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A monofluid model with Landau damping is presented for strongly magnetized electron-proton
collisionless plasmas whose distribution functions are close to bi-Maxwellians. This description that
includes dynamical equations for the gyrotropic components of the pressure and heat flux tensors,
extends the Landau-fluid model of Snyder, Hammett, and Dorland[Phys. Plasmas4, 3974(1997)]
by retaining Hall effect and finite Larmor radius corrections. It accurately reproduces the weakly
nonlinear dynamics of dispersive Alfvén waves whose wavelengths are large compared to the ion
inertial length, whatever their direction of propagation, and also the rapid Landau dissipation of long
magnetosonic waves in a warm plasma. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1780533]

I. INTRODUCTION

Both in natural and fusion plasmas, collisions are gener-
ally negligible, making the usual magnetohydrodynamics
questionable. On the other hand, in most situations, direct
numerical integrations of the Vlasov–Maxwell equations in
three space dimensions are beyond the capabilities of the
present day computers when a broad range of scales are in-
volved. The gyrokinetic description1,2 that averages over the
gyrotropic motion of the particles and that is extensively
used for fusion plasmas, reduces the number of independent
variables but still needs an enormous computational strength.

Situations involving a broad range of scales require a
formalism that preserves most of the aspects of a fluid de-
scription but includes realistic approximations of the pres-
sure and heat flux tensors. The effect of wave-particle reso-
nances that provide the dominant dissipation processes
should in particular be retained. In a collisionless plasma, a
fluid behavior can only result from collective constraints,
such as the presence of a strong magnetic field. In this case,
Chew, Goldberger, and Low(CGL) (Ref. 3) first proposed
the “double adiabatic laws” or CGL equations for the parallel
and perpendicular gyrotropic pressure components, where all
the heat fluxes are neglected. The conditions of validity of
this assumption are rather stringent.4 The onset of the mirror
instability is, for example, not correctly described5 within
this approximation that requires a phase velocity much larger
than the thermal velocity of the particles. Closures that re-
produce linear results from kinetic theory were also proposed
but they depend on the equilibrium state and are often pre-
sented in Fourier space, leading to the definition of effective
polytropic indices.6,7 In the context of fusion plasmas, an
extensive literature was devoted during the last decades to
the gyrofluid description8,9 based on the evolution of hydro-
dynamic moments obtained from the gyrokinetic equations,
and thus also written in a local coordinate system. A hybrid
description of low frequency phenomena involving the cou-
pling of a monofluid description with pressure tensors for
ions and electrons prescribed by gyrokinetic equations was
also developed.10

A simplified description more easily amenable to large-

scale numerical simulations of a collisionless plasma perme-
ated by a strong magnetic field was suggested by Hammett
and co-workers in the form of Landau fluids built to account
for wave-particle resonance effects within a magnetohydro
dynamics(MHD) framework. The full electromagnetic case
is presented by Snyder, Hammett, and Dorland,11 hereafter
referred to as SHD. Hydrodynamic equations for the density
and velocity of the plasma are obtained by taking moments
of the microscopic equations. SHD start from guiding center
equations but an equivalent derivation can be made from the
Vlasov–Maxwell system. The resulting hierarchy must nev-
ertheless be closed and the main work consists in a proper
determination of the pressure tensor associated with each
species. For the sake of simplicity, an electron-proton plasma
is considered in a simple geometry(no curvature drift), with
an homogeneous equilibrium state characterized by bi-
Maxwellian distribution functions. In its original presenta-
tion, the model is limited to scales large enough for both Hall
effect and finite Larmor radius(FLR) corrections to be to-
tally negligible. As shown by SHD, this description predicts
the correct threshold of the mirror instability. A generaliza-
tion is, however, needed in order to consider dispersive
MHD turbulence.

Our goal is thus to develop a simple monofluid model
able to accurately reproduce the weakly nonlinear dynamics
of most MHD waves, including kinetic Alfvén waves with
transverse wave number small compared with the inverse
proton inertial length. These waves, characterized by an
angle of propagationa such that cos2 a!b (where b de-
notes the squared ratio of the ion acoustic to the Alfvén
speeds), are supposed to be produced by the quasi-two-
dimensional energy cascade that develops in Alfvén wave
turbulence. A simplified model was recently derived12 and
benchmarked by direct comparisons with Vlasov–Maxwell
predictions in the limit of long-wavelength small-amplitude
perturbations. For parallel Alfvén waves, a reductive pertur-
bative expansion of this model reproduces the kinetic deriva-
tive nonlinear Schrödinger(KDNLS) equation13–15 (includ-
ing its extension to multidimensional wave trains16) derived
from the Vlasov–Maxwell equations, up to the replacement
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of the plasma response function by its two- or four-pole Padé
approximants. For magnetosonic waves,17 agreement was
obtained with the phase velocity and the Landau damping
given in the literature18 for the regime sme/mpd!b
! sTe/Tpd of adiabatic protons and isothermal electrons with
isotropic temperatures. It, however, turns out that the de-
scription of oblique and kinetic Alfvén waves requires a
more refined description of the finite Larmor radius effects
associated with the nongyrotropic contributions of both the
pressure and heat flux tensors. A first extension17 of this
model was presented in the regime of adiabatic protons and
isothermal electrons with smallb, that reproduces the clas-
sial dispersion and Landau damping of kinetic Alfvén waves
in this regime.18,19 This approach actually involves a heuris-
tic closure relation for the electron pressure that is here re-
covered as a limiting case of a more general Landau-fluid
model whose derivation is the main object of the present
paper.

In Sec. II, the scalings associated with the various MHD
waves are explicited and a monofluid description of the
plasma is obtained, under conditions consistent with the
weakly nonlinear regime. In order to describe anisotropic
situations, the pressure tensor of each particle species is re-
tained. It includes gyrotropic components that evolve on hy-
drodynamic time scales, together with nongyrotropic ones
that rapidly adjust to the variations of the hydrodynamic
quantities(“slaved” dynamics) and are amenable to a pertur-
bative description(Sec. III). In Sec. IV, general closure ap-
proximations for the gytrotropic and nongyrotropic heat
fluxes are inferred from the kinetic theory of long oblique
Alfvén waves presented in Appendices A–C. As mentioned
above, this regime that retains the kinetic effects to leading
order, can indeed be viewed as a distinguished limit covering
more general situations. The resulting model and its valida-
tion are presented in Sec. V. A few conclusions and projects
for further developments are briefly presented in the last
section.

II. AN ASYMPTOTIC FRAMEWORK FOR A FLUID
DESCRIPTION

A. The small amplitude regime

The usual procedure5 to describe the dynamics of a
strongly magnetized collisionless plasma at scales large com-
pared to those of the ion gyromotion consists in performing
an asymptotics(referred to as a 1/Vp expansion) where the
small parameter is the ratio of the typical considered fre-
quency to the ion gyrofrequency. This approach is appropri-
ate when no smallness assumption is made on the amplitude
of the fluctuations, but may be conflicting with the weak-
nonlinearity ordering required to close the moment hierarchy.
When addressing the weakly nonlinear regime, it is thus
preferable to use a unique expansion parameter to character-
ize the small amplitudes and the long-wavelengths and low
frequencies of the perturbations. In the distinguished limit
that ensures the balance of the nonlinear and dispersive ef-
fects, a reductive perturbative expansion then leads to the
classical long-wave equations(such as Korteweg–de Vries or

derivative nonlinear Schrödinger). This asymptotics may re-
tain terms which are subdominant in an 1/Vp expansion that
is relative to the scale separation only.

The fluid equations to be derived in this paper are re-
quested to correctly capture the weakly nonlinear dynamics
of dispersive MHD waves, by fitting with the kinetic theory
within the ordering prescribed by a reductive perturbative
expansion. This approach has the main advantage to separate
the various types of waves, retaining only those terms that
contribute to their dynamics. It also provides a rigorous
framework for a nonlinear theory where some terms are
evaluated at the linear level, as, for example, requested at the
level of the heat flux closure.

B. The MHD wave scalings

In a reductive perturbative expansion, the various MHD
waves are selected by prescribing different orderings. The
ambient magnetic field being taken in thez direction, we
assume a propagation in thesx,zd plane along an axisz8
making an anglea with the ambient field. For perturbations
depending only onz8 and propagating at velocityV0, we
define the stretched coordinatej=e1/2sz8−V0td.

1. Oblique magnetosonic waves

The magnetosonic waves are selected by prescribingbx

=ebx
s1d+¯, by=e3/2by

s1d+¯, bz=B0+ebz
s1d+¯, r=rs0d+ers1d

+¯, ux=eux
s1d+¯, uy=e3/2uy

s1d+¯, uz=euz
s1d+¯, p'r =p

'r
s0d

+ep
'r
s1d +¯, pir =pir

s0d+epir
s1d+¯, where as usualb is the mag-

netic field,r andu are the density and velocity of the plasma,
p'r and pir are the transverse and parallel pressures of the
particles of speciesr. The dispersion and the nonlinearities
then act on a slow timet=e3/2t.

2. Oblique Alfvén waves

The reductive perturbative expansion now involves the
scalings by=e1/2sby

s1d+eby
s2d+¯ d, uy=e1/2suy

s1d+euy
s2d+¯ d,

while the previously defined scalings are retained for the
other quantities.

3. Parallel Alfvén waves

In the case of a propagation anglea=0, one prescribes
bx=e1/4bx

s1d+¯, by=e1/4by
s1d+¯, bz=B0+e1/2bz

s1d+¯, r
=rs0d+e1/2rs1d+¯, ux=e1/4ux

s1d+¯, uy=e1/4uy
s1d+¯, uz

=e1/2uz
s1d+¯, p'r =p

'r
s0d +e1/2p

'r
s1d +¯, pir =pir

s0d+e1/2pir
s1d+¯,

with a slow timet=et.
Furthermore, for all the waves, the gyrotropic heat fluxes

are scaled similarly to the pressures. The magnitude of the
nongyrotropic components will be explicited later on, when
these contributions will be considered(Sec. IV A).

The above scalings indicate that nonlinear effects com-
parable to dispersion occur with an amplitude that is smaller
for magnetosonic waves than for Alfvén waves. This reflects
the longitudinal character of the former waves for which a
relatively strong dispersion is requested to arrest shock for-
mation. In contrast, parallel Alfvén waves can support much
larger amplitude since they are incompressible. It follows
that a weakly nonlinear theory of magnetosonic waves re-
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quires a higher order perturbation theory, as it will be dis-
cussed in more details in Sec. V. This delicate situation can
nevertheless be prevented by the presence of Landau damp-
ing that, when theb of the plasma is not too small, acts on
the shortest time scale, making the nonlinear and dispersive
corrections subdominant. The smallb limit that makes the
electron inertia relevant is in any case out of the scope of a
monofluid theory. For larger wave amplitude, the lowest or-
der corrections in the usual 1/Vp expansion together with a
simple Landau-fluid closure for the gyrotropic pressures11,12

are sufficient. Furthermore, an expansion valid for oblique
Alfvén waves, where both the Hall term and nongyrotropic
heat flux components enter at dominant order, will retain all
the relevant terms for parallel waves(with possible addi-
tional subdominant corrections) and also for magnetosonic
waves in the most usual situations. As a consequence of
these observations, the construction of the monofluid model
will be based on the weakly nonlinear dynamics of oblique
Alfvén waves with typical wavelengths large compared to
the proton inertial length. This approach involves several
steps.

C. From a bifluid to a monofluid description

Starting from the Vlasov–Maxwell equations(A1)–(A4)
and writing the equations satisfied by the successive mo-
ments of the distribution function for particles of speciesr,
one derives an exact hierarchy of fluid equations for the cor-
responding densityrr =mrnr e f rd

3v, hydrodynamic velocity
ur = evf rd

3v / ef rd
3v , pressure tensorPr =mrnr esv−urd ^ sv

−urdf rd
3v and heat flux tensorQr =mrnr esv−urd ^ sv−urd

^ sv−urdf rd
3v, in the usual form5

]trr + = · srrurd = 0, s1d

]tur + ur · = ur +
1

rr
= ·Pr −

qr

mr
Se+

1

c
ur 3 bD = 0, s2d

]tPr + = · surPr + Qrd + FPr · = ur +
qr

mrc
b 3 PrGS

= 0,

s3d

where the tensorb3Pr has elementssb3Prdi j =eimlbmPr lj

and where, for a square matrixA, one definesAS=A +A tr.
One hassb3Prdtr=−Pr 3b. In order to distinguish between
scalar and tensorial pressures, bold letters are used to denote
tensors of rank two and higher. Coupled to Maxwell equa-
tions, such a multifluid description resolves the small spa-
tiotemporal scales associated with Langmuir waves that are
unneeded when concentrating on the large-scale dynamics of
dispersive MHD waves. A monofluid description together
with the additional approximation of neglecting electron in-
ertia, allows the filtering of these small scales. One is thus
led to consider the plasma velocityu=s1/rdorrrur, where
r=or rr is the plasma density, and to define the pressure and
heat flux tensors associated with each particle species in
terms of the deviations from this barycentric velocity, in the
form pr =mrnr esv−ud ^ sv−udf rd

3v and qr =mrnr esv−ud
^ sv−ud ^ sv−udf rd

3v. One has

Pr = pr − rrsu − urd ^ su − urd s4d

and

Qr ijk = qr ijk + pr ij su − urdk + priksu − urd j + prjksu − urdi ,

s5d

where the subscriptsi jk refer to components of the corre-
sponding tensors.

Defining dr =Pr −pr and

Rr = = · surdrd + fdr · = ur + s= ·Prd ^ su − urdgS, s6d

one has in Eq.(3)

= · surPr + Qrd + fPr · = urgS

= = · supr + qrd + fpr · = ugS+ Rr . s7d

For the orderings involved in the reductive perturbative
analysis of the various MHD waves discussed above, ne-
glecting dr and Rr contributions in the equation forpr is
possible if the expansion of this quantity is limited to orders
strictly lower thane2 for oblique Alfvén waves ande5/2 for
magnetosonic waves. This leads us to replace Eq.(3) by

]tpr + = · supr + qrd + Fpr · = u +
qr

mrc
b 3 prGS

= 0. s8d

Furthermore, one easily gets that

]tr + = · surd = 0 s9d

and

]tsrud + = · sru ^ ud + = ·p −
1

c
j 3 b = 0, s10d

wherep=orpr denotes the total pressure tensor and where
the electric currentj =orqrnr evf rd

3v=orsqr /mrdrrur is given
by j = c/4p = 3b. In this derivation, we neglect the dis-
placement current and also make the approximation of
quasineutralityor qrrr /mr =0, as usual when considering
slow motion of fluid elements of size greater than the Debye
length.20

The currentj obeys

]t j + = ·So
r

qrrr

mr
ur ^ urD + o

r

qr

mr
= ·Pr

− o
r

qr
2rr

mr
2 Se+

1

c
ur 3 bD = 0. s11d

Using the identity

o
r

qrrr

mr
ur ^ ur = u ^ j + j ^ u − o

r

qrrr

mr
u ^ u

+ o
r

qrrr

mr
sur − ud ^ sur − ud, s12d

and the fact that for a plasma of protons and electrons of
electric chargeqp=−qe=q,
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o
r

qr
2

mr
2rrur = q2S 1

me
+

1

mp
D ru

me + mp

− qSmp

me
−

me

mp
D j

me + mp
, s13d

one gets20

]t j + = ·Su ^ j + j ^ u − o
r

qrrr

mr
u ^ uD + o

r

qr

mr
= ·pr

− o
r

qr
2rr

mr
2 e−

q2

c
S 1

me
+

1

mp
D ru 3 b

me + mp

+
q

c
Smp

me
−

me

mp
D j 3 b

me + mi
= 0. s14d

This equation simplifies when terms involving the ratio
me/mp are neglected and quasineutrality is assumed, which
leads to writerr =mrn andu<up. One obtains

]t j + = · su ^ j + j ^ ud

−
q2n

me
Se+

u 3 b

c
−

j 3 b

nqc
+

1

qn
= ·peD = 0. s15d

For small nonlinearity and under the assumptionb
@ sme/mid, the two first terms of the above equation are sub-
dominant. From Maxwell equation(A2), one then obtains
the induction equation

]tb − = 3 su 3 bd = −
cmp

q
=

3 F 1

4pr
s= 3 bd 3 b −

1

r
= ·peG ,

s16d

that includes the Hall term together with the effect of the
electron pressure.

Equations(9), (10), (8), and(16) constitute a closed sys-
tem, provided a closure approximation is made to express the
heat fluxes. Nevertheless, a direct resolution of Eq.(8) would
have to resolve time scales associated with the gyromotion of
the particles, a condition that is practically impossible to
achieve in numerical simulations that also retain hydrody-
namical scales. As shown in Sec. III, this scale separation
can in fact be used to define a reduced description where the
evolution of the gyrotropic components of the pressure ten-
sors is followed on hydrodynamic time scales, while the non-
gyrotropic ones obey a slaved dynamics in the sense that
they are prescribed by the instantaneous values of hydrody-
namic quantities. A similar separation can be made at the
level of the heat fluxes that contribute to the gyrotropic pres-
sures through both gyrotropic and nongyrotropic compo-
nents. Again the gyrotropic heat fluxes require a closure ap-
proximation taking the form of dynamical equations, while
the nongyrotropic ones are slaved(Sec. IV).

III. THE PRESSURE TENSORS

In order to isolate the gyrotropic components of the pres-
sure tensor, it is convenient to rewrite Eq.(8) for the pressure
tensor of each particle species in the form

pr 3 b̂ − b̂ 3 pr = k r , s17d

where b̂=b/ ubu is the unit vector along the local magnetic
field and

k r =
1

Vr

B0

ubuFdpr

dt
+ s= ·udpr + = ·qr + spr · = udSG . s18d

In this equation,B0 denotes the amplitude of the ambient
field and Vr =sqrB0/mrcd is the gyrofrequency of the par-
ticles of speciesr. Furthermore,d/dt=]t+u·= denotes the
convective derivative.

A few classical results are first recalled for
completeness.21,22We first note that the left-hand side of Eq.
(17) can be viewed as a self-adjoint linear operator acting on

pr, whose kernel is spanned by the tensorssI − b̂^ b̂d and b̂

^ b̂. It is thus convenient to define the projectionā of any
s333d rank two tensora on the image of this operator as

ā = a −
1

2
a:sI − b̂ ^ b̂dsI − b̂ ^ b̂d − sa:b̂ ^ b̂db̂ ^ b̂, s19d

which implies trā=0 andā: b̂^ b̂=0. HereI is the identity
matrix and the double contraction of two square matricesm
andn is defined asm :n=oi jmijnij . In particular, the pressure
tensor is written as the sumpr =pr

G+pr of an element of the
kernel

pr
G =

1

2
pr:sI − b̂ ^ b̂dsI − b̂ ^ b̂d + spr:b̂ ^ b̂db̂ ^ b̂ s20d

;p'rsI − b̂ ^ b̂d + pirb̂ ^ b̂ s21d

and of a nongyrotropic componentpr = p̄r that thus satisfies

tr pr =0 andpr : b̂^ b̂=0.

A. Dynamics of the gyrotropic pressures

To obtain the equations for the gyrotropic pressure com-

ponents, one applies the trace and the contraction withb̂

^ b̂ on both sides of Eq.(17) to get

tr
dpr

dt
+ s= ·udtr pr

G + tr s= ·qrd + tr spr
G · = udS+ s1r = 0

s22d

with s1r =tr spr ·=udS and

dpr

dt
:b̂ ^ b̂ + fs= ·udpr

G + = ·qr + spr
G · = udSg:b̂ ^ b̂ + s2r

= 0 s23d

with s2r =spr ·=udS: b̂^ b̂.
The trace and the time derivative commute but this is not

the case for the contraction withb̂^ b̂. One writes
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dpr

dt
:b̂ ^ b̂ =

d

dt
spr:b̂ ^ b̂d − pr:

d

dt
sb̂ ^ b̂d =

dpir

dt
− s3r ,

s24d

where, using sdb̂/dt^ b̂+ b̂^ db̂/dtd : sI − b̂^ b̂d=0 and

sdb̂/dt^ b̂+ b̂^ db̂/dtd : b̂^ b̂=0, one has s3r =pr :d/dtsb̂
^ b̂d. One thus gets generalized CGL equations that include
heat fluxes and coupling to the nongyrotropic components of
the pressure tensors,

]tp'r + = · su p'rd + p'r = ·u − p'rb̂ · = u · b̂

+ 1
2ftr = ·qr − b̂ · s= ·qrd · b̂g + 1

2ss1r − s2r + s3rd = 0,

s25d

]tpir + = · su pird + 2pirb̂ · = u · b̂ + b̂ · s= ·qrd · b̂ + s2r − s3r

= 0. s26d

One easily checks that for the scalings defined in Sec. II A
and the nongyrotropic pressure components given in Sec.
III B, the couplingss1r, s2r, ands3r to the nongyrotropic pres-
sure components are negligible. Note that similar equations
for the gyrotropic pressures can be obtained in a bifluid de-
scription, up to the replacement of the plasma velocityu by
that of the individual speciesur. It is noticeable that in the
present derivation based on the hypothesis of weak nonlin-
earity together with long spatial and temporal scales, the par-
allel and transverse pressures decouple from the nongyrotro-
pic pressure components but are sensitive to the gyrotropic
and nongyrotropic components of the heat fluxesqr that can
both contribute to the gyrotropic components of= ·qr.

B. Nongyrotropic pressure contributions

In order to determine the nongyrotropic contributions to
the pressure tensor of the various particle species, we start
from Eq. (17). Using the solvability conditions provided by
the equations for the gyrotropic pressures, it is rewritten

pr 3 b̂ − b̂ 3 pr = k̄ r , s27d

wherek r can be decomposed into the sum of a contribution
involving the gyrotropic pressures and the heat fluxes

kr =
1

Vr

B0

ubuFdpr
G

dt
+ s= ·udpr

G + = ·qr + spr
G · = udSG

s28d

and of a term linear inpr

Lsprd =
1

Vr

B0

ubuFdpr

dt
+ s= ·udpr + spr · = udSG . s29d

In kr̄, the second term of the right-hand side(RHS) of Eq.
(28) does not contribute, while the first one rewrites

dpr
G

dt
= spir − p'rd

d

dt
sb̂ ^ b̂d = spir − p'rd

1

ubu2Sdb

dt
^ b + b

^
db

dt
−

2

ubu
dubu
dt

b ^ bD s30d

that is explicited by using the induction equation(16).
It is then convenient to split the nongyrotropic pressure

aspr =pr,1+pr,2 with

pr,1 3 b̂ − b̂ 3 pr,1 = kr̄ , s31d

pr,2 3 b̂ − b̂ 3 pr,2 = Lspr,1d + Lspr,2d. s32d

In a weakly nonlinear regime, the quantityLsprd is of higher
order thanpr, which enables one to neglectLspr,2d in Eq.
(32). We restrict ourselves to this level of approximation
since pushing further the above perturbative calculation
would conflict with the approximations made for the deriva-
tion of the pressure equation(8) used in a monofluid descrip-
tion. The above equations can be solved in the form21

pr,1 = 1
4fb̂ 3 kr̄ · sI + 3b̂ ^ b̂dgS, s33d

pr,2 = 1
4fb̂ 3 Lspr,1d · sI + 3b̂ ^ b̂dgS, s34d

where the overlines turn out not to be necessary in the above
formulae. These expressions are nevertheless cumbersome to
be used in a numerical code.

In some situations, the contributionpr,1 is sufficient and

can even be simplified by approximatingb̂ by the unit vector
ẑ along the ambient magnetic field. This leads to definepr

f1g

by

p
r
f1g 3 ẑ− ẑ3 p

r
f1g = x

r
f1g% s35d

together withẑ·pr
f1g ·ẑ=0 andpr

f1g : I =0, where

xr
f1g =

1

Vr
FSdpr

G

dt
Df1g

+ spr
Gf1g · = udS+ = ·qrG s36d

with pr
Gf1g=p'rsI − ẑ^ ẑd+pirẑ^ ẑ and

Sdpr
G

dt
Df1g

=
dp'r

dt
sI − ẑ ^ ẑd +

dpir

dt
ẑ ^ ẑ+ spip

− p'pd]zfu ^ ẑ− sẑ ·udẑ ^ ẑgS. s37d

We here denote by a double overline the projection on the
subspace orthogonal tosI − ẑ^ ẑd and ẑ^ ẑ. The first two
terms in the RHS of Eq.(37) do not contribute topr

f1g but has
to be retained for the next corrective terms. The heat flux
term = ·qr is to be kept at this order when dealing with
weakly nonlinear magnetosonic waves but arises at the next
order when dealing with Alfvén waves. It is estimated in Sec.
IV. When = ·qr is neglected, one recovers the classical gyro-
viscous tensor,23–25

ppxx
f1g = − ppyy

f1g = −
p'p

2Vp
s]yux + ]xuyd, s38d

ppzz
f1g = 0, s39d
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ppxy
f1g = ppyx

f1g = −
p'p

2Vp
s]yuy − ]xuxd, s40d

ppyz
f1g = ppzy

f1g =
1

Vp
f2pip]zux + p'ps]xuz − ]zuxdg, s41d

ppxz
f1g = ppzx

f1g = −
1

Vp
f2pip]zuy + p'ps]yuz − ]zuydg, s42d

here given for the protons(the electron contribution being
negligible due to the large mass ratio) and usually obtained
in an 1/Vp expansion.

The next correctionpp
f2g originates from terms neglected

in Eq. (31), together with the dominant contributions in Eq.
(32). We can consistently write(replacing single overlines by
double ones)

pp
f2g 3 ẑ− ẑ3 pp

f2g = Lsp
p
f1gd% + x

p
f2g% + Dfxp

f1gg + fsb̂ − ẑd

3 pp
f1ggS, s43d

together with the conditions

ẑ · pp
f2g · ẑ+ fsb̂ − ẑd · pp

f1g · ẑgS= 0, pp
f2g:I = 0. s44d

At the order of the present approximation,

Lsp
p
f1gd% =

1

Vp
]tpp

f1g. s45d

Furthermore,

Dfxp
f1gg ; x

p
f1g − x

p
f1g% = 1

2fsb̂ − ẑd ^ ẑ+ ẑ ^ sb̂ − ẑdg:xp
f1gsI

− 3ẑ ^ ẑd + 1
2sI − 3ẑ ^ ẑd:xp

f1gfsb̂ − ẑd ^ ẑ+ ẑ

^ sb̂ − ẑdg s46d

and

xp
f2g =

1

Vp

d

dt
spip − p'pdfsb̂ − ẑd ^ ẑgS+

1

Vp
spip − p'pd

3h2sb̂ − ẑd · = u ^ ẑ+ 2ẑ · = u ^ sb̂ − ẑd

− 2sẑ · = u · ẑdsb̂ − ẑd ^ ẑ− fsb̂ − ẑd · = u · ẑ

+ ẑ · = u · sb̂ − ẑdgẑ ^ ẑ+ h ^ ẑ− sh · ẑdẑ ^ ẑjS

s47d

with

h =
1

Vp
= 3 F 1

4pr
b 3 s= 3 bd −

1

r
= ·Pe

GG . s48d

All the terms in Dfxp
f1gg and in xp

f2g with the exception of
those involving h (that originates from the generalized
Ohm’s law) result from field line distortion and are only
relevant for the scaling of oblique Alfvén waves. For such

waves,ẑ·sb̂− ẑd is negligible, which enables one to write

x
p
f2g% + Dfxp

f1gg =
1

Vp
fsb̂ − ẑd · = u · ẑ+ ẑ · = u · sb̂ − ẑdgfp'pI + sp'p − 4pipdẑ ^ ẑg +

1

Vp
fp'p = ·u + sp'p − 4pipdẑ · = u · ẑg

3fsb̂ − ẑd ^ ẑgS+
2

Vp
sp'p − pipdfsb̂ − ẑd · = u ^ ẑ+ ẑ · = u ^ sb̂ − ẑdgS+

1

Vp
sp'p − pipdsh ^ ẑd. s49d

This contribution is usually neglected,26 and so are all the
other terms in Eq.(43), excepts1/Vpds] /]tdpp

f1g. Retaining
the nonlinear terms originating from the field line distortion
is nevertheless important to prevent the onset of spurious
nonlinearities(making the problem illposed) in the equation
governing the dynamics of weakly nonlinear oblique Alfvén
waves.17 These waves appear to be governed by alinear
Korteweg–de Vries equation with nonlocal damping. As in
the Hall-MHD description, nonlinear couplings turn out to
vanish.27,28

IV. MODELING OF THE HEAT FLUXES

It is again convenient in Eqs.(25) and (26), to separate
the contributions to the gyrotropic part of= ·qr, originating
from the gyrotropic and nongyrotropic heat fluxes, by writ-
ing qr =qr

G+qr
NG with

qr ijk
G = qirb̂ib̂jb̂k + q'rsdi j b̂k + dikb̂j + d jkb̂i − 3b̂ib̂jb̂kd.

s50d

The equations for the gyrotropic pressure components in-
volve

b̂ · s= ·qr
Gd · b̂ = = · sb̂qird − 2q'r = · b̂, s51d

1
2ftrs= ·qr

Gd − b̂ · s= ·qr
Gd · b̂g = = · sb̂q'rd + q'r = · b̂,

s52d

together with the contribution of the nongyrotropic heat
fluxes to the gyrotropic part of= ·qr that we denote
s= ·qr

NGdG. The nongyrotropic part of= ·qr contributes to the
nongyrotropic pressure corrections.
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A. Nongyrotropic heat flux contributions

The gyrotropic heat flux contributions are comparable to
the pressure perturbations(as seen from the gyrotropic pres-
sure equations), i.e., of ordere1/2 for parallel Alfvén waves
and of ordere for oblique Alfvén and magnetosonic waves.
On the other hand, the nongyrotropic heat flux components
do not only behave like the product of a pressure and a
velocity but also involve an additional space derivative aris-
ing together with the 1/Vr factor. From the scaling assump-
tions, one can conclude that these contributions are subdomi-
nant for both parallel Alfvén and oblique magnetosonic
waves, while they are of the same order as the gyrotropic
heat flux components in the case of oblique Alfvén waves.
This observation is confirmed by the kinetic theory based on
Vlasov–Maxwell equations(see Refs. 16 and 17 and Appen-
dix B).

The nongyrotropic heat fluxes obtained for oblique
Alfvén waves (Appendices B and C) can be expressed in
terms of currentj =sc/4pd= 3b and diamagnetic drifts of
each particle speciesud,r =sc/nqubu2db3 = ·pr that in
the considered limit are given by j /qn<vA

2 /Vp

s−]zsby/B0d ,0 ,]xsby/B0dd and ud,r <vDr
2 /Vps]zsby/B0d ,0 ,0d,

where we define the squared Alfvén velocityvA
2 =B0

2/4prs0d

and alsovDr
2 =sp

'r
s0d −pir

s0dd /rs0d. We thus infer the closure ap-
proximation

s= ·qe
NGdG = 2=' ·Fp'eSud,e −

j

qn
DGsI − b̂ ^ b̂d

+ =' ·FpieSud,e −
j

qn
DGb̂ ^ b̂, s53d

s= ·qp
NGdG = 2=' · fpipud,pgb̂ ^ b̂, s54d

and also approximate the nongyrotropic part of= ·qp by

= ·qp
% =

p'p

2
f=' ^ udp − sẑ3 ='d ^ sẑ3 udpdg

+ Hẑ ^ F='q'p − p'p
vDp

2

2Vp
ẑ3 D'b̂ − 2pipẑ

3s= 3 udpdGJS

. s55d

B. Gyrotropic heat fluxes

In order to infer closed expressions for the gyrotropic
heat fluxes, based on the predictions of the kinetic theory for
oblique Alfvén waves(Appendix C), we adapt the approach
developed in the context of parallel propagation12 where the
closure approximations eventually reduce to the replacement
of the plasma response functionWr by its two-or four-pole
Padé approximants.

1. Parallel heat flux

In order to reduce the problem to a form close to that of
parallel propagation, starting from Eq.(C11) where quanti-
ties proportional tome/mp have been neglected, we first de-
fine

qir8

vth,rpir
s0d =

qir

vth,rpir
s0d − 3SvDe

2 + vA
2

vA
2 DSVp

Vr
− 1D j i

nqvth,r
, s56d

where we used the relationcr
2=svA

2 +vDe
2 +vDp

2 d /vth,r
2 and the

expression of the parallel current in the asymptotics of long
oblique Alfvén waves given in the preceding section. It fol-
lows that:

qir8

vth,rpir
s0d = cr

cr
2 − 3 +Wr

−1

cr
2 − 1 +Wr

−1

Tir
s1d

Tir
s0d , s57d

whereTir
s1d denotes the parallel temperature perturbations for

the particles of speciesr andTir
s0d the corresponding equilib-

rium value. Similar notations are used for the transverse tem-
peratures. We then proceed as in Ref. 16. The parametercr

defined as the ratio of the phase velocity projected on the
direction of the ambient field to the thermal velocity of spe-
cies r is now more generally viewed as the ratioX
=−s1/vth,rd]t]z

−1. The operatorFisXd defined by

qir8

vth,rpir
s0d = FisXd

Tir
s1d

Tir
s0d s58d

is approximated by a homographic function

FisXd = sQi
3 + Qi

4XHd−1sQi
1X + Qi

2Hd, s59d

whereH is the Hilbert transform with respect to the parallel
coordinatez, which allows one to eventually get a first-order
initial value problem. The constant coefficientsQi

i are chosen
in a way that ensures the correct asymptotic behavior of the
parallel heat fluxes in both the isothermal and adiabatic lim-
its. As shown by SHD, this prescription results in a satisfac-
tory modeling in the intermediate regimes. In the isothermal
limit scr !1d, Wr <1−cr

2+Îp /2crHj and q
8ir
s1d

=−Î8/pvth,rn
s0dHjTir

s1d independent ofcr. Differently, in the
adiabatic limit scr @1d, Wr <−1/cr

2−3/cr
4−15/cr

6 and the
heat fluxes are negligible. One thus getsQi

1=0, Qi
2=−Î8/p,

Qi
3=1, Qi

4=−Î8/ps3p /8−1d. In this approximation, the cor-
rected parallel heat fluxqir8 is thus determined in terms of the
parallel temperatureTir by the partial differential equation

1 d

dt
+

vth,r

Î 8

p
S1 −

3p

8
DH]z2 qir8

vth,rpir
s0d =

1

1 −
3p

8

vth,r]z
Tir

Tir
s0d ,

s60d

where, to restore Galilean invariance, the convective deriva-
tive ]t+u·= has been substituted to the partial time deriva-
tive.

2. Perpendicular heat flux

Proceeding in a similar way, starting from Eq.(C12) or
(C13), we first define
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q'r
!

vth,rp'r
s0d =

q'r

vth,rp'r
s0d + FS1 +

vDe
2 + vDp

2

vA
2 DSVp

Vr
+ 1D

−
vDp

2

vA
2 + 2

vDr
2

vA
2

Vp

Vr
G j i

nqvth,r
s61d

that, for long oblique Alfvén waves, can be expressed either
in terms ofA=sbz/B0d+sby

2/2B0
2d or in terms ofsT

'r
s1d /T

'r
s0dd

−s3/vth,rd]t]z
−1sVp/Vrdsvth,r

2 /vA
2ds j i /nqvth,rd, by means of op-

erators that as previously are to be approximated. In order to
accurately fit the adiabatic and isothermal limits, it is conve-
nient to use a mixed expression involving both dependencies,
in the form

q'r
!

vth,rp'r
s0d = F'

1 S−
1

vth,r
]t]z

−1D
3FT'r

s1d

T'r
s0d −

3

vth,r
]t]z

−1Vp

Vr

vth,r
2

vA
2

j i

nqvth,r
G

+ F'
2 S−

1

vth,r
]t]z

−1DA. s62d

Prescribing again a homographic form for the operators

F'
1 sXd = sQ'

3 + Q'
4 XHd−1sQ'

1 X + Q'
2 Hd, s63d

F'
2 sXd = sQ'

3 + Q'
4 XHd−1sQ'

5 X + Q'
6 Hd, s64d

we are led to chooseQ'
1 =Q'

5 =0, Q'
2 =Q'

4 =−Î2/p, and
Q'

6 =Î2/ps1−T
'r
s0d /Tir

s0dd and get

S ]

] t
− Îsp/2dvth,rH]zD q'r

!

vth,rp'r
s0d

= vth,r]zFS1 −
T'r

s0d

Tir
s0d D ubu

B0

− ST'r

T'r
s0d −

3vth,r

vA
2

Vp

Vr
]t]z

−1 j i

nqvth,r
DG . s65d

Introducing

q'r8

vth,rp'r
s0d =

q'r
!

vth,rp'r
s0d − 3

vth,r
2

vA
2

Vp

Vr

j i

nqvth,r

=
q'r

vth,rp'r
s0d + FS1 +

vDe
2 + vDp

2

vA
2 DSVp

Vr
+ 1D

−
vDp

2

vA
2 +

2vDr
2 − 3vth,r

2

vA
2

Vp

Vr
G j i

nqvth,r
, s66d

we finally obtain

S d

dt
−Îp

2
vth,rH]zD q'r8

vth,rp'r
s0d

= vth,r]zFS1 −
T'r

s0d

Tir
s0d D ubu

B0
−

T'r

T'r
s0d

+ 3Îp

2

vth,r
2

vA
2

Vp

Vr
H j i

nqvth,r
G . s67d

As previously, a convective derivative has been substituted

to the partial time derivatives in order to restore Galilean
invariance.

V. THE MODEL AND ITS VALIDATION

A monofluid model has thus been constructed. It is de-
fined by the closed system formed by Eqs.(9), (10), (16),
(25), and (26) where thesir terms are neglected and where
Eqs. (51)–(54) have been used, supplemented by Eqs.(56),
(60), (66), and(67), together with the nongyrotropic pressure
correctionspr =pr

f1g+pr
f2g that are computed in Sec. III B

and involve the nongyrotropic heat flux given by Eq.(55).
To validate this model, we consider its predictions for

the various MHD waves in the long-wavelength limit. Our
previous model12 specifically designed to describe parallel
Alfvén waves is easily recovered by prescribing the ordering
associated to these waves. The nongyrotropic heat flux con-
tributions then disappear and only the leading order gyrovis-
cous tensor without the heat flux term is to be retained. In
this regime, a reductive perturbative expansion leads to a
generalized kinetic derivative nonlinear Schrödinger equa-
tion that identifies with that derived from the Vlasov–
Maxwell system,16 up to the replacement of the plasma re-
sponse function by its two- or four-pole Padé
approximants.12

The model derived in the present paper is in contrast
needed to describe oblique Alfvén waves. We demonstrate in
this section that the kinetic theory presented in Appendix C
is accurately reproduced, and so are the classical dispersion
relations and Landau damping rates of oblique and kinetic
Alfvén waves.

Denoting by j the coordinate along the direction of
propagation, one has==ssin a ]j ,0 ,cosa ]jd and ]t

=−V0]j with V0=L0 cosa. From Eq.(60), one immediately
gets to leading order

qir8

vth,rpir
s0d =

−Î 8

p
H

1 −Î 8

p
S3p

8
− 1DcrH

Tir
s1d

Tir
s0d

= cr

cr
2 − 3 +W4r

−1

cr
2 − 1 +W4r

−1

Tir
s1d

Tir
s0d , s68d

which for the protons and the electrons, respectively, give

qip
s1d

vth,ppip
s0d = cp

cp
2 − 3 +W4p

−1

cp
2 − 1 +W4p

−1

Tip
s1d

Tip
s0d , s69d

qie
s1d

vth,ppip
s0d = ce

ce
2 − 3 +W4e

−1

ce
2 − 1 +W4e

−1

Tie
s1d

Tie
s0d − 3

vA
2 + vDe

2

vth,e

sin a

Vp
]j

by
s1d

B0
.

s70d

This reproduces Eq.(C11), up to the replacement of the
plasma response functionWr by its four-pole approximant
defined as
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W4r =

1

2
s8 − 3pdcr

2 − Î2pcrH + 4

1

2
cr

4s3p − 8d + Î2pcr
3H +

1

2
s16 − 9pdcr

2 − 3Î2pcrH + 4

. s71d

Substituting in the equation for the parallel proton pressure
that rewrites

pip
s1d

pip
s0d − 3

ns1d

ns0d + 2A =
2

L0

vA
2 + vDe

2 + vDp
2

Vp
sin a]j

by
s1d

B0

+
1

cr

qip
s1d

vth,ppip
s0d , s72d

one gets

pip
s1d

pip
s0d = scp

2 + W4p
−1d

ns1d

ns0d − scp
2 − 1 +W4p

−1dA

+ scp
2 − 1 +W4p

−1d
L0

Vp
sin a]j

by
s1d

B0
, s73d

pie
s1d

pie
s0d − 3

ns1d

ns0d + 2A =
ce

2 − 3 +W4e
−1

ce
2 − 1 +W4e

−1Spie
s1d

pie
s0d −

ns1d

ns0dD s74d

that correspond to Eq.(C6).
From the transverse heat flux equations, we get

q'e
s1d

vth,ep'e
s0d =

− 1

ce +Îp

2
H
FS1 −

T'e
s0d

Tie
s0d DA −

p'e
s1d

p'e
s0d +

ns1d

ns0dG
−

vA
2 + vDe

2

vth,e

sin a

Vp
]j

by
s1d

B0
. s75d

Substituting in the equation for the electron parallel pressure
that rewrites

p'e
s1d

p'e
s0d =

ns1d

ns0d + A +
vA

2 + vDe
2

L0

sin a

Vp
]j

by
s1d

B0
+

q'e
s1d

L0p'e
, s76d

one obtains

p'e
s1d

p'e
s0d =

ns1d

ns0d + S1 −
Tie

s0d

Tie
s0dW2eDA. s77d

Here,

W2r =
1

1 −Îp

2
crH − cr

2

s78d

is the two-pole approximant of the plasma response function
Wr.

Similarly, for the protons

p'p
s1d

p'p
s0d =

ns1d

ns0d + A −
vA

2 + vDe
2

L0

sin a

Vp
]j

by
s1d

B0
+

q'p
s1d

L0p'p
s79d

with

q'p
s1d

vth,pp'p
s0d =

− 1

cp +Îp

2
H
FS1 −

T'p
s0d

Tip
s0d DA −

p'p
s1d

p'p
s0d +

ns1d

ns0d

+ 3Îp

2
vth,pH

sin a

Vp

]j

by
s1d

B0
G + f3svth,p

2 − vDp
2 d

− 2svA
2 + vDe

2 dg
sin a

vth,pVp
]j

by
s1d

B0
, s80d

which implies

p'p
s1d

p'p
s0d =

ns1d

ns0d + S1 −
T'p

s0d

Tip
s0d W2pDA − 3L0

sin a

Vp
]j

by
s1d

B0
. s81d

Again the result of the kinetic theory, as given by Eq.(C8), is
recovered up to the replacement of the plasma response func-
tion by a Padé approximant.

To push further the validation of the present model, it is
of interest to concentrate on the regimesme/mid!b
! sTe/Tpd, with b=s1/vA

2dsTe/mpd, assuming no temperature
anisotropy for easier comparison with classical results. This
ordering corresponds to the limitce→0 of isothermal elec-
trons andcp→` of adiabatic protons.

In the limit ce→0, W4e<W2e<We<1−ce
2+Îp /2ceH

and we get

pie
s1d

rs0d = bvA
2 pie

s1d

pie
s0d = vA

2HFb −Îp

2
ÎbÎme

mp
HGrs1d

rs0d

+ ÎbÎp

2
Îme

mp
HAJ , s82d

p'e
s1d

rs0d = bvA
2 p'e

s1d

p'e
s0d = vA

2Fb
rs1d

rs0d − ÎbÎp

2
Îme

mp
HAG , s83d

which provides a systematic derivation of relations previ-
ously based on a phenomenological argument.17

The adiabatic limitcp→` assumes that the phase veloc-
ity of the wave is much larger than the thermal velocity,
which is not consistent with the long-wave asymptotics. The
adiabatic limit is thus conveniently taken by prescribing zero
heat fluxes, and the relations(60) and (61) of Ref. 17 are
then immediately recovered. By inspection, it is also easily
verified that the gyroviscous tensor defined by Eq.(43) iden-
tifies within the reductive perturbative scaling with Eqs.
(B2)–(B7) of Ref. 17. In particular Eq.(49) reproduces Eqs.
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(B15)–(B18) of the same reference. The remaining of the
asymptotic analysis is straightforward and is performed in
Ref. 17. Direct comparisons are successfully made with ki-
netic results.18,19 This demonstrates that the present model
correctly reproduces the dynamics of small amplitude ob-
lique and kinetic Alfvén waves.

The case of oblique magnetosonic waves requires a more
detailed discussion that we explicit in the regime of adiabatic
ions and isothermal electrons with isotropic temperatures.
The leading order linear dispersion relation correctly repro-
duces that provided by the kinetic theory[see Eqs.(29) and
(A21) of Ref. 17]. It includes a Landau damping rate that, up
to an angular factor, scales likekvA

ÎbÎsme/mpd where, as
above,b is defined as the ratio of the electron to magnetic
pressures andk the wave number of the perturbation. This
level of description is sufficient when this rate of damping is
larger than the inverse nonlinear timeku (whereu is a typical
velocity perturbation), that is to say whenÎbÎsme/mpd
@esV0/vAd. The parametere can be estimated asklp, where
lp=svA/Vpd is the proton inertial length. Let us first consider
the distinguished limit where the wave amplitude scales like
e. For slow waves for whichV0,ÎbvA, the condition re-
duces to klp! sme/mpd1/4<0.15. These waves are thus
strongly damped in the long-wave limit. For fast wavesV0

,vA, and the condition for rapid damping readsb
@ smp/medsklpd4. When this condition is not satisfied, the
Landau damping arises at the same order as the nonlinear
and dispersive terms and a weakly nonlinear analysis on the
time scalet=e3/2 is required. In this regime, the equations
for ]tux

s1d and ]tuz
s1d involve the quantities]xp'

s2d and ]zpi
s2d,

and thus the gyrotropic heat fluxesq
'

s2d andqi
s2d, together with

the FLR termpr
f2g that through Eq.(43) is prescribed by

1/Vps]tpr
f1g+= ·q

p
s3/2d% d. These heat fluxes, when not negli-

gible, are not properly modeled in the present formalism.
They are absent in the case of purely transverse propagation,
a situation addressed in Ref. 29. The case of oblique propa-
gation in the adiabatic limit was considered in Ref. 30 where
the terms1/Vpd]tpr

f1g was overlooked.
When the amplitude is larger, usual MHD supplemented

by 1/Vp corrections provides a sufficient description. As the
amplitude of these waves is reduced by dissipation, the re-
gime dominated by Landau damping is recovered. The only
case where our model does not provide a complete descrip-
tion of magnetosonic waves thus concerns small amplitude
waves with the distinguished scaling and very smallb.

The question arises whether the usual energyE
=efsrsu2/2d+sb2/8pd+p'+s1/2dpidgd3x is conserved by
the above monofluid model. The delicate contributions origi-
nate from the electron pressure gradient in the induction
equation and from the second-order nongyrotropic pressure
corrections. The first term that affects the magnetic field evo-
lution only in the case of pressure anisotropy contributes in a
long wave theory at the level of the linear dispersion relation.
In this limit, it can thus be replaced bys1/r0d=p'e

−svDe
2 /B0

2d= ·sb^ bd, a term that does not contribute to the
energy budget. Concerning the nongyrotropic pressure con-
tributions, while the leading orderpf1g preserves energy(at
least in the absence of the heat flux term), the effect ofpf2g is

still unsettled. This question requires further investigations.
In fact, in a way similar to the diamagnetic term in the gen-
eralized Ohm’s law, this contribution is only relevant at the
level of the linear dispersion relation of oblique and kinetic
Alfvén waves. As a consequence, even in the case where the
energy is only conserved at the order of validity of the per-
formed approximations, the effect on the large-scale dynam-
ics will be negligible.

VI. CONCLUSION

A monofluid model has been derived with the constraint
to reproduce the weakly nonlinear dynamics and the Landau
damping of long MHD waves in a collisionless plasma, for
any b larger than the electron to proton mass ratio and any
angle of propagation. It reproduces the dynamics of small-
amplitude oblique Alfvén waves, including the exact cancel-
lation of the nonlinearity. For parallel Alfvén waves, it leads
to the KDNLS equation and describes the transverse insta-
bility of a circularly polarized wave,31 resulting in the forma-
tion of intense magnetic filaments. This Alfvén wave “col-
lapse” was considered as a possible mechanism at the origin
of the cylindrical field aligned current tubes observed by the
CLUSTER mission in the terrestrial magnetosheath.32

Comparison of the model with gyrokinetic simulations
and possibly with Vlasov–Maxwell or particles in cells simu-
lations, in particular, in the nonlinear stage of parametric
instabilities, are in project. It is also necessary to evaluate the
importance of particle trapping that requires a nonlinear fluid
closure, presently very difficult to design.33

This model can be used to perform three-dimensional
numerical simulations of dispersive MHD turbulence, taking
into account realistic dissipation and heating mechanisms.
The retained second-order FLR corrections should in particu-
lar provide an accurate description of the kinetic Alfvén
waves generated at small scales. Such simulations, that in-
volve a self-consistent treatment of the turbulent dynamics in
the presence of Landau damping, could significantly contrib-
ute to the understanding of cosmic ray scattering(by fast and
Alfvén modes) in the interstellar medium.34

This model will also be useful to study the formation of
coherent structures such as magnetic holes,35,36 shocklets,
and also the structures resulting from the nonlinear evolution
of the mirror instability, observed in the solar wind37 and the
magnetosheath.38 A correct description of this instability that
extends up to scales comparable to the ion Larmor radius
requires higher order FLR corrections that, as mentioned in
Section III B, cannot be directly obtained within a monofluid
description. Their evaluation is possible through a 1/Vp ex-
pansion of all the fields in a multifluid description.39

Another development concerns hybrid simulations that
could possibly be improved by replacing the usual MHD
description of the electron dynamics by a more refined one
including physical processes retained by the present model.
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APPENDIX A: LONG-WAVE EXPANSION OF
VLASOV–MAXWELL EQUATIONS FOR OBLIQUE
ALFVÉN WAVES

We write the Vlasov–Maxwell equations in the form

]t f r + v · = f r +
qr

mr
Se+

1

c
v 3 bD · =vf r = 0, sA1d

1

c
]tb = − = 3 e, sA2d

= 3 b =
4p

c o
r

qrnr E vf rd
3v +

1

c
]te, sA3d

= ·e= 4po
r

qrnr E f rd
3v, sA4d

wheref r andnr are the distribution function and the average
number density of the particles of speciesr with chargeqr

and massmr. The displacement currents1/cd]te turns out to
be negligible in the present analysis where perturbations
propagate at a velocity small compared with the speed of
light. This contribution which might be important for auroral
plasmas is retained by Verheest.40

Let a be the angle between the ambient magnetic field
B0ẑ (whereẑ is the unit vector pointing along thezaxis) and
the direction of propagation of the wave. It is then conve-
nient to perform the change of framex8=x cosa−z sin a,
z8=x sin a+z cosa, the dynamics being assumed indepen-
dent of they variable. We then introduce the stretched vari-
ablej=e1/2sz8−V0td whereV0!c is the Alfvén-wave propa-
gation velocity in thez direction, together with the slow time
t=e3/2t. It follows that the spatial gradient rewrites=
=se1/2 sin a]j ,0 ,e1/2 cosa]jd.

In order to select oblique Alfvén waves, we expand

bx = esbx
s1d + ebx

s2d + ¯d, sA5d

by = e1/2sby
s1d + eby

s2d + ¯d, sA6d

bz = B0 + esbz
s1d + ebz

s2d + ¯d, sA7d

and thus, from Eq.(A2),

ex = e1/2sex
s1d + eex

s2d + ¯d, sA8d

ey = esey
s1d + eey

s2d + ¯d, sA9d

ez = e1/2sez
s1d + eez

s2d + ¯d, sA10d

with

V0

c
bx

s1d = − cosaey
s1d, sA11d

V0

c
by

s1d = cosaex
s1d − sin aez

s1d, sA12d

V0

c
bz

s1d = sin aey
s1d. sA13d

We also expand the distribution function in the form

f r = Fr
s0d + e1/2f r

s0d + ef r
s1d + e3/2f r

s2d + ¯, sA14d

whereFr
s0d denotes the equilibrium velocity distribution func-

tion, assumed rotationally symmetric around the direction of
the ambient field and symmetric relatively to forward and
backward velocities along this direction, thus excluding the
presence of equilibrium drifts.40–42

It is also convenient to express the velocityv in a cylin-
drical coordinate system by defining the azimuthal anglef
=tan−1svz/vyd of the velocity component transverse to the
ambient magnetic field. One writes

v = svx = v' cosf,vy = v' sin f,vz = vid sA15d

and

=v = Scosf ]v'
−

sin f

v'

]f,sin f ]v'
+

cosf

v'

]f,]viD .

sA16d

Furthermore sqr /cmrdsv3B0ẑd ·=v=−Vr]f, where Vr

=sqrB0d / smrcd is the gyrofrequency of the particles of spe-
cies r.

Expanding to the successive orders, one gets from Eq.
(A1),

Vr]fFr
s0d = 0, sA17d

Vr]ff r
s0d =

qr

mr
S1

s1dFr
s0d, sA18d

Vr]ff r
s1d =

qr

mr
sS2

s1dFr
s0d + S1

s1df r
s0dd + S3f r

s0d, sA19d

Vr]ff r
s2d =

qr

mr
sS1

s2dFr
s0d + S2

s1df r
s0d + S1

s1df r
s1dd + S3f r

s1d,

sA20d

where

S1
ssd = Sex

ssd −
vz

c
by

ssdDScosf ]v'
−

sin f

v'

]fD
+ Sez

ssd +
vx

c
by

ssdD]vi
, sA21d

S2
ssd =

vy

c
bz

ssdScosf ]v'
−

sin f

v'

]fD
+ Sey

ssd +
vzbx

ssd − vxbz
ssd

c
DSsin f ]v'

+
cosf

v'

]fD
−

vybx
ssd

c
]vi

, sA22d
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S3 = svx sin a + vz cosa − V0d]j. sA23d

Equation(A17) indicates thatFr
s0d is independent of the angle

f. The solvability of (A18)) implies ez
s1d=0 and by(A12),

ex
s1d=sL0/cdby

s1d where L0=V0/cosa. This equation is then
solved as

f r
s0d = DFr

s0d sin f
by

s1d

B0
sA24d

with D=sL0−vid]v'
+v']vi

. We also used the solvability

condition of Eq.(A19), that readsf̄ r
s0d=kf r

s0dl;1/2pef r
s0ddf

=0.
It follows from the sinf dependence off r

s0d that ]ff r
s1d

only contains sinf and sin 2f Fourier modes.
The solvability condition of Eq.(A20) reads

qr

mr
ez

s2d]vi
Fr

s0d −
qr

2cmr
D+DFr

s0dbx
s1dby

s1d

B0

−
qr

cmr
D+ksin f]ff r

s1dlby
s1d− v' sin a]jksin f]ff r

s1dl

+ svi cosa − V0d]j f̄ r
s1d = 0, sA25d

whereD±=sL0−vids]v'
±v'

−1d+v']vi
and

ksin f]ff r
s1dl = −

1

2
DFr

s0dbx
s1d

B0
+

cosa

2Vr
svi

− L0dDFr
s0d]j

by
s1d

B0
. sA26d

Assuming that the perturbations of the distribution function
vanish at largej, we obtain

svi − L0d f̄ r
s1d = svi − L0dRr + Sr]vi

Fr
s0d sA27d

with

Rr =
1

2
D+DFr

s0dby
s1d2

2B0
2 −

v'

2
]v'

Fr
s0dA

+
sin a

2Vr
v'DFr

s0d]j

by
s1d

B0
, sA28d

Sr =
qr

mr
w +

1

2
v'

2 A, sA29d

where we have definedA=bz
s1d /B0+by

s1d2/2B0
2 and ez

s2d

=−]zw=cosa]jw. As done in Ref. 16, the potentialw can be
determined in terms of the magnetic perturbationsA, using
Eq. (A4) that, to leading order, gives

sin a
L0

c
]jby

s1d = 4po
r

qrnrE f̄ r
s1dd3v. sA30d

We do not use this approach here, but rather eliminate the
potential using the expression of the density perturbations.12

Furthermore, one has16

E f̄ r
s1ddvi =E Rrdvi + GrSr , sA31d

where we have defined the operator

Gr = PE ]vi
Fr

s0d

vi − l
dvi + ps]vi

Fr
s0dduvi=lHj, sA32d

Hj being the Hilbert transform with respect to thej variable.
The z component of Eq.(A3) (together the previously

obtained conditionez
s1d=0), leads to the relation

sin a]jby
s1d =

4p

c o
r

qrnrE vi f̄ r
s1dd3v. sA33d

The x component of Eq.(A3) taken to leading order
gives

− cosa]jby
s1d =

4p

c o
r

qrnrE v' cosf f̃ r
s1dd3v

=−
4p

c o
r

qrnrE v' sin f]f f̃ r
s1dd3v, sA34d

which, when using(A19), provides the dispersion relation
for oblique Alfvén waves, in the form

L0
2 = vA

2 +
p'

s0d

rs0d −
pi

s0d

rs0d . sA35d

It involves the parallel and transverse pressurespi
s0d

=or pir
s0d and p

'

s0d=or p
'r
s0d, together with the corresponding

density rs0d=or rr
s0d. Here, pir

s0d=mrnrevi
2Fr

s0dd3v, p
'r
s0d

=mrnresv'
2 /2dFr

s0dd3v, and rr
s0d=mrnreFr

s0dd3v denote the
contributions of the various species to the above quantities.
Furthermore,vA

2 =B0
2/4prs0d is the Alfvén velocity.

Finally, they component of Eq.(A3) gives

]jscosabx
s1d − sin abz

s1dd =
4p

c o
r

qrnrE v' sin f f̃ r
s2dd3v,

sA36d

which also rewrites

−
1

sin a
]j

bz
s1d

B0
=

4p

cB0
o

r

qrnrE v' cosf]f f̃ r
s2dd3v. sA37d

It follows that:
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−
1

sin a
]j

bz
s1d

B0
= −

4p

cB0
o

r

qrnrE sL0 − vid f̄ r
s1dd3v

by
s1d

B0

+
4p

B0
2 sin ao

r

mrnrE v'
2

2
]j

3S f̄ r
s1d −

1

2
ksin 2f]f f̃ r

s1dlDd3v

−
4p

B0
cosao

r

mrnrE v'svi

− L0d]jksin f]f f̃ r
s1dld3v. sA38d

We are then led to compute

ksin 2f]f f̃ r
s1dl =

1

2
D−DFr

s0dby
s1d2

2B0
2 +

sin a

4Vr
v'DFr

s0d]j

by
s1d

B0
.

sA39d

Using Eqs.(A30) and (A33) (with the conditionL0!c) to-
gether with the relation

o
r

mrnrE v'
2

2
f r

s1dd3v = p'
s1d +

cos2a

sin a
]j

by
s1d

B0
, sA40d

where, as previously, we neglect the massme of the electrons
compared to thatmp of the protons and definedvDr

2 =sp
'r
s0d

−pir
s0dd/rs0d.

APPENDIX B: KINETIC FORM OF HYDRODYNAMIC
QUANTITIES

1. Density fluctuations

The density fluctuations of the particles ofr species,
defined to leading order aserr

s1d with

rr
s1d = mrnr E f̄ r

s1dd3v, sB1d

are given by

rr
s1d = Prw + srr

s0d + OrdA −
sin a

Vr
L0rr

s0d]jSby
s1d

B0
D , sB2d

where

Pr = 2pqrnrE
0

`

GrdSv'
2

2
D , sB3d

Or = 2po
r

mrnrE
0

` v'
2

2
GrdSv'

2

2
D . sB4d

The total density fluctuations are then given byrs1d

=or rr
s1d.

2. Hydrodynamic velocities

The hydrodynamic velocity transverse to the local mag-
netic field is given by

U' =
or

mrnrE V'f rd
3v

or
mrnrE f rd

3v

, sB5d

whereV'=v−sv ·b̂db̂ with b̂=b/ ubu. One easily checks that
V';sV'x,V'y,V'zd with

V'x = v' cosf − evi

bx
s1d

B0
, sB6d

V'y = v' sin f − e1/2vi

by
s1d

B0
− ev' sin f

by
s1d2

B0
2 , sB7d

V'z = − e1/2v' sin f
by

s1d

B0
+ eS2vi

by
s1d2

2B0
2 − v' cosf

bx
s1d

B0
D ,

sB8d

and thus

U' ; sU'x,U'y,U'zd=S− eL0
bx

s1d

B0
− e

cosa

Vp
svA

2

+ vDe
2 d]jSby

s1d

B0
D,− e1/2L0

by
s1d

B0
,eL0

by
s1d2

B0
2 D , sB9d

where terms inme/mp have been neglected.
The hydrodynamic velocity along the local magnetic

field is

Ui =
or

mrnrE Vif rd
3v

or
mrnrE f rd

3v

sB10d

with Vi=sv ·b̂db̂. One getsUi=eUi
s1d+¯ with

Ui
s1d = − L0

by
s1d2

2B0
2 +

L0

rs0dPw +
L0

rs0dOA −
sin a

Vp
vDp

2 ]j

by
s1d

B0

sB11d

that also rewrites

Ui
s1d = − L0

by
s1d2

2B0
2 + L0

rs1d

rs0d − L0A +
sin a

Vp
sL0

2 − vDp
2 d]j

by
s1d

B0
.

sB12d

By projectingU'+Uib̂ on the three axes, we recover the
hydrodynamic velocity components

ux < − eSL0
bx

s1d

B0
+ svA

2 + vDe
2 d

cosa

Vp
]j

by
s1d

B0
D , sB13d

uy < − e1/2L0
by

s1d

B0
, sB14d

uz < eFL0Srs1d

rs0d −
bz

s1d

B0
D + svA

2 + vDe
2 d

sin a

Vp
]j

by
s1d

B0
G .

sB15d
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3. Gyrotropic pressures

In the framework of a monofluid theory, the transverse
and parallel components of the gyrotropic pressures are de-
fined as

p'r = mrnr E 1

2
sV' − U'd2f rd

3v, sB16d

pir = mrnr E sVi − Uid2f rd
3v. sB17d

Defining the operators

M = o
r

Mr = 2po
r

qrnrE
0

`

dSv'
2

2
Dv'

2

2
Gr , sB18d

N = o
r

Nr = 2po
r

mrnrE
0

`

dSv'
2

2
Dv'

4

4
Gr , sB19d

the leading pressure perturbations(or ordere) are given by

p'r
s1d = mrnrE v'

2

2
f̄ r

s1dd3v − SL0
2rr

s0d

rs0d − vDr
2 Drs0dby

s1d2

2B0
2

= Mrw + s2p'r
s0d + NrdA − 2

sin a

Vr
L0p'r

s0d]j

by
s1d

B0
sB20d

and

pir
s1d = mrnr E vi

2

2
f̄ r

s1dd3v − vDr
2 rs0dby

s1d2

2B0
2

= s− qrnr + L0
2Prdw + s− rs0dvDr

2 + L0
2OrdA

−
sin a

Vr
L0pir

s0d]j

by
s1d

B0
. sB21d

4. Heat fluxes

a. Gyrotropic heat fluxes

The gyrotropic components of the heat flux tensor

qr = o
r

mrnr E sv − Ud ^ sv − Ud ^ sv − Udf rd
3v,

sB22d

(U denoting the hydrodynamic velocity) read

q'r = mrnrE 1

2
sV' − U'd2sVi − Uidf rd

3v, sB23d

qir = mrnr E sVi − Uid3f rd
3v. sB24d

To leading order, one hasq'r =eq
'r
s1d +¯ and qir =eqir

s1d+¯
where

q'r
s1d = − p'r

s0dSUi
s1d + L0

by
s1d2

2B0
2 D + L0Mrw + L0NrA

+
sin a

Vr
mrnr E Svi

2v'
2 −

1

4
v'

4 DFr
s0dd3v]j

by
s1d

B0
,

sB25d

qir
s1d = − 3pir

s0dSUi
s1d + L0

by
s1d2

2B0
2 D + L0

3rr
s1d − L0sL0

2rr
s0d

+ p'r
s0ddA− qrnrL0w +

sin a

Vr
FL0

4rr
s0d + mrnr

3E Svi
4 −

3

2
v'

2 vi
2DFr

s0dd3vG]j

by
s1d

B0
, sB26d

with Ui
s1d+L0by

s1d2/2B0
2 given by Eq.(B11).

b. Heat flux contributions to the gyrotropic pressures

The longitudinal and transverse pressures(relatively to

the local magnetic field) involve tr = ·qr andb̂·= ·qr ·b̂. The
heat flux components being also of ordere, the distortion of
the magnetic field lines can be neglected to leading order. We
are thus led to write

tr = ·qr < ]xsqr111+ qr221+ qr331d + ]zsq'r + qird sB27d

and

b̂ · s= ·qrd · b̂ < ]xqr331+ ]zqir , sB28d

where theqrijk ’s hold for the components in the local frame
of the heat flux associated with the particles of speciesr. One
has

qr331;E sVi − Uid2sV'x − U'xdf rd
3v = eqr331

s1d + ¯

sB29d

with

qr331
s1d = Hcosa

Vp
pir

s0dFvA
2 + vDe

2 −
Vp

Vr
svA

2 + vDp
2 + vDe

2 dG
−

cosa

Vr
E Svi

4 −
3

2
v'

2 vi
2DFr

s0dd3vJ]j

by
s0d

B0
. sB30d

Similarly, to leading order

qr111+ qr221=E sV' − U'd2sV'x − U'xdf rd
3v

= esq111,r
s1d + q221,r

s1d d + ¯ sB31d

with

qr111
s1d + qr221

s1d = H−
cosa

Vr
F4p'r

s0dL0
2 + 2mrnr

3E Svi
2v'

2 −
1

4
v'

2 DFr
s0dd3vG

+ 4
cosa

Vp
p'r

s0dsvA
2 + vDe

2 dJ]j

by
s0d

B0
. sB32d
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c. Heat flux contribution to the nongyrotropic
pressures

Neglecting the magnetic field line distortions that are
irrelevant at the considered order, we write the nongyrotropic
contribution to= ·qp in the form

= ·qp
% = ]k1

1

2
sqp11k − qp22kd qp12k qp13k

qp21k −
1

2
sqp11k − qp22kd qp23k

qp31k qp32k 0
2
sB33d

where we concentrate on the proton contribution. To leading
order qpijk=esvi −uidsv j −ujdsvk−ukdfpd

3v<eqpijk
s1d . Since we

assume no dependency in they variable, we are led to com-
pute

qp111
s1d = − 3p'p

s0d ux
s1d + mpnpE v'

3 cos3 ffp
s1dd3v, sB34d

qp221
s1d = − p'p

s0d ux
s1d + mpnpE v'

3 sin2 f cosffp
s1dd3v,

sB35d

qp112
s1d = mpnpE v'

3 cos2f sin ffp
s1dd3v, sB36d

qp113
s1d = − p'p

s0d uz
s1d + mpnpE v'

2 vi cos2 ffp
s1dd3v, sB37d

qp223
s1d = − p'p

s0d uz
s1d + 2sp'p

s0d − pip
s0dduy

by
s1d

B0

+ mpnpE v'
2 vi sin2 ffp

s1dd3v, sB38d

qp123
s1d = mpnpE v'

2 vi sin f cosffp
s1dd3v, sB39d

qp133
s1d = − pip

s0dux
s1d + mpnpE v'vi

2 cosffp
s1dd3v, sB40d

qp233
s1d = mpnpE v'vi

2 sin ffp
s1dd3v. sB41d

Since fp
s1d only projects on 1, cosf, and cos 2f, one has

qp112
s1d = qp123

s1d = qp233
s1d = 0, sB42d

and the only integrals to be computed read

mpnpE v'
3 sin f]ffp

s1dd3v

= 4L0p'p
s0d bx

s1d

B0
+ F4L0

2p'p
s0d + 4mpnp

3E Svi
2v'

2 −
v'

4

4
DFp

s0dd3vGcosa

Vp
]j

by
s1d

B0
, sB43d

mpnpE v'vi
2 sin f]ffp

s1dd3v

= L0pip
s0dbx

s1d

B0
+ SL0

2pip
s0d + mpnpE Svi

4 −
3

2
v'

2 vi
2DFp

s0dd3vD
3

cosa

Vp
]j

by
s1d

B0
, sB44d

mpnpE v'
2 vi sin 2f]ffp

s1dd3v

= − 8L0sp'p
s0d − pip

s0dd
by

s1d2

2B0
2 +E Svi

2v'
2 −

v'
4

4
D

3Fp
s0dd3v

sin a

Vp
]j

by
s1d

B0
. sB45d

The fourth-order velocity moments are explicited in Appen-
dix C where bi-Maxwellian distribution functions are as-
sumed for the equilibrium state.

APPENDIX C: EQUILIBRIUM BI-MAXELLIAN
DISTRIBUTION

It is possible to simplify the above general expressions
for the hydrodynamic moments by assuming that the plasma
contains electrons and only one species of ions(with Z=1),
with bi-Maxwellian equilibrium distribution functions

Fr
s0d =

1

s2pd3/2

mr
3/2

T'r
s0dTir

s0d1/2expH− S mr

2Tir
s0dvi

2 +
mr

2T'r
s0d v'

2 DJ .

sC1d

Using the quasineutrality condition that prescribesnr =ns0d

andrr
s1d=mrn

s1d, one obtains

Mr = − ns0dqr

T'r
s0d

Tir
s0dWr, Nr = − 2ns0dT'r

s0d2

Tir
s0d Wr , sC2d

Or = − ns0dmr

T'r
s0d

Tir
s0dWr, Pr = − ns0dmrqr

1

Tir
s0dWr , sC3d

where, normalizing the propagation velocity of the wave by
the thermal velocityvth,r =ÎTir

s0d /mr in the formcr =L0/vth,r,
one writes

Wr ; Wscrd =
1

Î2p
PE ze−z2/2

z − cr
dz +Îp

2
cre

−cr
2/2Hj,

sC4d

or43
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Wscrd = 1 −cre
−

cr
2

2E
0

cr

e
z2

2 dz +Îp

2
cre

−cr
2/2Hj. sC5d

This function is related to the plasma response functionR
used by SHD byWsXd=RsX/Î2d.

This leads to express

pir
s1d

pir
s0d = S1 −

T'r
s0d

Tir
s0d −

T'r
s0d

Tir
s0d cr

2WrDA + scr
2 + Wr

−1dFns1d

ns0d

− S1 −
T'r

s0d

Tir
s0dWrDAG+ scr

2 − 1 +Wr
−1d

sin a

Vr
L0]j

by
s1d

B0

sC6d

and

Tir
s1d

Tir
s0d ;

pir
s1d

pr
s0d −

ns1d

ns0d=scr
2 − 1 +Wr

−1d

3Sns1d

ns0d − A +
sin a

Vr
L0]j

by
s1d

B0
D . sC7d

Similarly,

T'r
s1d

T'r
s0d ;

p'r
s1d

p'r
s0d −

ns1d

ns0d=S1 −
T'r

s0d

Tir
s0dWrDA − 3

sin a

Vr
crvthr]j

by
s1d

B0
.

sC8d

When considering the heat flux components, we have to
evaluate the integrals

mrnr E Svi
4 −

3

2
vi

2v'
2 DFr

s0dd3v = − 3vDr
2 pr

s0d sC9d

and

mrnr E Svi
2v'

2 −
1

4
v'

4 DFr
s0dd3v = − 2vDr

2 pr
s0d. sC10d

We get

qir
s1d

vth,rpir
s0d = cr

cr
2 − 3 +Wr

−1

cr
2 − 1 +Wr

−1

Tir
s1d

Tir
s0d + 3FScr

2 −
vDr

2

vthr
2 DSVp

Vr
− 1D

+
vDp

2 − vDr
2

vth,r
2 Gsin a

Vp
vth,r]j

by
s1d

B0
sC11d

and

q'r
s1d

vth,rp'r
s0d = −

T'r
s0d

Tir
s0d crWrA + F− cr

2SVp

Vr
+ 1D +

vDp
2

vth,r
2

− 2
vDr

2

vth,r
2

Vp

Vr
Gsin a

Vp
vth,r]j

by
s1d

B0
sC12d

that also rewrites

q'r
s1d

vth,rp'r
s0d = −

T'r
s0d

Tir
s0d

crWr

1 −
T'r

s0d

Tir
s0d Wr

FT'r
s1d

T'r
s0d + 3cr

sin a

Vr
vth,r]j

by
s1d

B0
G

+ F− cr
2SVp

Vr
+ 1D +

vDp
2

vth,r
2

− 2
vDr

2

vth,r
2

Vp

Vr
Gsin a

Vp
vth,r]j

by
s1d

B0
. sC13d

Note that fora=0, the parallel and transverse energy fluxes
computed in Refs. 16 and 12 in the case of parallel Alfvén
waves are recovered.

Furthermore, the nonzero coefficients entering the non-
gyrotropic proton heat flux components considered in Ap-
pendix B, become

qp111
s1d − qp221

s1d = 0, sC14d

qp113
s1d − qp223

s1d = p'p
s0d vDp

2 sin a

Vp
]j

by
s1d

B0
, sC15d

qp133
s1d = 2pip

s0dvDp
2 cosa

Vp
]j

by
s1d

B0
, sC16d

together with

qp113
s1d = − p'p

s0d uz
s1d + L0p'p

s1d − 2L0p'p
s0d A + L0p'p

s0d by
s1d2

2B0
2

+ S2L0
2 −

3

2
vDp

2 Dp'p
s0d sin a

Vp
]j

by
s1d

B0

=L0p'p
s0d Sp'p

s1d

p'p
s0d −

rp
s1d

rp
s0d − AD

+ SL0
2 −

vDp
2

2
Dp'p

s0d sin a

Vp
]j

by
s1d

B0

=q'p
s1d + p'p

s0d vDp
2 sin a

2Vp
]j

by
s1d

B0
, sC17d

where we have used Eqs.(B24), (B11), and(B19).
Equation(B32) then reads

= ·qp
% = 1lp 0 mp

0 − lp 0

mp 0 0
2 sC18d

with

lp = p'p
s0d vDp

2

2Vp
]xz

by
s1d

B0
, sC19d

mp = ]xq'p + p'p
s0d vDp

2

2Vp
]xx

by
s1d

B0
+ 2pip

s0dvDp
2

Vp
]zz

by
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