$\begin{array}{l} BA^{LA}\ddot{i}_{T}O_{US}:\\ \text{un code de simulations numériques}\\ \text{locales pour la dynamique des fluides stellaires} \end{array}$

F. Rincon F. Lignières M. Rieutord Laboratoire d'Astrophysique Observatoire Midi-Pyrénées UMR 5572 - TOULOUSE

Simulations numériques locales pour la dynamique des fluides stellaires

\checkmark Présentation générale

- **X** Motivations
- X Historique et évolutions récentes
- **X** Types de simulations réalisables
- X Structure du code
- ✓ Méthodes numériques
 - **X** Avancement en temps
 - **X** Différentiation spatiale
 - X Parallélisation
- ✓ Exemples d'utilisations récentes
 - **X** Tests, simulations à grand rapport d'aspect
- \checkmark Conclusions, évolutions possibles

 \checkmark Début \checkmark Fin \checkmark Page \checkmark Plein écran \checkmark Fermer

Motivations

- ✓ Un outil numérique polyvalent et performant pour la modélisation des écoulements fluides 3D dans les atmosphères et les intérieurs stellaires;
- ✓ simulations locales avec une direction inhomogène (celle de la gravité) :

- X géométrie cartésienne,
- X deux directions horizontales périodiques,
- X direction verticale avec conditions aux limites;

 \checkmark codes similaires : HPS (Chicago, Boulder), code du DAMTP (Cambridge).

Historique et évolutions récentes

- ✓ Initié par A. Mangeney et F. Califano pour étudier des écoulements incompressibles [Califano, 1996];
- ✓ développé par F. Lignières : passage en fortran 90, parallélisation MPI, portage sur IBM SP3/4 [Lignières, 1998];
- ✓ récemment : intégration des écoulements compressibles, portage sur SGI, conception de tests de performance et de précision.

 \checkmark Début \checkmark Fin \checkmark Page \checkmark Plein écran \checkmark Fermer

Types de simulations réalisables

✓ Résolution en 2D ou 3D :

- X de l'équation de continuité,
- X de l'équation de Navier-Stokes,
- X éventuellement de l'équation pour la température (dans l'approximation de diffusion),
- X éventuellement de l'équation d'induction,

pour des conditions aux limites de type champ fixé ou dérivée fixée.

- \Rightarrow flots incompressibles ou dans l'approximation de Boussinesq,
- \Rightarrow écoulements complètement compressibles,
- \Rightarrow simulations purement HD ou MHD,
- \Rightarrow écoulements forcés ou avec rotation;
- \checkmark code sans viscosité artificielle : $\nu \Delta \vec{v}$ seulement.

 \checkmark Début \checkmark Fin \checkmark Page \checkmark Plein écran \checkmark Fermer

- ✓ Langage : fortran 90, interfacé avec du C ;
- ✓ Modularité : possibilité de changer les méthodes de différentiation spatiale sans affecter l'ensemble du code :

 \Rightarrow utilisation d'interfaces génériques;

- \checkmark preprocessing du compilateur pour la sélection des méthodes numériques;
- \checkmark configuration d'une partie du problème par des namelist.
- ✓ Installation sur diverses architectures et benchs de performances et d'exactitude automatisés en Perl.

 \checkmark Début \checkmark Fin \checkmark Page \checkmark Plein écran \checkmark Fermer

Avancement en temps

✓ Complètement explicite;

✓ prédicteur correcteur de type Runge-Kutta [Demuren et al., 2001] :

X faible stockage mémoire,

X ordre 3 ou 4 ;

✓ avancement dans l'espace réel (différence avec HPS).

- \checkmark Différents algorithmes :
 - X en incompressible, résolution intermédiaire de l'équation de Poisson pour la pression;
 - \boldsymbol{X} en compressible, avancement direct des différents champs, mais un champ supplémentaire ρ à calculer.

6

✓ Début ✓ Fin ✓ Page ✓ Plein écran ✓ Fermer

Différentiation spatiale dans la direction verticale – différences finies compactes

✓ Schéma possédant une précision quasi-spectrale [Lele, 1992] :

- X résolution satisfaisante des petites échelles, adapté aux problèmes de turbulence;
- X stable pour une équation d'advection [Carpenter, 1993];
- X choix entre ordre 6 et ordre 8;
- intégration de plusieurs schémas de bords pour la gestion de différents types de conditions aux limites;
- ✓ en pratique, résolution de systèmes linéaires tri- ou penta-diagonaux :

X peu ou pas parallélisable;

✗ choix d'une bibliothèque : LAPACK (PC), SCS (SGI), ESSL (IBM).

✓ Début ✓ Fin ✓ Page ✓ Plein écran ✓ Fermer

Différentiation spatiale dans les directions horizontales – transformée de Fourier rapide

\checkmark Précision spectrale :

- X utile pour les simulations de turbulence;
- **X** moins de points !
- X facteurs de sécurité plus petits...

		RK ₃			RK_4	
Équation	DFC_6	DFC_8	FFT	DFC ₆	DFC_8	FFT
Diffusion	0.36	0.33	0.25	0.42	0.39	0.29
Advection	0.87	0.78	0.55	1.43	1.29	0.9

✓ hautement parallélisable ;

 ✓ utilisation de la bibliothèque FFTW reconnue pour ses performances comparées aux FFT propriétaires (interface C/F90).

Précision des schémas et dealiasing

- \checkmark DFC : filtre passe-bas « naturel »;
- ✓ FFT : filtre de dealiasing pour supprimer les modes spurieux liés à la collocation dans l'espace réel.

Stratégie de parallélisation

 $\checkmark\,$ les dérivées verticales dans chaque tranche sont calculées sur un processeur ;

✓ Parallélisation des FFT pour le calcul des dérivées horizontales;

- ✓ portabilité : utilisation de la bibliothèque MPI ;
- ✓ implémentation des communications interprocesseur intégrée à FFTW.

Performances

✓ Benchs de parallélisation effectués à l'IDRIS et au CINES :

✓ Efficacité assurée jusqu'à 32 processeurs pour des résolutions $82 \times 256 \times 256$;

 \checkmark utilisation de plus de processeurs envisageable à des résolutions supérieures, résolutions horizontales $N_{\rm p}^2$ idéales ;

 \checkmark Début \checkmark Fin \checkmark Page \checkmark Plein écran \checkmark Fermer

✓ performances de l'IBM supérieures pour le parallélisme.

Exemples d'utilisations récentes

✓ Déstabilisation 3D d'une couche de cisaillement (F. Lignières)

✓ Tests d'exactitude sur la convection oscillante MHD compressible [Weiss, 1991]

✓ Début ✓ Fin ✓ Page ✓ Plein écran ✓ Fermer

Exemples d'utilisations récentes (2)

 ✓ Simulations à grand rapport d'aspect de convection compressible en milieu fortement stratifié (F. Rincon)

 \checkmark Début \checkmark Fin \checkmark Page \checkmark Plein écran \checkmark Fermer

Conclusions, évolutions possibles

- ✓ Code adapté à la modélisation d'un grand nombre d'écoulements ;
- ✓ méthodes numériques précises et performantes sur plusieurs architectures de calcul scientifique ;
- ✓ très bonne parallélisation, hautes résolutions $O(500^3)$ possibles;
- \checkmark « user friendly ».
- \checkmark Un futur plus ou moins proche/lointain :
 - X comparer les performances avec d'autres codes;
 - X codage implicite des termes visqueux;
 - X parallélisation verticale : différences finies classiques ;
 - X inclusion de transfert radiatif?
 - X géométrie sphérique? cf. [Nishikawa, 2002] pour une utilisation des FFTs en sphérique.