injected mass in the inflow per unit time.
These values are put in the Tab.(4). In the first column we indicate
the dimensionless magnetic flux for the last open magnetic field
line of the outflow. Note that the values of UMag are similar for the
three global solutions, despite the large variation of the sizes of the
magnetosphere on the equatorial axis.

In Tab.(4) the total injected mass is, for M2 and M3 in the upper
range of the estimation based on the EHT emission ring size. We get
a larger value only for solution M1. Globally, we obtain an injected
mass which is two to four orders of magnitude higher than the one
obtained by Yao et al. (2021). For the M1 and M3 solutions, most
of the injected mass per unit time is flowing outward, quantitatively
80% for M1 and 66% for M3. Conversely, for the M2 solution, only
6% of the total injected mass per unit time is flowing outward.

In Fig.(7) we plot in blue the injected angular momentum rate per
unit dimensionless magnetic flux. Its sign is positive for solutionsM1
and M3 and negative for solution M2. The total amount of angular
momentum rate per unit time is equal to (10−3 − 10−2)�★inj. We
also plot the injected power per unit magnetic flux. This quantity
decreases slowly with the magnetic flux due to the negative value
of 41 for the inflow solutions. The order of magnitude of the total
amount of injected energy is 5.4 × 100�★inj for M1, 6.3 × 10−2�★inj
for M2 and 10−1�★inj for M3.

3.4 Kinetic and dynamics of the inflow

Fig.(8) shows the fluid celerity WV measured by the ZAMO observer
along the polar axis. The Lorentz factor reaches relatively high values
(10 − 25) as expected. In fact the parameters could be tuned in order
to have W −→ +∞ and to smooth the pressure function Π behaviour
close to the black hole horizon.

Consider the forces acting on the inflow. The situation is quite
similar for the different solutions. We plot in Fig.(9) the transverse
and longitudinal forces for a field line close to the axis for solution
M2.

The upper part of Fig.(9) represents the transverse forces for the
M2 inflow solution. Positive values correspond to the collimating
forces. Near the stagnation surface the gravitational force is the main
decollimating force, which is in quasi-equilibrium with the sum of
the magnetic forces (i.e. basically the magnetic poloidal pressure
and the magnetic tension) and the pressure gradient. Near the black
hole the gravitational and electrical forces (decollimating) are in
equilibrium with the magnetic forces, i.e. essentially the magnetic
poloidal tension, plus the poloidal advection force.

The bottom part of Fig.(9) corresponds to the longitudinal forces.
Negative (positive) values means that the forces are directed towards
(outwards) the black hole center. The main force driving the flow
is gravity. The pressure also plays an important role in the part of
the flow where the acceleration decreases the pressure, i.e. by a
cavitation effect. The main opposite force is due to the fluid inertia,
the advection term, plus the pressure at the stagnation layer and on
the black hole horizon.

3.5 Energy exchange between the black hole and the MHD
fields

We plot on Fig.(10) Noether’s energy and angular momentum ex-
change between the MHD inflow and the black hole. The colatitude
of the open field lines at the black hole horizon is plotted by green
dotted points. We have drawn Noether’s energy and the angular mo-
mentum exchange beyond this angle because we were interested for
getting the different energy fluxes beyond it. Furthermore the fluxes
on the black hole are determined by the MHD fields on the hori-
zon. In terms of the outflow model parameters (_, ^, X, a, `, ;, 41),
the matching conditions bring three effective constraints on model
parameter. Then we expect that for a fixed outflow, which satisfies the
Eq.(58), there is a 7 − 3 = 4 dimensional submanifold of the outflow
parameter space of matching solutions. Because we impose that the
last inflow field line corresponds to the last open outflow field line,
the colatitude of this last field line on the horizon depends also of the
chosen outflow solution.

Angular momentum is extracted from the black hole for each
inflow/outflow solution for the whole range of colatitude except on
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Solution UMag
1
¤"★Inj

d2"Inj
dCdU

����
Min

1
¤"★Inj

d2"Inj
dCdU

����
Max

〈 1
¤"★Inj

d2"Inj
dCdU 〉 ¤" tot

Inj
¤" tot

Inj,in

M1 0.95 8.2 × 10−3 1.12 × 10−2 9.7 × 10−3 1.1 × 1021 g.s−1 2.4 × 1020 g.s−1

M2 0.99 8.63 × 10−5 8.87 × 10−5 8.8 × 10−5 9.5 × 1018 g.s−1 8, 95 × 1018 g.s−1

M3 0.98 8.25 × 10−4 1.12 × 10−3 9.7 × 10−4 1.3 × 1020 g.s−1 4, 3 × 1019 g.s−1

Table 4. The first column indicates the dimensionless magnetic flux for the last open magnetic field line, which marks the limit of the magnetosphere in
the outflow. In the second, third and fourth columns, we give the minimum, the maximum and the mean value of the mass injected per unit time and unit
dimensionless magnetic flux, at the stagnation surface, for � < �mag, respectively. The fifth and sixth columns five give the total mass injected and the mass
injected in the inflow per unit time at the stagnation surface for � < �mag, respectively. Each line corresponds to one of the three inflow/outflow solutions.
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Ė
In

j

d
2
E

In
j

d
td
α

0 0.25αmag 0.5αmag 0.75αmag
αmag

α

0.0e+00

5.0e-03

1.0e-02

1.5e-02

2.0e-02

2.5e-02

3.0e-02

1 J̇
In

j

d
2
J

In
j

d
td
α

9.80e-02

9.90e-02

1.00e-01

1.01e-01

1.02e-01

1.03e-01

1.04e-01

1.05e-01

1

Ė
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Figure 7. Injected angular momentum and energy at the interface per unit
time and dimensionless magnetic flux as a function of the magnetic flux for
the different solutions. On top, we plot M1 (UMag ≈ 0.95), in the middle M2
(UMag ≈ 0.99) and at the bottomM3 (UMag ≈ 0.98). The angular momentum
is plotted in blue. It is divided by its scaling value �★inj. The energy is plotted
in red and divided by its scaling value �★inj.

the axis. If we look at the Fig.(10), the amount of extracted angular
momentum in dimensionless units has a maximum which varies by
one order ofmagnitude from solution to solution. Nevertheless taking
into account the constant values in Tab.(3), we calculate the extracted
angular momentum integrated over the open field lines and on the
whole black hole horizon. These values are mentioned in columns
two and three of Tab.(5). On the open field lines, there is one order
of magnitude difference for the extracted angular momentum at the
black hole horizon, ¤�H,open, between M3 and M1 solutions. But on
the whole black hole horizon, M2 extracts more efficiently angular
momentum than the two other solutions. This result is due to the very
small extension of the open field line region on the black hole horizon
for the M2 solution. For open field lines, we note that the extracted
angular momentum on the black hole horizon is of the same order
of magnitude as the injected angular momentum at the stagnation
surface.

None of our solutions are capable of having a positive global
extraction of Noether energy along the open magnetic field lines.
This is due to the fact that, close to the axis, the inertial energy
(see Eq.(42)) is dominant. This energy is negative on the black hole
horizon. For the global solutions M2 and M3, there is a positive
extraction of energy but only at colatitudes close to the equatorial
plane. We tried with our gradient descent method (see Sec. C) to
tune the inflow parameters in order to decrease the angle where the
global extraction starts. We need further studies to see if solutions
exist with a global extraction of Noether’s energy occurring on some
of the opening magnetic field lines. However, this may be an intrinsic
limitation of our model, due to the self-similarity.

As presented above, the Noether energy flux of theMHDfields can
be decomposed in three main terms, the inertial energy term, Φ" =

Ψ�ℎWb2
2 strictly negative on the black hole horizon, the Lense-

Thirring term, ΦLT = Ψ�Wbsl+
î , and the Poynting flux, ΦEM =

−ℎsΩ� î . In Fig.(11), we plot these fluxes per unit colatitude. In the
first solution M1, the energy flux is fully dominated by the fluid one
and the Poynting flux is extremely small. This could be explained by
the value ofΩ/l� (see Tab.(2)). The Lense-Thirring flux is negative
which means that the fluid falls into the hole with positive+ î . In the
second solution M2, the Poynting flux is still small, but outside of
the open field lines the Lense-Thirring flux is positive. For biggest
colatitudes, the Noether energy flux of the fluid, the sum of ΦLT and
Φ" ), become positive, which means that the Penrose fluid process is
efficient. In the last solution M3, we get almost the maximum value
of 0.5 for Ω/l� . The Poynting flux starts to be important even in
the open field line region.

Blandford & Znajek (1977) derived the Poynting flux, using the
boundary conditions given by Znajek (1977) close to the black hole
horizon in Carter tetrad. In ourmodel these boundaries conditions are
induce by the ideal conduction Eq.(16) if the poloidal velocity in the
ZAMO frame is equal to the speed of light. If we use this condition
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Figure 8. Plot of the celerity VW of the inflow plasma along the axis as a
function of the quasi-isotropic radial distance for the different solutions, M1
on top, M2 in the middle and M3, bottom. The vertical lines correspond to
the different critical surfaces, namely, the Alfvén one in dotted magenta,the
slow-magnetosonic one in dotted green and the stagnation surface in red. The
grey shaded area corresponds to the inner part of the black hole horizon.
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Figure 9. For the inflow of solution M2, we plot the transverse forces as
function of the quasi-isotropic radial distance, on top, with a positive value
for forces directed inward the flux tube. We plot the longitudinal forces,
bottom, with a positive value for decelerating forces. The grey shaded area
corresponds to the inner part of the black hole horizon.

in ZAMO tetrad, we also get � î + � \̂ = 0 on the horizon. In our
model, at first order in colatitude, the fluid enter in the horizon with
+ \̂ = + î = 0 (see Chantry et al. (2018)). If we tune the parameter
such that + Â = −2 on the horizon pole this condition is immediately
satisfied to order one with colatitude, as a consequence of infinite
conductivity.We find for the Poynting power extracted from the black
hole between the colatitudes 0 and \,

¤�Poy
H (\) =

∫ \

0
ℎsΩ� \̂

3�

3\
3\

=4
Ω

l�

(
1 − Ω

l�

)
2Φ2

BH
128c2A2

6

02

1 +
√

1 − 02 − 02/2∫ \

0

sin \
1 − 02

2
(
1+
√

1−02
) sin2 \

(
3

3\

�

��

)2
3\ , (77)

where 2c�� = ΦBH and � is evaluated on the horizon and a function
of \ only. The Poynting power is then determined by Ω and the mag-
netic flux function � on the black hole horizon. No fluid quantity is
entering in this expression. It means that we obtain a Poynting power
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Ė
In

j

d
2
E

ex
tr

a
ct

d
td
θ

−π/2 −π/3 −π/6 0 π/6 π/3 π/2

θ

0.0e+00

5.0e+00

1.0e+01

1.5e+01

2.0e+01

2.5e+01

1 J̇
In

j

d
2
J

ex
tr

ac
t

d
td
θ

-6.0e+00

-5.0e+00

-4.0e+00

-3.0e+00

-2.0e+00

-1.0e+00

0.0e+00

1.0e+00

1

Ė
In

j

d
2
E

ex
tr

ac
t

d
td
θ

−π/2 −π/3 −π/6 0 π/6 π/3 π/2

θ

0.0e+00

5.0e-01

1.0e+00

1.5e+00

2.0e+00

2.5e+00

3.0e+00

1 J̇
In

j

d
2
J

ex
tr

a
ct

d
td
θ

-8.0e-01

-7.0e-01

-6.0e-01

-5.0e-01

-4.0e-01

-3.0e-01

-2.0e-01

-1.0e-01

0.0e+00

1.0e-01

1

Ė
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Figure 10. Global balance on the black hole horizon of the Noether energy
and angular momentum for the three solutions,M1 on top,M2middle andM3
bottom. In red, the dimensionless extracted Noether angular momentum per
unit colatitude and time. In blue, the dimensionless extracted Noether energy
per infinite intervals of colatitude and time. The dotted green lines indicate
the colatitude of the last magnetospheric field line at the horizon radius.

similar to the one obtained in the free-force assumption (Blandford
& Znajek 1977, see also Eq.(26) of Globus & Levinson 2013).

3.6 Outflow energy and angular momentum sources

Now we can compare the sources of injected angular momentum, in
dimensionless units, by pair injection in the stagnation surface and
by the black hole. In Tab.(5), we note ¤�H,open the angular momentum
flux extracted from the black hole and ¤�inj,open the angular momen-
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Ė
In

j

d
2
E

E
x
t

d
td
θ

−π/2 −π/3 −π/6 0 π/6 π/3 π/2

θ

-8e-01

-6e-01

-4e-01

-2e-01

0e+00

2e-01

1

Ė
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Figure 11. Noether energy flux component per unit colatitude flowing across
black hole horizon in function of the colatitude for the three solutions (M1 on
top, M2, middle andM3, bottom). In red the Poynting flux, in blue the inertial
flux, in green the Lense-Thirring flux and in black the total MHD flux. As
before the dotted green lines indicates the colatitude of magnetosphere field
line at horizon radius.
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tum flux injected by pairs creation. Both fluxes are limited to the
inner region of open magnetic field lines. For the M1 and M3 solu-
tions, the angular momentum injected by pair creation, ¤�inj,open, is
of the same order as the angular momentum extracted from the black
hole, ¤�H,open. However note that for M2 the pair creation causes an
absorption of angular momentum, ¤�inj,open < 0, two orders lower
than the injected angular momentum in M1 and M3. This is equiv-
alent to say that the total angular momentum flux transported in the
open magnetic field region of the inflow is larger than the one in the
outflow.
In Tab.(5), ¤�H,tot is the total amount of angular momentum ex-

tracted from the black hole. This total amount is larger than the
angular momentum extracted into the inner region bounded by the
open field lines. This is partly due to the fact that the colatitude of the
last open magnetic field line is quite small on the black hole horizon,
namely, \open,H = 0.125c for M1, 0.03c for M2, and 0.10c for M3.
Note that the ratio between the extracted angular momentum rate for
the total and the inner regions is much higher for the M2 solution. On
the inner region, the value of ¤�H,open is of the same order for M1 and
M3 solutions, while there is a variation for ¤�H,tot between solutions
M2 and M3. Changes are due to the variation of \open,H but also to
the changes in the magnetic field and the stagnation radius between
the three solutions.
In Tab.(5) we plot the injected power by the pairs into the inner

region ¤�inj,open, and the power extracted from the black hole into the
inner region ¤�H,open. In order to quantify the weight of the Poynting
flux in the energetic balance, we also list the extracted Poynting
power into the inner region ¤�Poy

H,open. We also gives the total power
¤�H,tot, the total Poynting power extracted from the black hole ¤�Poy

H,tot.
In Tab.(5) the last column is the outflow total power.
If most of the injected energy flux is going down in the inflow, we

already remarked that most of the mass is moving outwards for the
M1 and M3 solutions. Nevertheless the analysis in terms of mass is
depending on the b★ value. This is a free parameter which does not
change the analytical solution. This value for the inflow depends on
the choice of the ratio between the inflow mass rate and the black
hole magnetic flux. b★ of the outflow is given by the choice of %0 (see
Eqs. 54 & discussion in sub-section 5.2 of Chantry et al. (2018)).
In the inner region, the solutions present a negligible Poynting

power ¤�Poy
H,open in comparison to the power extracted from the black

hole ¤�H,open. I3 inflow solution has been optimised to reach the
canonical value of Ω/lH = 1/2 and the ratio between the Poynting
power ¤�Poy

H,open and ¤�H,open is at least one order of magnitude higher
than for the two other solutions. The size of the M2 magnetosphere
leads to a small opening angle of the last open field lines at the black
hole horizon and then we get a small value of extracted Poynting
power on the inner region for the M2 solution.
On the whole black hole horizon, the ratio between the extracted

Poynting power and the total power is again higher for M3 solution.
TheMHDpower of outflow jets corresponds to the range of the power
transition between FR1 and FR2 galaxies as mentioned in Massaglia
et al. (2019). Searching for different outflows which match the same
inflow could be done to increase or decrease the outflow jet power.
As explained above in subsec.(3.3.1), the pairs are contributing to

the Poynting flux of the outflow via the surface current � \̂f . For the
M3 solution, inside the open field lines, the Poynting power at the
base of the outflow is around 5.4 × 1041 erg.s−1 while it is around
1.2 × 1041 erg.s−1 below the stagnation radius in the inflow. Thus,
the contribution to the Poynting power from � \̂f , created by pairs, is

of the same order as the the Poynting power extracted from the black
hole at the horizon.

4 DISCUSSION

Near the axis, the energy fluxes have different behaviours. The Poynt-
ing flux ΦEM is proportional to s2 and the fluid energy flux ΦFL
has a non-zero constant term in its s expansion. Then around the
axis the fluid energy flux will be the dominant term. Furthermore, it
is difficult to increase the Poynting flux relatively to the fluid energy
flux. This can be explained by the equality at the Alfvén point on the
axis,

�2
★

4c
= d★b★W

2
★+

2
★, (78)

which links the typical energy of the magnetic field and the typical
energy of the fluid.

In our model to increase the ratio between the Poynting and fluid
energy fluxes, one way is to increase the speed on the Alfvén point

and the factor W2
★

+2
★

22 =
`/a2

1 − `/a2 . For the inflow, it leads to a decreas-

ing of the inflow Alfvén radius and then to the stagnation surface.
However for small values of the stagnation radius, it is more difficult
to match an outflow solution.

Eq.(77) shows that the extracted Poynting flux depends strongly
on 0. Increasing the Poynting flux of theM3 solution can be achieved
by an increase of the black hole spin, keeping the ratioΩ/l� equals
to 1/2.

For the three solutions (Tab.5), most of the injected energy flux
¤�inj,open goes to the inflow ¤�H,open and only ten percent is injected
in the outflow ¤�out,open. This flux is eventually absorbed by the black
hole since ¤�H,open is negative. Part of this energy flux is given back
by the black hole into a positive Poynting flux (see Fig. 11). In a
further study, we aim at searching for solutions that could extract
energy from the black hole. There may be a way to optimize the eight
parameters of the inflow. The first step would be to get less flaring
of the inflow flux tubes in order to increase the size of opening
magnetic field line region on the horizon. It is equivalent to have the
last openmagnetic line connected to the black hole starting at a larger
colatitude. Second, we should increase the parameter ratio involved
in Eq.(78) without reducing to much the radius of the stagnation, in
order to increase the magnetisation and then the ratio of the Poynting
flux to the fluid power.

Solving the Bernoulli equation, Globus & Levinson (2013, 2014)
and also Pu et al. (2015) have developed models with a fixed geom-
etry, obtaining double flow. The pair creation zone is either a thin
layer as in our model either a volumetric injection. Despite the as-
sumption of a radial geometry, which is a limitation of the model,
Globus & Levinson (2013) use the particle source @= (that we note
:= in the present publication) as a parameter. Above a given threshold
for particle injection, the total energy flux cannot be extracted any
longer. This threshold depends on the field line co-latitude and on the
black hole spin. The higher the spin, the easier the extraction. Globus
& Levinson (2014) define the source term as a radial power law.
In both publications, they find a low total energy extraction around
the axis, which our results confirm. Pu et al. (2015) use a geome-
try obtained from a parabolic force free field solution. They inject
pairs on a stagnation surface. They impose in addition two matching
conditions at the stagnation surface, the continuity of Poynting flux
and the equality of inflow and outflow pair fluxes. Their double flow
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Solution ¤�inj,open ¤�H,open ¤�H,tot ¤�inj,open ¤�H,open ¤�Poy
H,open

¤�H,tot ¤�Poy
H,tot

¤�out,open
(g.cm2.s−1) (g.cm2.s−1) (g.cm2.s−1) (erg.s−1) (erg.s−1) (erg.s−1) (erg.s−1) (erg.s−1) (erg.s−1)

M1 2, 9 × 1047 1, 4 × 1047 6.4 × 1048 5.9 × 1044 −5.9 × 1044 8.7 × 1041 −3.6 × 1045 3.2 × 1043 1.3 × 1042

M2 −2.7 × 1045 3.4 × 1045 5.6 × 1049 6.2 × 1042 −6.2 × 1042 1.6 × 1039 −3.4 × 1044 1.2 × 1043 1.1 × 1039

M3 1.1 × 1047 1.4 × 1047 1.8 × 1048 2.4 × 1043 −2.2 × 1043 3.7 × 1041 −1.1 × 1044 2.8 × 1043 1.9 × 1042

Table 5. Total angular momentum and power injected by pairs or extracted from the black hole for the three solutions in the region inside the last open field
lines. ¤�Poy

H,open is the Poynting power extracted from the black hole inside the inner region. ¤�H,tot ¤�H,tot and ¤�Poy
H,tot are the angular momentum, the power and the

Poynting power extracted from the whole black hole horizon. ¤�out,open is the total power of the outflow spine jet in the inner region. .

solution is electromagnetically dominated and similar to the results
of the GRMHD simulations of McKinney & Narayan (2007).
Several authors studied gaps in black hole magnetospheres (Levin-

son & Segev 2017; Hirotani & Pu 2016) showing that formation of
a gap occurs for small accretion rate. In these works the multi-fluid
flow geometry is fixed and mainly radial. The kinetic and the dynam-
ics of the electron fluid, the positron one and the radiation are treated
separately leading to a self-consistent model of pair formation. If
the gap is spherical and the M87 black hole rotates maximally in
Levinson & Segev (2017), we can estimate, with a maximal value of
the magneto-spheric current in Fig.(2) of Levinson & Segev (2017),
an amount of ≈ 1011g.s−1 for the pair mass rate produced inside
the gap. This value is 7 order less than the rates we obtained in our
solution, but pairs can also be created outside gaps. In fact, gaps
are thought to be intermittent phenomena. They are locations where
a small amount of created pairs is the reason for an intermittent
emission at high energy.
Using an iterative procedure on the magnetic flux, the current

and isorotation integrals, Nathanail & Contopoulos (2014) solve the
Grad-Shafranov equation in a force free configuration. It allows, in
the force free assumption, to recover the field geometry starting from
a radial or a paraboloidal configuration. To pursue this theoretical
approach, Huang et al. (2019) solve the Grad-Shafranov equation in
the same way without neglecting the fluid forces, and simultaneously
solve the Bernouilli equation. With different matching conditions
compared to our model, they obtained double flow solutions with
injection on the stagnation layer. Their 4-force k of the radiation field
on the pair fluid is assumed to be equal to the product of the source
term :< and the 4-velocity u. Huang et al. (2020) apply their model
to produce double flow solutions for the stratified M87 jet. In their
Cases V and VI, the outflow fluid energy is equal to 43% of the total
energy, lower than the ratio we obtained for our M3 solution which
is ≈ 71%.

Radiative GRMHD simulations (Crinquand et al. 2021 and Yao
et al. 2021) have shown that the gap size is difficult to estimate
and could be as small as 0.05A6. Moreover on the axis the gap could
disappear as in theMADW18 disk model of Yao et al. (2021). In this
region, our solutions without a gap are very relevant to describe the
double-flows near the polar axis. The value of electron temperature
mention in Yao et al. (2021) is similar to ours. And the range of total
amounts of created pairs is also close to the expected upper range.

5 CONCLUSIONS

We built three double-flow solutions from themeridional self-similar
model presented in Chantry et al. (2018) respecting three minimal
matching conditions for the model parameters in Eq.(58).
We have eight inflow parameters to fix and seven for the outflow.

The three matching conditions reduce the number of free parameters

in the outflow to four. In the future, we could limit these four degrees,
first, to get the total current continuity condition, second, to obtain a
smaller magnetosphere and to increase the horizon colatitude angle
of the last opened field lines. We could also try to match the inflow
with some radial solution for the outflow as the K4 solution presented
in Chantry et al. (2018).

As expected the inflow acceleration is dominated by gravity. Pres-
sure also plays a role, decelerating the inflow close to the stagnation
layer and close to the black hole horizon and accelerating it in be-
tween. Due to the flaring geometry of the flux tube (� < 0) before
the stagnation radius. The gravity works for opening the tubes where
the radius increases, and is counter-balanced by the magnetic forces,
mainly composed of magnetic poloidal pressure. For the transverse
equilibrium, the pressure also counter-balances the gravity in the
beginning and the end of the inflow.

The inflow model respects a scaling law similar to that mentioned
in Zamaninasab et al. (2014) between the magnetic flux and the mass
flux. Here, this scaling-law involves the inflow mass rate instead of
the accretion mass rate and the efficiency is three times higher to
create magnetic flux. One free inflow parameter has been fixed for
that.

The discontinuity of the toroidal magnetic field and the line open-
ing � across the stagnation surface lead to the existence of surface
current and charge density on this surface.

This implies a contribution of the injected pairs to the electric
current and then to the Poynting flux. This pair contribution to the
Poynting flux has been calculated for the M3 solution and is compa-
rable to the Poynting flux extracted from the black hole.

Inside the open field lines, the injected angular momentum at the
stagnation surface could be of both signs and is of the same order
of magnitude as the extracted one from the black hole. In terms of
Noether’s energy,most of the injected energy falls down into the black
hole. Inside of the open magnetic field lines the energetic distribution
is dominated by the inertial term. The black hole is fed by mass,
kinetic and internal energy. Along the axis, the energetic budget is
always dominated by the inertial energy (mass, gravitational, kinetic
and internal energy). At larger colatitudes, the energetic budget is
dominated by the inertial terms everywhere for I1, by the Lense-
Thirring term for I2 and by the Poynting flux for I3. For the matching
solution M3, the total Poynting power on the horizon, even if it is
less than the inertial energy, represents a quarter of the total energy
absorbed by the black hole.

Our solutions M2 and M3 require a large amount of injected mass
but are located close to the upper boundary of our range of estimated
mass injection rates by pair formation from hard disk photons. The
M1 solution requires one order ofmagnitudemore than themaximum
mass injection rate. This means that in order to be valid M1 needs
another mechanism of pair creation. The injection rate needed for
M1 is likely to be unrealistic.

The use of meridional self-similar models to built inflow/outflow
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leads to steady MHD solutions with some peculiarities, a high pair
injection rate and a Poynting power in the inner region less than the
matter energy power. All these peculiarities could be easily explained
considering the fact this model is built to describe the MHD fields
near the axis where the total power is matter dominated. Combin-
ing these models to describe fields near the axis with other semi-
analytical models, more adapted to describe fields far from the axis,
must be considered. As for the outflow, where the meridional self-
similar model is used to describe spine-jet near the axis and radial
self-similar model for the sheath layer or the disk wind. The inflow
is probalby composed of different stratified components. In this sce-
nario, which could be an improvement of the modelisation of black
hole environment, the double spine jet energy principally comes from
pair injection.
To conclude, the solution M3 is the most interesting solution,

having an isorotation frequency equals to one half of the black hole
one. It has a quite high but still reasonable injectionmass rate and also
a reasonable value for total outflow power. The final Lorentz factor
of the outflow is around W ≈ 10. The extracted Poynting power from
the black hole is comparable to the one given by a force-free model
with the same isorotation value and the split monopole magnetic
flux function of the same total magnetic flux. The Poynting power
at stagnation surface of M3 outflow is a fourht of the ouflow power
leading to a quite high magnetisation for meridional self-similar
model solutions. The outflow power is inside the expected range for
extragalactic jets.
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APPENDIX A: BEHAVIOUR OF THE INFLOW SOLUTIONS NEAR THE BLACK HOLE HORIZON

Let discuss how the model equations (see Annexe.(C) of Chantry et al. (2018)) and the four functions "2, �2, �,Π behave close to the black
hole horizon. We adopt here all notations coming from Chantry et al. (2018). " is the Alfvén number on the polar axis, � the dimensionless
cylindrical radius in unit of the Alfvén radius, � is the expansion factor of the streamlines and Π is the dimensionless pressure along the
polar axis. The equations of the model are determined by the functionsD,N" 2 ,N� andNΠ depending of ', "2, �2, � and Π. To determine

the behaviour of our solutions near the black hole horizon, we need to express these functions at the radius ' = '� =
`

2
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√
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(
2;
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)2ª®¬
expressed in Alfvén radius unit). As explained in Chantry et al. (2018) and previous meridional self-similar models, we build from this model
a constant, n , which measures the efficiency of magnetic collimation (see Annexe.(C) of Chantry et al. 2018). This parameter writes,
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Close to the black hole horizon, we have ℎ2
I ∼
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(' − '� ). Numerically, we found that the function ℎI� −→
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0 near the

horizon. The functions "2 and �2 remain finite and do not reach 0 on ' = '� . Since n is constant, it implies that there exist a constant n ′
such that,
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where we used ('2 + ;2) = `'� on the black hole horizon. The function D could have a singularity only for ' = 0. The functionN" 2 could
also have a singularity if�2 = 0 or "2 = 0. Another possibility of singularity could happen for ' = '� . This functionN" 2 can be rearranged
as:
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'" 2 does not have any singularity for ' = '� . The equation Eq.(A2) insures the regularity of N" 2

(
', "2, �2, �,Π

)
when "2, �2, �,Π

are solutions of model equations. It explains the numerical regularity of the "2 function near the horizon. Indeed, we found numerically that

"2 reaches a limit value different of 0. Such arguments no longer hold for the � function. In this case, N�
(
', "2, �2, �,Π

)
∼

'→'�

Cst
ℎ2
I

(with a non vanishing constant), then we expect a behaviour such as � ∝
'→'�

ln(' − '� ), which is the observed behaviour on the numerical

solution. Nevertheless the angle of the magnetic field line with the radial direction j is linked to the colatitude with,

tan j =
1
2

√
-+ℎI�
'

tan \ . (A3)

Then in Kerr metric,
√
-+ℎI�/' is the significant geometrical quantity for the opening angle. This quantity reaches 0 on the horizon and the

magnetic field lines enter radially in the horizon. The behaviour of � implies the convergence of �2 to a finite value on the horizon.
The solutions of the model verify on the axis Wb −→

'→'�
+∞ where b is the specific enthalpy. In order to avoid b −→

'→'�
+∞, we could

tune the inflow parameters to get W ∼
'→'�

1/ℎI on the horizon. This requirement also induces the Π function behaviour on the horizon.

It implies that a2ℎ4
★ −

`" 4

�4 ∼
'→'�

ℎ2
I and using the model equations, we get Π ∝

'→'�
ln(' − '� ) behaviour on the horizon instead of

Π ∝
'→'�

(' − '� )−1 without this requirement. Nevertheless, this requirement is difficult to obtain pratically during the matching procedure

between inflow and outflow solutions.

APPENDIX B: INTEGRATION OF CONSERVATIONS LAW

The key of direct integration of Eq.(33,34), is the use of lenght of flux tube from the black-hole horizon ℓ in poloidal submanifold. This lenght
could be define as an improper integrals which converge as easily intuite using an isometric embedding (Chantry et al. 2021). Nevertheless,
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following methods of Lasota et al. (2014) integration of Noether current conservation could gives additional information and especially the
horizon boundary condition.

B1 Integration of Noether current conservation

From both definition of Noether current Eqs.(25,26), definition of Killing vector and conservation of motion equation ∇ · TMHD = k we get,

∇ · PMHD = −k · ( ,

where ∇ is four dimensional usual covariant derivative. Instead of using 3+1 plus stationnary and axisymetry assumption as it is done to get
Eqs.(31,32), let follow Lasota et al. (2014) and use Stokes’ theorem on the integrals of previous equation on an arbitrary space-time volume
elementU ⊂ M. This imply,∫
mU

&
(
PMHD, dy1, dy2, dy3

)
= −

∫
U

k · (√−634G , (B1)

(B2)

where n is the ordinary Levi-Civita tensor. dy1, dy2, dy3 must be three linearly independent quadri-vector infinitesimal vector on mU, such
that, if O is a quadrivector directed outwardU, (O, dy1, dy2, dy3) is direct base of tengeant space (i.e. n (O, dy1, dy2, dy3) > 0).

Choose a space time volume adapted to our problem help us to give more information on the field on black hole horizon.

B2 4D flux tube and frontier geometry

In the following, for a given value of magnetic flux � ∈ [0, �� [, a given value of boyer lindquist radius A ∈]A� , +∞[ and a given value of
Boyer-Lindquist time coordinate C we will note,

T C
�,A

= {" ∈ ΣC | �(") = � , A� ≤ A (") ≤ A} ,

a given flux tube embed in the ΣC foil, cut under a given radius and for a given time. For two given magnetic flux �1 < �2 and a time intervals
C1 < C2 we will note,

UC1 ,C2
�1 ,�2 ,A

=
⋃

C1≤C≤C2
�1≤�≤�2

T C
�,A

,

the space-time volume construct by union of flux tube between two time foil and two flux tube. Because we will calculate flux integrals on the
border ofUC1 ,C2

�1 ,�2 ,A
it will be helpful to gives information on its border mUC1 ,C2

�1 ,�2 ,A
,

VC1
�1 ,�2 ,A

⋃
VC2
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⋃
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⋃
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⋃
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⋃
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,

whereVC1
�1 ,�2 ,A

(VC2
�1 ,�2 ,A

) is inter flux tube on a space foil ΣC1 (ΣC2 ),

VC
�1 ,�2 ,A

=
⋃

�1≤�≤�2

T C
�,A

,

BC1 ,C2
�1 ,A

(BC1 ,C2
�2 ,A

) is the union of interior (exterior) flux tube for the considered time intervals,

BC1 ,C2
�,A

=
⋃

C1≤C≤C2
T C
�,A

,

ΔH C1 ,C2
�1 ,�2

is the part of the horizon for C1 ≤ C ≤ C2 where the flux tube �1 ≤ � ≤ �2 are anchored,

ΔH C1 ,C2
�,A

= {" ∈ H | �1 ≤ �(") ≤ �2 , C1 ≤ C ≤ C2} ,

and finally SC1 ,C2
�1 ,�2 ,A

the union on time intervals of exterior spherical corona,

SC1 ,C2
�1 ,�2 ,A

= {" ∈ M | A (") = A , �1 ≤ �(") ≤ �2 , C1 ≤ C ≤ C2} . (B3)

Apply the result Eq.(B1) apply on this volumes and specific border require to specify adapted dy1, dy2, dy3 for each of these hypersurface.

B2.1 Inter flux tube on a space foil

It is the easiest one, because it is a spatial hypersurface, the normal directed toward the exterior is +n forVC2
�1 ,�2 ,A

(−n forVC1
�1 ,�2 ,A

). Embedded
in ΣC we could choose,

dy1 = ℎA 3AeA , dy2 = ℎ\ 3\e\ , dy3 = ℎi3iei .

MNRAS 000, 1–25 (2021)



Meridionally self-similar double flows 23

Thus, if we note,

� C
�1 ,�2 ,A

=

∫
VC
�1 ,�2 ,A

TMHD (n, ()ℎA ℎ\ ℎi3A3\3i

the contribution of the two inter flux tube to the integrals in the left hand side of Eq.(B1) is,

�
C2
�1 ,�2 ,A

− � C1
�1 ,�2 ,A

which is the difference of Noether energy inside of the inter flux tube between two time. Stationary assumption imply it is equals to 0 in our
case.

B2.2 Union of flux tube for the time intervals

BC1 ,C2
�,A

is a timelike hypersurface since ∇� is normal to it and is spacelike quadrivector. By construction this set could be rewrote,

BC1 ,C2
�,A

= {" ∈ ΣC | �(") = � , A� ≤ A (") ≤ A , C1 ≤ C ≤ C2} ,

since, because � is time independent, 3C( is tangent to this set. With the notation e = B?/| |B? | | which is tangent to the set we could complete
the infinitesimal base,

dy1 = ℎi3iei , dy2 = 23C(, dy3 = 3ℓe .

Nevertheless, the equations Eqs.(28) imply that PMHD is also tangent to the set. And then,

n

(
PMHD, dy1, dy2, dy3

)
= 0

and consequently, its contribution is 0.

B2.3 Union on time intervals of exterior spherical corona

It is also a timelike surface since eA is a spacelike quadri-vector normal and directed outward to SC1 ,C2
�1 ,�2 ,A

. Its definition Eq.(B3) allow to
choose,

dy1 = ℎ\ 3\e\ , dy2 = ℎi3iei , dy3 = 23C( .

Then after few line of calculation, this contribution to the left hand side of Eq.(B1) is,

�
C1 ,C2 ,ext
�1 ,�2

=

\2∫
\1

Ψ�E
2

m\ �3\ (C2 − C1) =
�2∫

�1

Ψ�E
2

3� (C2 − C1) (B4)

B2.4 Part of the horizon

As it is well know and explain by Carter (2010) as a consequance of ridity theorem the horizon is a null hypersurface. Following, Lasota et al.
(2014) we introduce the quadrivector,

ℓ = ( + Ω
2
/

is a null vector, which is normal toH . As a null normal, ( is also tangent toH . Let introduce SC = H ∩ ΣC a temporal section of the horizon.
It is possible to construct a null quadri-vector +, orthogonal to SC and whith + · ℓ = −1. Find more details on construction of ℓ and + on
Gourgoulhon & Jaramillo (2006). The null base (+, ℓ, e\ , ei) is direct. Furthermore, because + and ℓ are orthogonal to e\ or ei) and also
because −

(
& (+, ℓ, e\ , ei)

)
is equals to the determinant of the Gram matrice of these vector we get,

−|& (+, ℓ, e\ , ei) |2 = det Gram(+, ℓ, e\ , ei) =

��������
0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

�������� = −1

and then & (+, ℓ, e\ , ei) = 1.
Because + is directed inward, we choose,

dy1 = 23Cℓ, dy2 = ℎ\ 3\e\ , dy3 = ℎi3iei .

Using the usual null decomposition,

PMHD = −2(P · ℓ)+ − (P · +)ℓ + PSC ,

leads to a contribution of the left hand side of Eq.(B1),

Δ�
C1 ,C2 ,H
�1 ,�2

= 2c2
\2∫

\1

TMHD (ℓ, ()ℎ\s3\ (C2 − C1) . (B5)
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B2.5 Reduce the space time volum

Firstly, choose infinitesimaly close flux tube �1 = � and �2 = � + 3�, we get,[
Ψ�E

2
m\ �3\ + 2c2TMHD (ℓ, ()ℎ\s3\

]
(C2 − C1) = −

∫
U

k · (√−634G

where we noteUC1 ,C2
�1 ,�2 ,A

= U to reduce the amount of notation.
Secondly, we take the limit A −→ A� , the right hand side of previous equation vanish. Then we got,

lim
A→A�

Ψ�E
2

m\ � + 2c2TMHD (ℓ, ()ℎ\s = 0 (B6)

B3 Horizon boundary condition

B3.1 Boundary conditions from previous work

Usual covariant scalar field as d0 must remain smooth at horizon radius. In the following we will also consider that all scalar quantities derived
from 3+1 ideal, stationnary and axisymetric MHD, more explicitely �,Ω,Ψ�, ! and E needs to be smooth at horizon radius. It could be
deduce from the covariant derivation of these quantity (see Gourgoulhon et al. (2011)). It also imply the regularity of Gℎ and GRM involve in
the relation of constant inversion (see Eq.(32,33,34) of Chantry et al. (2018)). From all of this and expression of B? we deduce that B? is
smooth and also that �\ = $ (ℎ) at horizon. Relation 4cdWℎV? = Ψ�B? imply that Wℎ+? is also smooth. Because +? must be limited by 2 it
imply regularity of ℎW we deduce W = $ (1/ℎ). We also get + \ = $ (ℎ). Inversion of constant of motion (see Eq.(32,33,34) of Chantry et al.
(2018)) we deduce that + î = $ (ℎ), � î = $ (1/ℎ) and b = $ (1). Thus we deduce from previous result that we must have 1 − VÂ 2

= $ (ℎ2)
and then because the flow must enter in the horizon,

1 + +
Â

2
= $ (ℎ2) (B7)

From smooth character of � and Ω and the expression of electric field Eq.(23) we have,

� Â = $ (ℎ) and � \̂ = $ (1/ℎ) (B8)

B3.2 The boundary condition

Let calcul the quantity involve in Eq.(B6) for fluid component. We get, after few line of calculation,

2cℎ\sdb22
[
(ℎW)2

(
1 + +

Â

2

) (
1 + sl+

î

ℎ22

)
− %ℎ2

d0b22

]
,

which is then a $ (ℎ2) and reach 0 whithout bring any additionnal constraint. It is more interesting for the electromagnetic field. First, remind
that,

)EM
UV =

1
4c

[
�`U�

`
V −

�`a�
`a

4
6UV

]
It induce after few line of calculation, that the electromagnetic contribution to the quantity involve in the limit Eq.(B6) is,

−2ℎ\s
[(
ℎ� \̂ + ℎ� î

) (
3Ω − l

22
m\ � +

ℎ� î

2

)
+ ℎ2

(
�2
?

2
+ Ω�

ÂΣ

2d2 mA �

)]
which reach 0 if,

lim
A→A�

(
ℎ� \̂ + ℎ� î

)
= 0 (B9)

APPENDIX C: GRADIENT DESCENT TECHNIQUES

To adapt the input parameter of the outflow to the inflow instead of using a simple technique of optimisation of a residual function, we decide to
follow the direction in parameter space obtain by a look like Gram-Schmidt orthogonalisation of gradient of our quantity in term of parameter.
Indeed, the minimisation of a residual function often leads to difficulties of different kinds. Sometimes this leads us to regions of the parameter
space whose solutions are non-physical, regions where the automation of the crossing of the slowmagnetosonic point undergoes a discontinuity
due to the non-linearity of the equations or is impossible, or something else. Then, we need to explore the parameter space using different
possibility for the chosen direction.
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_ ^ X a ` 41 0 Ω/lH W∞ 'sta/'H

S1 1.171 0.291 1.319 0.600 0.184 -0.063 0.519 0.502 10.04 1.175

S2 1.170 0.286 1.325 0.613 0.187 -0.049 0.519 0.502 10.03 1.225

S3 1.169 0.280 1.333 0.627 0.190 -0.037 0.519 0.502 10.05 1.275

S4 1.169 0.274 1.336 0.641 0.193 -0.027 0.519 0.502 10.05 1.325

S5 1.170 0.269 1.341 0.655 0.196 -0.016 0.519 0.502 10.04 1.375

S6 1.173 0.265 1.345 0.668 0.198 -0.004 0.519 0.502 10.09 1.425

S7 1.177 0.260 1.349 0.681 0.200 0.009 0.519 0.502 10.05 1.475

S8 1.182 0.257 1.353 0.694 0.202 0.022 0.519 0.502 10.08 1.525

Table C1. Set of parameters for 8 solutions calculated in order to get different values of stationary radius, keep constant the final Lorentz factor, isorotation and
spin of the black hole.

Be more explicit, for the matching, we need to find the outflow parameter (_, ^, `, a, ;, `, 41) such the quantities,

51 =
'sta
`

52 =
;

`

53 =
`3

2
(
1 + ;2

)2 +
_`3/2

a

√
1 − `

1 + ;2

.

are equals to some specific values (the corresponding inflow value Eq.(58)). In what follow, we discuss a more general procedure where we
have = (with = ≤ 7) function ( 5: ):=1,...= of the solution parameter (_, ^, `, a, ;, `, 41) to adapt. We will refer to them as control function.

If we note,

D: = ∇ 5: ∈ R7 for : ∈ È1, =É .

Suppose (D: ):=1,...= are linearly dependent, and call �= the subspace generated by linear combinaison of (D: ):=1,...= and �=, 9 =

Span {D: | : = 1...= and : ≠ 9} for each 9 = 1...=. Then,

∃!3 9 ∈ �= such that

| |3 9 | | = 1
3 9 · D 9 > 0
3 9 ⊥ �=, 9

,

3 9 is the normalised orthogonal to �=, 9 projection of D 9 . We calculate 3 9 using recurrence formula. Let note ?=
(
D 9 ; (D: ):=1...=

:≠ 9

)
the unit

vector embed in �=, orthogonal to �=, 9 and such that 3 9 · D 9 > 0. Then forall 8 ≠ 9 it follow that,

?=

(
D 9 ; (D: ):=1...=

:≠ 9

)
= ?=−1

©«?2 (D 9 ; D8); (?2 (D: , D8)):=1...=
:≠ 9
:≠8

ª®®¬ (C1)

which allow to explicitly calculate 3 9 considering that for each non-colinear vector D, E,

?2 (D; E) =
D − D · E
| |E | |2

E��������D − D · E
| |E | |2

E

�������� . (C2)

If we note B = (_, ^, `, a, ;, `, 41), then for all 9 and for a small displacement Y3 9 we expect that for all 8 ∈ È1, =É a typical behaviour,

58 (B + Y3 9 ) = 58 (B) + X8 9Y
(
D8 · 3 9

)
+$ (Y2) .

which makes it possible to deal with the control functions one after the other. Nevertheless due to the strong non-linear behaviour of the system
of equation mention in the appendix of Chantry et al. (2018), the control function could suffer of a lot of discontinuity, which imply the local
character of this method. More the family (D: ):=1,...= is close to orthogonal family, more this method is efficient.

Practically we estimate the gradient by a second order estimation of the partial derivative. We put in the Tab.(C1) the result obtain using such
a method. We choose for control function the spîn 0, the isorotation Ω/lH , the final Lorentz factor W∞ and the stagnation radius 'sta/'H .
Then we follow the direction such the evolution of spin, isorotation and final Lorentz is at order two therefore evolution of stagnation radius is
positive and order 1. This method can be used to fit the solutions of the southern self-similar model to the observational constraint.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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