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avoir accepté la lourde tâche de rapporteur ; j’espère que ce manuscrit ne sera pas trop indigeste.



ii Remerciements



Table des matières

Remerciements i

Curriculum vitæ v

Activités d’encadrement vii
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– Encadrement de M. Éric Cottalorda pour son stage de DEA (Astrophysique, Université
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Résumé

Mes travaux de recherche présentés ici concernent le domaine de la relativité numérique,
c’est-à-dire les méthodes numériques de résolution des équations d’Einstein, appliquée aux
ondes gravitationnelles et aux astres compacts. Le but est d’obtenir des prédictions théoriques
(numériques) sur les ondes gravitationnelles émises par les trous noirs, étoiles à neutrons et su-
pernovæ, ainsi que les caractéristiques de ces objets. La première partie est ainsi consacrée au
développement d’un formalisme contraint des équations d’Einstein en vue d’une implémentation
numériquement stable, évitant l’amplification des erreurs violant les contraintes. Les questions
de structure mathématique et d’unicité des solutions des équations écrites dans cette formu-
lation y sont étudiées. La deuxième partie traite des méthodes et techniques numériques que
j’ai aidé à développer ; en particulier dans le cadre des méthodes spectrales pour lesquelles j’ai
co-rédigé un article de revue. Plusieurs algorithmes sont présentés pour la simulation des ondes
gravitationnelles : conditions au bord absorbantes pour les ondes quadrupolaires, méthode de
résolution de l’équation d’onde tensorielle sous contrainte de divergence nulle et trouveur d’ho-
rizon apparent. Tous ces programmes numériques ont été implémentés dans la bibliothèque
lorene à laquelle j’ai contribué, que j’ai aidé à maintenir et à distribuer aux scientifiques
intéressés. La dernière partie est dédiée aux modèles d’astres compacts obtenus numériquement.
Plusieurs sujets y sont présentés, dont notamment les simulations d’effondrements stellaires
avec rotation (code CoCoNuT), les modèles d’étoiles à neutrons avec champ magnétique ou
à deux fluides (pour modéliser la superfluidité des neutrons), les effondrements d’étoiles à neu-
trons en trous noirs et les modèles de trous noirs en rotation. Une dernière partie présente les
perspectives de ces travaux.

http://www.lorene.obspm.fr
http://www.mpa-garching.mpg.de/hydro/COCONUT
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Abstract xi

Abstract

The scientific studies which are presented here fall within the field of numerical relativity, mean-
ing that they deal with computer methods devised to obtain numerical solutions of Einstein
equations, applied to gravitational waves and compact objects. The goal is to obtain theoret-
ical (numerical) predictions on the gravitational waves emitted by black holes, neutron stars
and core-collapse supernovae, as well as on these objects. The first part is devoted to the
development of a constrained formalism of Einstein equations allowing for a numerically stable
implementation, i.e. showing no constraint-violating modes. The key points of mathematical
structure of this formalism and uniqueness issues are also studied. The second part deals with
the numerical methods that have been developed. In particular, a review on spectral methods
in numerical relativity is given. Several useful algorithms for the simulations of gravitational
waves are presented : absorbing boundary conditions for quadrupolar waves, a method for
the solution of the tensor wave equation under the divergence-free constraint and the appar-
ent horizon finder. All these numerical codes have been implemented in the lorene library,
to which I have contributed, maintained and helped interested scientists who wanted to use
it. The last part gives results about numerical models of compact stars. Several subjects are
presented, including rotating stelar core-collapse simulations (CoCoNuT code), neutron star
models with a magnetic field or with two-fluids (to model neutron superfluidity), gravitational
collapse of a neutron star to a black hole and rotating black hole models. The last part gives
the outlook of those studies.

http://www.lorene.obspm.fr
http://www.mpa-garching.mpg.de/hydro/COCONUT
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Introduction

Des quatre interactions fondamentales de la nature, la gravitation a été la première étudiée
et modélisée, mais elle reste cependant moins bien comprise que les trois autres et, en particu-
lier, il n’existe pas à ce jour de description quantique de la gravité. Ainsi, la théorie classique
qui la décrit le mieux est la relativité générale et c’est dans le cadre de cette théorie que se-
ront présentées les études de ce manuscrit. L’espace-temps est modélisé comme une variété
quadri-dimensionnelle avec une métrique lorentzienne. Cette métrique est reliée au contenu
en matière (tous les autres champs possédant de l’énergie) via les équations d’Einstein. Entre
autres phénomènes, la relativité générale prédit l’existence et la propagation des ondes gravita-
tionnelles comme étant une solution des équations d’Einstein du vide, obtenue en perturbant à
l’ordre linéaire la solution sans champ gravitationnel (métrique plate, dite « de Minkowski »).
Cette approche montre que les ondes gravitationnelles vérifient une équation des ondes tenso-
rielle et qu’elles sont produites par des objets avec un très fort champ gravitationnel.

Les meilleurs sources sont a priori les astres compacts (abordés dans la partie III) : naines
blanches, étoiles à neutrons et trous noirs, surtout lorsqu’ils forment une binaire. Ainsi, jusqu’à
aujourd’hui les tests indirects les plus convaincants de l’existence des ondes gravitationnelles
sont venus du chronométrage des pulsars binaires : ce sont des binaires d’astres compacts
où l’un au moins est une étoile à neutrons émettant des pulses radio réguliers. Les mesures
de ces ondes radio ont donné la preuve observationnelle que ces binaires perdaient du moment
cinétique, emmené par les ondes gravitationnelles. L’accord quantitatif est excellent : l’évolution
observée correspond à celle prédite par la relativité générale à 10−3 près [457]. Ces tests ont
permis non seulement de vérifier que la théorie de la relativité générale modélise correctement
l’interaction gravitationnelle, mais en plus qu’elle le fait mieux que d’autres théories comme
les théories tenseur-scalaires [143]. Elle représente donc pour l’instant la meilleure théorie de la
gravitation aux échelles du système solaire.

Afin d’obtenir des détections directes des ondes gravitationnelles, plusieurs instruments ont
été réalisés, telles les barres résonnantes (voir par exemple [75]) et plus récemment, les détecteurs
interférométriques tels Virgo [5] (Fig. 1) ou LIGO [2]. Malgré la mise en commun des données
entre ces deux détecteurs aucune détection n’a été réalisée à ce jour, vraisemblablement car le
taux d’événements dans les hautes fréquences auxquelles sont sensibles ces instruments est trop
faible. En particulier, il n’existe aucune source « visible » en ondes électromagnétiques pour
laquelle on soit sûr qu’elle serait détectable par Virgo/LIGO. Le projet spatial LISA [269] vise
quant à lui à détecter des ondes gravitationnelles à plus basses fréquences avec, contrairement
aux détecteurs terrestres du type Virgo/LIGO, un certain nombre de sources qui sont déjà
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identifiées par leur signal électromagnétique.

Fig. 1 – Vue aérienne de l’interféromètre Virgo près de Pise (Italie). c© EGO-Virgo / Pho-
tothèque du CNRS.

Le but de ces instruments n’est pas seulement d’obtenir une détection directe des ondes
gravitationnelles, mais surtout d’effectuer à terme des observations d’intérêt physique et astro-
physique. Par exemple, à partir des mesures de taux d’événements des coalescences de binaire,
ou de la mesure des vitesses de rotations des objets compacts, il sera possible d’avoir des idées
plus précises sur l’évolution stellaire et le taux de formation de ces systèmes. Ainsi aussi, en
combinant les observations en ondes gravitationnelles avec les observations électromagnétiques
à hautes énergies ou avec celles des neutrinos, on obtiendra des informations sur les propriétés
de la matière à très haute densité au cœur des supernovae ou dans les étoiles à neutrons. Cela
montre aussi que les astres compacts sont non seulement les sources les plus prometteuses
de rayonnement gravitationnel, mais aussi des objets fascinants en soi, car ils sont le lieu de
conditions physiques extrêmes : champ gravitationnel très intense, densité nucléaire, champ
magnétique jusqu’à 1016G,. . .

La compréhension des astres compacts en tant que sources d’ondes gravitationnelles, mais
aussi plus généralement comme objets astrophysiques nécessite donc des modèles physiques
très riches qui, la plupart du temps, ne peuvent pas être calculés analytiquement. Il faut faire
appel à l’outil numérique au moins partiellement, pour résoudre les multiples équations qui ap-
paraissent dans ces modèles. Ce manuscrit présente ainsi trois parties qui s’inscrivent dans ce
contexte d’étude des astres compacts et des ondes gravitationnelles à l’aide de la modélisation
numérique. Il s’agit des travaux que j’ai effectués entre 2001 et 2009 au sein du Département
d’Astrophysique Relativiste et Cosmologie (DARC), puis du Laboratoire Univers et Théories
(LUTh) à l’Observatoire de Paris, section de Meudon. Les collaborateurs avec qui j’ai eu la
chance de travailler ont été surtout mes collègues de Meudon : Silvano Bonazzola, Éric Gour-
goulhon, Philippe Grandclément et Nicolas Vasset ; d’Espagne : Pablo Cerdá, Isabel Cordero,
José Maŕıa Ibáñez et José Luis Jaramillo ; et d’Allemagne : Harald Dimmelemeier. Le domaine
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d’étude correspondant aux travaux exposés ci-après est souvent appelé « relativité numérique »,
et couvre plusieurs thèmes de recherche, depuis l’algorithmique et le développement de pro-
grammes numériques, jusqu’à l’astrophysique en passant par la magnéto-hydrodynamique.

Plan

Ce manuscrit comporte treize chapitres, qui correspondent chacun à un article publié (sauf
le chapitre 6 est sous presse), mais ne sont pas présentés dans l’ordre chronologique ; ils sont
en fait regroupés en trois parties. La première partie aborde les questions de formulation des
équations d’Einstein avec, d’abord, le travail fondateur sur le formalisme contraint au cha-
pitre 1, suivi d’une analyse plus mathématique de la partie hyperbolique de ce formalisme
(chapitre 2) et d’une amélioration du formalisme après la découverte de problèmes d’unicité
dans la partie elliptique des équations aux dérivées partielles (chapitre 3). Une fois les équations
définies, les méthodes numériques utilisées pour les résoudre sont présentées dans la deuxième
partie, et plus particulièrement au chapitre 4. Des détails importants sur le traitement des
conditions aux bords sont décrits au chapitre 5 et une nouvelle technique pour la résolution
de l’équation d’onde tensorielle avec condition de divergence nulle est donnée au chapitre 6.
Cette équation est très importante car elle apparâıt naturellement dans le formalisme contraint
du chapitre 1. Enfin, l’implémentation d’un trouveur d’horizon apparent est décrite dans le
chapitre 7. Il s’agit d’un outil extrêmement utile pour déterminer l’apparition ou l’évolution de
trous noirs dans des espaces-temps numériques. La troisième partie donne les résultats d’études
numériques d’astres compacts, avec d’abord l’effondrement gravitationnel d’un cœur d’étoile
dégénéré produisant une étoile à neutrons (supernova gravitationnelle, chapitre 8), puis les
études de modèles numériques d’étoiles à neutrons stationnaires en rotation (chapitre 9) et
superfluides (chapitre 10). Le champ magnétique a été également pris en compte, avec l’étude
du rapport gyromagnétique des étoiles compactes présentée au chapitre 11. Le travail cor-
respondant au chapitre 12 étudie la possibilité de faire s’effondrer en trou noir des étoiles à
neutrons stables en leur imprimant une poussée centripète, et essaie de relier ces évolutions
avec les phénomènes critiques observés numériquement par Choptuik [117]. Le chapitre 13 clos
le mannuscrit avec la première implémentation numérique complète des conditions aux bords
d’horizon isolé qui, avec la technique d’excision, permettent de simuler un trou noir dans le
domaine de calcul.

Notations

Les notations et conventions employées sont en général les suivantes, il faut toutefois se
référer à l’introduction de chaque article (chaque chapitre) pour les définitions spécifiques à ce
chapitre :

– Les indices notés par des lettres grecques α, β, . . . , µ, ν, . . . prennent les valeurs de 0 à 3
et les indices latins à partir de i prennent les valeurs de 1 à 3.

– La signature de la métrique est − + ++, la première coordonnée étant le temps.
– Les notations grasses u indiquent qu’il s’agit d’un 4-tenseur uα ou d’un 3-tenseur ui.
– Pour les métriques à quatre dimensions, g = − det gµν et à trois dimensions γ = det γij.
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– Le symbole Lv désigne la dérivée de Lie suivant le vecteur v.
– Pour un tenseur T µν d’ordre 2, on note la trace T = gµνT

µν , sans spécifier systé-
matiquement la métrique utilisée, lorsqu’il n’y a pas d’ambigüıté.



Première partie

Formulation des équations d’Einstein
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Une première étape pour la résolution numérique des équations d’Einstein est le choix de leur
formulation. Très peu d’études numériques ont utilisé une formulation quadri-dimensionnelle,
c’est-à-dire en utilisant directement des 4-tenseurs comme inconnues du système d’équations
aux dérivées partielles représenté par les équations d’Einstein. De (très notables) exceptions sont
les résultats de Pretorius sur les coalescences de binaires de trous noirs [373], basés sur un choix
de jauge harmonique généralisée [374]. En général, une approche standard est de commencer
par une décomposition 3 + 1, consistant à séparer les coordonnées de temps et d’espace, ce qui
permet également de mettre les équations d’Einstein sous la forme d’un problème de Cauchy.
Ce formalisme 3+1 a été introduit dans les années 1930-40 par André Lichnerowicz [291], puis
développé et étudié par Yvonne Choquet-Bruhat dans les années 1950 [184]. Ces travaux ont
ensuite été utilisés comme bases pour une approche hamiltonienne de la relativité générale [155],
notamment avec le « formalisme ADM » [35]. Étant donnée la très grande importance de ce
formalisme aujourd’hui pour la relativité numérique, voire bien au-delà, le lecteur intéressé est
invité à consulter les récents ouvrages parus sur le sujet et, en particulier, le livre de Miguel
Alcubierre [7] et les notes de cours d’Éric Gourgoulhon [214], ou de manière plus succincte, la
section 1.2.1 page 17.

Fig. I.1 – Illustration du principe du feuilletage 3 + 1 : les feuillets aux temps-coordonnées t
et t + δt sont représentés, avec le champ de vecteurs unitaires nµ, normaux aux Σt et dirigés
vers le futur. Le vecteur shift (βi) représente la dérive des coordonnées spatiales {xi}i=1,2,3 et
le lapse N le rapport entre le temps propre d’un observateur eulérien et le temps coordonnée
t. Figure extraite de Gourgoulhon (2007) [214].

Concrètement, l’espace-temps à quatre dimensions est feuilleté par des 3-surfaces du genre
espace Σt, indexées par le temps-coordonnée t, comme illustré sur la figure I.1, avec le champ
de vecteurs nµ, normaux aux Σt et dirigés vers le futur. Sur chacune des 3-surfaces est définie
une 3-métrique γij, décrivant la structure intrinsèque de celle-ci. L’évolution des coordonnées
spatiales d’une 3-surface à l’autre est donnée par le 3-vecteur shift et la fonction lapse N mesure
le rapport entre l’écoulement du temps propre d’un observateur eulérien (correspondant au
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champ de vecteur n) et le temps coordonnée t. Le passage de la 4-métrique gµν à ces quantités
est ainsi donné par :

ds2 = gµν dxµdxν = −N2 dt2 + γij (dxi + βidt) (dxj + βjdt). (1)

Une dernière quantité très importante dans ce cadre est la courbure extrinsèque (ou deuxième1

forme fondamentale de chaque 3-surface) définie comme la dérivée de Lie, par rapport au vecteur
nµ de la 3-métrique γij :

K = −1

2
Lnγ. (2)

D’une manière similaire à la métrique, le 4-tenseur énergie-impulsion T µν entrant dans les
équations d’Einstein est décomposé en grandeurs tridimensionnelles : E, J i et Sij (voir l’équa-
tion (1.6)).

Les équations d’Einstein sont projetées sur ces 3-surfaces, ainsi que sur la normale à ces
3-surfaces, donnée par le champ de vecteurs ni. Les dix équations se retrouvent ainsi en deux
catégories : quatre équations de contraintes et six équations d’évolution. En notant Di la dérivée
covariante, Rij et R le tenseur et le scalaire de Ricci liés à la 3-métrique γij, les contraintes
s’écrivent :

R + K2 − KijK
ij = 16πE (contrainte hamiltonienne), (3)

DjK
ij − DiK = 8πJ i (contraintes impulsionnelles). (4)

Les six équations d’évolution prennent la forme :

∂Kij

∂t
− LβKij = −DiDjN + NRij − 2NKikK

k
j + N [KKij + 4π((S − E)γij − 2Sij)] ; (5)

pour être complet, il faut leur ajouter la relation cinématique (2) :

Kij =
1

2N

(
∂γij

∂t
+ Diβj + Djβi

)
. (6)

De manière analogue à l’électromagnétisme, lors de l’intégration des équations d’Einstein
à partir de conditions initiales vérifiant les contraintes, celles-ci sont vérifiées au cours de
l’évolution par cohérence du système d’équations aux dérivées partielles (grâces aux iden-
titiés de Bianchi). Cela a conduit de nombreux groupes de relativité numérique à adopter
des formalismes libres , c’est-à-dire dans lesquels les contraintes ne sont pas résolues au cours
de l’intégration temporelle. Le formalisme libre le plus utilisé est communément appelé BSSN,
pour Baumgarte-Shapiro [54], Shibata-Nakamura [421]. Cependant, un des problèmes lié à la
discrétisation numérique, qui est apparu avec les formulations libres est la croissance expo-
nentielle de modes violant les contraintes, et par conséquent les équations d’Einstein (voir par
exemple la revue [428]).

Pour pallier ce problème, dans l’article Bonazzola et al. de 2004 (chapitre 1 et [73]), nous
proposons un formalisme contraint , dans lequel toutes les équations de contraintes sont résolues

1la première étant la 3-métrique γij
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à chaque instant, et seules deux équations d’évolution (sur six) sont considérées, correspondant
aux deux degrés de polarisation des ondes gravitationnelles. Nous introduisons une généra-
lisation de la jauge de Dirac et utilisons le feuilletage maximal comme choix de coordonnées.
Bien que, par la suite, d’autres techniques ont permis de réduire l’impact des modes violant
les contraintes dans l’implémentation des formalismes libres (par exemple les méthodes de
pénalisation [232] et surtout la mise au point de jauges adaptés), il reste aujourd’hui important
de pouvoir utiliser un tel formalisme contraint pour au moins trois raisons. La première est tout
simplement le fait qu’aujourd’hui, presque tous les groupes de relativité numérique utilisent le
même formalisme et les mêmes types de jauges. L’utilisation d’un formalisme vraiment différent
pour les simulations permet d’avoir une vérification croisée des résultats, qui ne doivent bien
évidemment pas dépendre de la formulation des équations, ni du choix de jauge. Le deuxième
point qui est le plus important est que, malgré les techniques développées pour juguler les
modes violant les contraintes, les formalismes libres peuvent présenter des dérives de l’erreur
à long terme, pour lesquelles aucune solution n’existe à ce jour. Il est donc très important de
disposer d’un schéma et de techniques numériques permettant une intégration des équations
d’Einstein sur des intervalles de temps arbitraires. C’est dans cette direction que s’est inscrite
notre démarche avec nos collaborateurs espagnols de l’Université de Valencia (Isabel Cordero-
Carrión, Pablo Cerdá-Durán et José-Maria Ibañez). Un dernier point intéressant du formalisme
contraint est le fait qu’il représente une généralisation simple et naturelle de l’approximation
conformément plate, qui revient à dire que la 3-métrique des feuillets de genre espace de la
décomposition 3 + 1 est reliée par un facteur conforme à la 3-métrique plate. Cette approxi-
mation a été introduite dans les années 1970 par Jim Isenberg [260], afin de supprimer les
ondes gravitationnelles de l’espace-temps. Elle a été beaucoup utilisée par les groupes de rela-
tivité numérique pour calculer des conditions initiales (notamment pour les systèmes binaires,
voir [481, 219]) quasi-stationnaires. Il est donc possible d’utiliser directement ces conditions
initiales dans un code d’évolution utilisant le formalisme contraint.

C’est dans cette optique que nous avons étudié, dans l’article Cordero et al. de 2008 (cha-
pitre 2 et [134]) les propriétés mathématiques des équations d’Einstein, exprimées dans le for-
malisme contraint. Dans ce cas, elles apparaissent comme un système d’équations aux dérivées
partielles de type mixte hyperbolique-elliptique. Il a été montré que la partie hyperbolique
ainsi obtenue formait un système décrivant l’évolution des degrés de liberté des ondes gravita-
tionnelles, alors que la partie elliptique contenait le système des contraintes et la jauge. Cette
partie hyperbolique, qui gouverne l’évolution de la déviation hij de la 3-métrique par rapport à
la métrique plate, possède une structure hyperbolique bien définie grâce à la jauge de Dirac. En
effet, ce choix est une condition suffisante pour que l’équation d’évolution pour le tenseur hij

soit un système fortement hyperbolique, pour lequel nous avons trouvé une équivalence en terme
de système hyperbolique d’équations de conservation. Cette équivalence est très intéressante
pour l’implémentation numérique, si l’on veut utiliser des méthodes de type « Godunov ». De
plus, l’étude des caractéristiques de ce système hyperbolique nous a permis de montrer que,
dans le cas d’une frontière de domaine numérique d’intégration correspondant à l’horizon d’un
trou noir, toutes les caractéristiques étaient sortantes, c’est-à-dire entrantes dans le trou noir.
Ce résultat implique que, dans le cas de la simulation dynamique d’un trou noir dans ce for-
malisme, où l’on aura par ailleurs enlevé du domaine de calcul l’espace-temps correspondant à
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l’intérieur de l’horizon (apparent), il ne sera pas nécessaire d’imposer de conditions sur ce bord
pour le système hyperbolique. Bien que l’étude complète pour savoir si les équations d’Einstein
sont bien posées dans ce formalisme n’ait pas été faite, ce travail a constitué un premier pas
dans ce sens.

Un problème de convergence numérique de la partie elliptique du formalisme contraint est
néanmoins apparue lors des simulations d’effondrement d’un paquet d’ondes gravitationnelles
en trou noir. Cette question était connue depuis plusieurs années par les groupes utilisant l’ap-
proximation conformément plate pour la 3-métrique, lors de simulations d’effondrements gravi-
tationnels [397]. Néanmoins, le fait que nous l’ayons rencontré dans le cas des équations d’Ein-
stein complètes a confirmé que ce n’était pas lié à l’approximation de 3-métrique conformément
plate, mais bien à la formulation des équations elliptiques. En effet, dans le cas d’un problème à
symétrie sphérique, la 3-métrique peut être reliée à la 3-métrique plate de manière conforme en
choisissant la jauge isotrope. Or, même dans ce cas où l’on ne fait pas d’approximation mais où
toutes les équations d’Einstein sont bien résolues, le système d’équations ne converge pas pour
un effondrement gravitationnel menant à un trou noir, lorsque la compacité du système fluide
dépasse un certain seuil. Dans l’article Cordero et al. de 2009 (chapitre 3 et [135]), nous avons
analysé ce phénomène en utilisant la théorie de stabilité des solution d’équations aux dérivées
partielles elliptiques non-linéaires, qui nous a permis d’identifier la source du problème. Nous
avons ensuite reformulé les équations elliptiques du formalisme contraint, ainsi que celles de
l’approximation conformément plate de la relativité générale (les deux systèmes sont très sem-
blables). Nous avons enfin illustré l’efficacité de la nouvelle formulation dans le cas de l’effon-
drement gravitationnel d’une étoile à neutrons en rotation vers un trou noir. Dans cet exemple,
nous avons comparé les résultats avec ceux de Baiotti et al. (2005) [41] et nous avons trouvé
un accord excellent. Toutefois, dans le cas de l’approximation de la 3-métrique conformément
plate, nous sommes obligés d’introduire une approximation supplémentaire, pour laquelle nous
montrons qu’elle induit des erreurs plus faibles que l’approximation conformément plate elle-
même. Ce qui est intéressant dans le cas étudié de l’effondrement de l’étoile à neutrons en trou
noir, est que les résultats obtenus avec les deux approximations, sont en très bon accord avec les
résultats obtenus en résolvant toutes les équations d’Einstein. Cela est un peu en contradiction
avec l’intuition car l’état final de cet effondrement est un trou noir de Kerr, pour lequel il a
été démontré que l’approximation conformément plate est inexacte. L’intérêt de ce résultat est
de montrer qu’il est valide d’utiliser cette approximation pour la simulation des effondrements
gravitationnels, ce qui peut réduire le temps de calcul nécessaire, pour l’utiliser dans d’autres
parties du code (équation d’état réaliste, etc. . .).
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1.1 Introduction and motivations

Motivated by the construction of the detectors LIGO, GEO600, TAMA and VIRGO, as well as by
the space project LISA, numerical studies of gravitational wave sources are numerous (see [55, 289]
for recent reviews). The majority of them are performed within the framework of the so-called 3+1
formalism of general relativity, also called Cauchy formulation, in which the spacetime is foliated by
a family of spacelike hypersurfaces. We propose here a new strategy within this formalism, based on
a constrained scheme and spherical coordinates, which is motivated as follows.
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1.1.1 Motivations for a constrained scheme

In the 3+1 formalism, the Einstein equations are decomposed in a set of four constraint equations and
a set of six dynamical equations [486, 55]. The constraint equations give rise to elliptic (or sometime
parabolic) partial differential equations (PDE), whereas the PDE type of the dynamical equations
depends on the choice of the coordinate system. Various strategies can then be contemplated: (i)
free evolution scheme: solving the constraint equations only to get the initial data and performing the
time evolution via the dynamical equations, without enforcing the constraints; (ii) partially constrained
scheme: using some of the constraints to compute some of the metric components during the evolution
and (iii) fully constrained scheme: solving the four constraint equations at each time step.

In the eighties, partially constrained schemes, with only the Hamiltonian constraint enforced, have
been widely used in 2-D (axisymmetric) computations (e.g. Bardeen and Piran [47], Stark and Piran
[440], Evans [165]). Still in the 2-D axisymmetric case, fully constrained schemes have been used by
Evans [166] and Shapiro and Teukolsky [411] for non-rotating spacetimes, and by Abrahams, Cook,
Shapiro and Teukolsky [4] for rotating ones. We also notice that the recent (2+1)+1 axisymmetric
code of Choptuik et al. [118] is based on a constrained scheme too.

Regarding the 3-D case, almost all numerical studies to date are based on free evolution schemes1.
It turned out that the free evolution scheme directly applied to the standard 3+1 equations (sometimes
called ADM formulation) failed due to the development of constraint-violating modes. An impressive
amounts of works have then been devoted these last years to finding stable evolution schemes (see
[428] for an extensive review and [296] for a very recent work in this area). Among them, a large
number of authors have tried to introduce coordinates and auxiliary variables so that the dynamical
equations become a first-order symmetric hyperbolic system. However these approaches have revealed
very limited success in practice. Another approach has become very popular in the last few years: the
so-called BSSN formulation, originally devised by Shibata and Nakamura [421] and re-introduced by
Baumgarte and Shapiro [54]. It has shown a much improved stability with respect to the standard
ADM formulation. Indeed the most successful computations in numerical relativity to date are based
on that formulation (e.g. [424, 425]).

All the approaches mentioned above favor first-order hyperbolic equations with respect to elliptic
equations. In particular, they employ a free-evolution scheme, avoiding to solve the (elliptic) constraint
equations. The main reason is neither mathematical nor physical, but rather a technical one: for most
numerical techniques, solving elliptic equations is CPU time expensive. In this article, we present an
approach which is based on the opposite strategy, namely to use as much as possible elliptic equations
and as few hyperbolic equations as possible. More precisely we propose to use a fully constrained-
evolution scheme and to solve the minimum number of hyperbolic equations: the two wave equations
corresponding to the two degrees of freedom of the gravitational field. The main advantages of this
procedure are that (i) elliptic equations are much more stable than hyperbolic ones, in particular their
mathematical well-posedness is usually established, (ii) the constraint-violating modes that plague the
free-evolution schemes do not exist by construction in a fully constrained evolution, (iii) the equations
describing stationary spacetimes are usually elliptic and are naturally recovered when taking the
steady-state limit of the proposed scheme. Besides, let us point that some very efficient (i.e. requiring
a modest CPU time) numerical techniques (based on spectral methods) are now available to solve
elliptic equations [79, 228]. Very recently some scheme has been proposed in which the constraints,
re-written as time evolution equations, are satisfied up to the time discretization error [202]. On the

1an exception is the recent work [19], where some constrained evolution of a single isolated black hole is
presented.
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contrary, our scheme guarantees that the constraints are fulfilled within the precision of the space
discretization error (which can have a much better accuracy, thanks to the use of spectral methods).

To achieve this aim, we use maximal slicing, as long as a generalization of Dirac gauge to curvilinear
coordinates. This gauge fixes the spatial coordinates (xi) in each hypersurface t = const. It has been
introduced by Dirac in 1959 [156] as a way to fix the coordinates in the Hamiltonian formulation of
general relativity, prior to its quantization (see [145] for a discussion). Dirac gauge has been discussed
in the context of numerical relativity first by Smarr and York, in their search for a radiation gauge in
general relativity [435]. But they disregarded it as being not covariant under coordinate transformation
(xi) 7→ (xi′) in the hypersurface t = const. They preferred the minimal distortion gauge, which is fully
covariant and allows for an arbitrary choice of the coordinates (xi) in the initial hypersurface. Here
we show that if one introduces a flat 3-metric on each spatial hypersurface, in addition to the physical
3-metric induced by the spacetime metric, the Dirac gauge can be made covariant. This enables the
use of curvilinear coordinates, whereas Dirac original formulation was only for Cartesian coordinates.
However, contrary to the minimal distortion gauge, this generalized Dirac gauge still determines fully
the coordinates in the initial slice (up to some inner boundary conditions if the slice contains some
holes).

1.1.2 Motivations for spherical coordinates

Since the astrophysical objects we want to model (neutron stars and black holes) have spherical topol-
ogy, it is natural to use spherical coordinates (xi) = (r, θ, ϕ) to describe them. In particular, spherical
coordinates and spherical components of tensor fields enable one to treat properly the boundary condi-
tions (i) at the surface of fluid stars, as well as at some black hole (apparent) horizon, and (ii) at spatial
infinity or at the edge of the computational domain. For a binary system, two systems of spherical
coordinates (each centered on one of the objects) have proved to be successful in the treatment of
binary neutron stars [218] and binary black holes [229].

Outer boundary conditions

For elliptic equations, spherical coordinates allow a natural 1/r compactification which permits to
impose boundary conditions at spatial infinity [69, 228]. In this way, the imposed boundary conditions
are exact.

For wave equations from a central source, a spherical boundary of the numerical domain of integra-
tion allows to set non-reflecting boundary conditions [341]. Moreover the use of spherical components
of the metric tensor allows, in the Dirac gauge, an easy extraction of the wave components. This
results from the asymptotic transverse and traceless (TT) behavior of Dirac gauge and the fact that
a TT tensor wave propagating in the radial direction is well described with spherical components.

Black hole excision

Spherical coordinates clearly facilitate black hole excision. Moreover for stationary problems, one has
usually to set the lapse to zero on some sphere r = const, in order to preserve the time-independent
behavior of slicing of stationary spacetimes [219, 239]. As we discuss in Appendix 1.A, using spherical
components of the metric tensor and shift vector is crucial is setting boundary condition on an excised
2-sphere with vanishing lapse function. In fact, because of the degeneracy of the operator acting on the
above quantities when the lapse is zero, one can impose boundary conditions on certain components,
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and not on the others. In Cartesian components (i.e. linear combinations of spherical components),
the imposition of boundary conditions could not be done simply.

Fulfilling the Dirac gauge

We will show that, when using spherical coordinates, the Dirac gauge condition can be imposed easily
on spherical components of the metric tensor. Indeed, we propose to use the Dirac gauge to compute
directly some metric components from the other ones. This seems difficult with Cartesian components
(even with spherical coordinates).

Spherical coordinates and numerical techniques

Despite the above strong advantages and although they have been widely used for 2-D (axisymmetric)
computations [47, 440, 165, 166, 411, 4, 331, 88, 89], spherical coordinates are not well spread in 3-D
numerical relativity. A few exceptions are the time evolution of pure gravitational wave spacetimes by
Nakamura et al. [331] 1 and the attempts of computing 3-D stellar core collapse by Stark [439]. This
situation is mostly due to the massive usage of finite difference methods, which have difficulties to treat
the coordinate singularities on the axis θ = 0 and θ = π, and at the origin r = 0. On the contrary,
spectral methods employed mostly in our group [72, 228] and Cornell group [361], deal without any
difficulty with the singularities inherent to spherical coordinates. Let us note that in other fields of
numerical simulation, like stellar hydrodynamics, spherical coordinates are well spread, for instance
in the treatment of supernovae [148, 151].

1.1.3 Plan of the paper

We start the present study by introducing in Sec. 1.2 a conformal decomposition of the 3+1 Einstein
equations which is fully covariant with respect to a background flat metric. This differs slightly from
previous conformal decompositions (e.g. [421, 54]) by the fact that our conformal metric is a genuine
tensor field, and not a tensor density. Then in Sec. 1.3 we re-write the conformal 3+1 Einstein
equations in terms of the covariant derivative with respect to the flat background metric. This enables
us to introduce the (generalized) Dirac gauge in Sec. 1.4 and to simplify accordingly the equations.
We introduce as the basic object of our formulation the difference h between the inverse conformal
metric and the inverse flat metric. At the end of Sect. 1.4, we present an explicit wave equation
for h. In Sec. 1.5, we introduce spherical coordinates and explicit the equations in terms of tensor
components with respect to an orthonormal spherical frame. We show how the Dirac gauge can then
be used to deduce some metric components from the others in a quasi-algebraic way. The resolution
of the dynamical 3+1 equations is then reduced to the resolution of two (scalar) wave equations. A
numerical application is presented in Sec. 1.6, where it is shown that the proposed scheme can evolve
stably pure gravitational wave spacetimes. Finally Sec. 1.7 gives the concluding remarks. This article
is intended to be followed by another study which focuses on the treatment of boundary conditions at
black hole horizon(s). Here we present only in Appendix 1.A a preliminary discussion about the type
and the number of inner boundary conditions for black hole spacetimes.

1Note that while Nakamura et al. [331] used spherical coordinates, they considered Cartesian components
of the tensor fields.
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1.2 Covariant 3+1 conformal decomposition

1.2.1 3+1 formalism

We refer the reader to [55] and [486] for an introduction to the 3+1 formalism of general relativity.
Here we simply summarize a few key equations, in order mainly to fix the notations1. The spacetime
(or at least the part of it under study) is foliated by a family of spacelike hypersurfaces Σt, labeled
by the time coordinate t. We denote by n the future directed unit normal to Σt. By definition n,
considered as a 1-form, is parallel to the gradient of t:

n = −Ndt. (1.1)

The proportionality factor N is called the lapse function. It ensures that n satisfies to the normaliza-
tion relation nµnµ = −1.

The metric γ induced by the spacetime metric g onto each hypersurface Σt is given by the orthog-
onal projector onto Σt:

γ := g + n ⊗ n. (1.2)

Since Σt is assumed to be spacelike, γ is a positive definite Riemannian metric. In the following, we call
it the 3-metric and denote by D the covariant derivative associated with it. The second fundamental
tensor characterizing the hypersurface Σt is its extrinsic curvature K, given by the Lie derivative of
γ along the normal vector n:

K := −1

2
£nγ. (1.3)

One introduces on each hypersurface Σt a coordinate system (xi) = (x1, x2, x3) which varies
smoothly between neighboring hypersurfaces, so that (xα) = (t, x1, x2, x3) constitutes a well-behaved
coordinate system of the whole spacetime2. We denote by (∂/∂xα) =

(
∂/∂t, ∂/∂xi

)
=

(
∂/∂t, ∂/∂x1,

∂/∂x2, ∂/∂x3
)

the natural vector basis associated with this coordinate system. The 3+1 decomposition
of the basis vector ∂/∂t defines the shift vector β of the spatial coordinates (xi):

∂

∂t
= Nn + β with n · β = 0. (1.4)

The metric components gαβ with respect to the coordinate system (xα) are expressed in terms of the
lapse function N , the shift vector components βi and the 3-metric components γij according to

gµν dxµ dxν = −N2dt2 + γij(dxi + βidt)(dxj + βjdt). (1.5)

In the 3+1 formalism, the matter energy-momentum tensor T is decomposed as

T = E n ⊗ n + n ⊗ J + J ⊗ n + S, (1.6)

where the energy density E, the momentum density J and the strain tensor S, all of them as
measured by the observer of 4-velocity n, are given by the following projections: E := Tµνn

µnν ,
Jα := −γ µ

α Tµνn
ν , Sαβ := γ µ

α γ ν
β Tµν . By means of the Gauss and Codazzi relations, the Einstein

1We use geometrized units for which G = 1 and c = 1; Greek indices run in {0, 1, 2, 3}, whereas Latin indices
run in {1, 2, 3} only.

2later on we will specify the coordinates (xi) to be of spherical type, with x1 = r, x2 = θ and x3 = ϕ, but
at the present stage we keep (xi) fully general.
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field equation is equivalent to the following system of equations (see e.g. Eqs. (23), (24) and (39) of
York [486]):

R + K2 − KijK
ij = 16πE, (1.7)

DjK
j

i − DiK = 8πJi, (1.8)

∂

∂t
Kij − £βKij = −DiDjN + N

[
Rij − 2KikK

k
j

+KKij + 4π ((S − E)γij − 2Sij)
]
. (1.9)

Equation (1.7) is called the Hamiltonian constraint, Eq. (1.8) the momentum constraint and Eqs. (1.9)
the dynamical equations. In these equations K denotes the trace of the extrinsic curvature: K := Ki

i,
S := Si

i, Rij the Ricci tensor associated with the 3-metric γ and R := Ri
i the corresponding scalar

curvature. These equations must be supplemented by the kinematical relation (1.3) between K and
γ:

∂

∂t
γij − £βγij = −2NKij . (1.10)

1.2.2 Conformal metric

York [485] has shown that the dynamical degrees of freedom of the gravitational field are carried by
the conformal “metric” γ̂ defined by

γ̂ij := γ−1/3 γij , (1.11)

where

γ := det γij . (1.12)

The quantity defined by Eq. (1.11) is a tensor density of weight −2/3, which has unit determinant
and which is invariant in any conformal transformation of γij . It can be seen as representing the
equivalence class of conformally related metrics to which the 3-metric γ belongs. The conformal
“metric” (1.11) has been used notably in the BSSN formulation [421, 54], along with an “associated”
covariant derivative D̂. However, since γ̂ is a tensor density and not a tensor field, there is not a
unique covariant derivative associated with it. In particular one has Dγ̂ = 0, so that the covariant
derivative D introduced in Sec. 1.2.1 is “associated” with γ̂, in addition to D̂. As a consequence, some
of the formulas presented in Refs. [421], [54] or [12] have a meaning only for Cartesian coordinates.

To clarify the meaning of D̂ and to allow for the use of spherical coordinates, we introduce an
extra structure on the hypersurfaces Σt, namely a metric f with the following properties: (i) f has
a vanishing Riemann tensor (flat metric), (ii) f does not vary from one hypersurface to the next one
along the spatial coordinates lines:

∂

∂t
fij = 0, (1.13)

and (iii) the asymptotic structure of the physical metric γ is given by f :

γij ∼ fij at spatial infinity. (1.14)

This last relation expresses the asymptotic flatness of the hypersurfaces Σt, which we assume in this
article.
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The inverse metric is denoted by f ij 1: f ikfkj = δi
j . We denote by D the unique covariant

derivative associated with f : Dkfij = 0 and define

Di := f ijDj . (1.15)

Thanks to the flat metric f , we can properly define the conformal metric γ̃ as

γ̃ij := Ψ−4 γij or γij =: Ψ4 γ̃ij , (1.16)

where the conformal factor Ψ is defined by

Ψ :=

(
γ

f

)1/12

, (1.17)

γ and f being respectively the determinant of γ [cf. Eq. (1.12)] and the determinant of f with respect
to the coordinates (xi):

f := det fij . (1.18)

Being expressible as the quotient of two determinants, Ψ is a scalar field on Σt. Indeed a change
of coordinates (xi) 7→ (xi′) induces the following changes in the determinants: γ′ = (det J)2γ and
f ′ = (det J)2f , where J denotes the Jacobian matrix J i

i′ := ∂xi/∂xi′ . It is then obvious that
γ′/f ′ = γ/f , which shows the covariance of γ/f . Since Ψ is a scalar field, γ̃ defined by Eq. (1.16) is a
tensor field on Σt and not a tensor density as the quantity defined by Eq. (1.11) and considered in the
BSSN formulation [421, 54, 55]. Moreover, Ψ being always strictly positive (for γ and f are strictly
positive), γ̃ is a Riemannian metric on Σt. Actually it is the member of the conformal equivalence
class of γ which has the same determinant as the flat metric f :

det γ̃ij = f. (1.19)

In this respect, our approach agrees with the point of view of York in Ref. [487], who prefers to
introduce a specific member of the conformal equivalence class of γ instead of manipulating tensor
densities such as (1.11). In our case, we use the extra-structure f to pick out the representative
member of the conformal equivalence class by the requirement (1.19).

We define the inverse conformal metric γ̃ij by the requirement

γ̃ik γ̃kj = δ j
i , (1.20)

which is equivalent to
γ̃ij = Ψ4 γij or γij = Ψ−4 γ̃ij . (1.21)

Since γ̃ is a well defined metric on Σt, there is a unique covariant derivative associated with it, which
we denote by D̃: D̃kγ̃ij = 0. The covariant derivatives D̃T and DT of any tensor field T of type

(
p
q

)

on Σt are related by the formula

D̃kT
i1...ip

j1...jq
= DkT

i1...ip
j1...jq

+

p∑

r=1

∆ir
lk T

i1...l...ip
j1...jq

−
q∑

r=1

∆l
jrk T

i1...ip
j1...l...jq

, (1.22)

1Note that, in general one has f ij 6= γikγjl fkl.
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where ∆ denotes the following type
(
1
2

)
tensor field:

∆k
ij :=

1

2
γ̃kl (Diγ̃lj + Dj γ̃il −Dlγ̃ij) . (1.23)

∆k
ij can also be viewed as the difference between the Christoffel symbols1 of D̃i (Γ̃k

ij) and those of

Di (Γ̄k
ij):

∆k
ij = Γ̃k

ij − Γ̄k
ij . (1.24)

The general formula for the variation of the determinant applied to the matrix γ̃ij writes, once
combined with Eq. (1.19),

δ ln f = δ ln γ̃ = γ̃ij δγ̃ij , (1.25)

for any infinitesimal variation δ which obeys Leibniz rule. In the special case δ = Dk, we deduce
immediately that

γ̃ijDkγ̃ij = 2∆l
kl = 0. (1.26)

A useful property of D̃ is that the divergence with respect to it of any vector field V coincides
with the divergence with respect to the flat covariant derivative D:

D̃kV
k = DkV

k . (1.27)

This follows from the standard expression of the divergence in terms of partial derivatives with respect
to the coordinates (xi), and from Eq. (1.19).

1.2.3 Conformal decomposition

We represent the traceless part of the extrinsic curvature by

Aij := Ψ4

(
Kij − 1

3
Kγij

)
. (1.28)

Again, contrary to the Aij of the BSSN formulation [421, 54], this quantity is a tensor field and not a
tensor density. We introduce the following related type

(
0
2

)
tensor field:

Ãij := γ̃ikγ̃jlA
kl = Ψ−4

(
Kij −

1

3
Kγij

)
, (1.29)

which can be seen as Aij with the indices lowered by γ̃ij , instead of γij . Both Aij and Ãij are traceless,
in the sense that

γijA
ij = γ̃ijA

ij = 0 and γijÃij = γ̃ijÃij = 0. (1.30)

The Ricci tensor R of the covariant derivative D (associated with the physical 3-metric γ) is
related to the Ricci tensor R̃ of the covariant derivative D̃ (associated with the conformal metric γ̃)
by:

Rij = R̃ij − 2D̃iD̃jΦ + 4D̃iΦ D̃jΦ

−2
(
D̃kD̃kΦ + 2D̃kΦ D̃kΦ

)
γ̃ij , (1.31)

1Recall that, while Christoffel symbols do not constitute the components of any tensor field, the difference
between two sets of them does.
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where

Φ := lnΨ (1.32)

and we have introduced the notation [in the same spirit as in Eq. (1.15)]

D̃i := γ̃ijD̃j . (1.33)

The trace of Eq. (1.31) gives

R = Ψ−4
(
R̃ − 8D̃kD̃

kΦ − 8D̃kΦ D̃kΦ
)

, (1.34)

where we have introduced the scalar curvature of the metric γ̃ij :

R̃ := γ̃ijR̃ij . (1.35)

An equivalent form of Eq. (1.34) is R = Ψ−4R̃ − 8Ψ−5D̃kD̃
kΨ, which agrees with Eq. (54) of York

[486].

Thanks to Eq. (1.34), the Hamiltonian constraint (1.7) can be re-written

D̃kD̃
kΦ + D̃kΦD̃kΦ =

R̃

8
− Ψ4

(
2πE +

1

8
ÃklA

kl − K2

12

)
. (1.36)

This equation is equivalent to Eq. (70) of York [486]. The momentum constraint (1.8) becomes

D̃jA
ij + 6AijD̃jΦ − 2

3
D̃iK = 8πΨ4J i, (1.37)

which agrees with Eq. (44) of Alcubierre et al. [10] in the special case of Cartesian coordinates (these
Authors are using the quantity Φ′ = Φ + 1/12 ln f , with f = 1 in Cartesian coordinates).

The trace of the dynamical equation (1.9) [combined with the Hamiltonian constraint (1.7)] gives
rise to an evolution equation for the trace K of the extrinsic curvature:

∂K

∂t
− βkD̃kK = −Ψ−4

(
D̃kD̃

kN + 2D̃kΦ D̃kN
)

+N

[
4π(E + S) + ÃklA

kl +
K2

3

]
, (1.38)

whereas the traceless part of Eq. (1.9) becomes

∂Aij

∂t
− £βAij − 2

3
D̃kβ

k Aij = −Ψ−6

(
D̃iD̃jQ − 1

3
D̃kD̃

kQ γ̃ij

)

+Ψ−4

{
N

(
γ̃ikγ̃jlR̃kl + 8D̃iΦ D̃jΦ

)
+ 4

(
D̃iΦ D̃jN + D̃jΦ D̃iN

)

−1

3

[
N

(
R̃ + 8D̃kΦD̃kΦ

)
+ 8D̃kΦD̃kN

]
γ̃ij

}

+N

[
KAij + 2γ̃klA

ikAjl − 8π

(
Ψ4Sij − 1

3
Sγ̃ij

)]
, (1.39)
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where we have introduced the scalar field

Q := Ψ2N. (1.40)

Q has the property to gather the second order derivatives of N and Ψ in Eq. (1.39). Moreover, in the
stationary case, it has no asymptotic monopolar term (decaying like 1/r), as discussed in [219]. An
elliptic equation for Q is obtained by combining Eqs. (1.36) and (1.38):

D̃kD̃
kQ = Ψ2

[
Ψ4N

(
4πS +

3

4
ÃklA

kl +
K2

2

)

+N

(
1

4
R̃ + 2D̃kΦ D̃kΦ

)
+ 2D̃kΦ D̃kN

−Ψ4

(
∂K

∂t
− βkD̃kK

) ]
. (1.41)

The trace and traceless parts of the kinematical relation (1.10) between K and γ result respectively
in

∂Ψ

∂t
= βkD̃kΨ +

Ψ

6

(
D̃kβ

k − NK
)

(1.42)

and

∂γ̃ij

∂t
− £βγ̃ij − 2

3
D̃kβ

k γ̃ij = 2NAij . (1.43)

1.3 Einstein equations in terms of the flat covariant deri-

vative

It is worth to write the Einstein equations, not in terms of the conformal covariant derivative D̃, as done
above, but in terms of the flat covariant derivative D, because (i) numerical resolution usually proceeds
through linear operators expressed in terms of D (and deals with non-linearities via iterations), and
(ii) the Dirac gauge we aim to use is expressed in terms of D.

1.3.1 Ricci tensor of D̃ in terms of the flat derivatives of γ̃

The Ricci tensor R̃ of the covariant derivative D̃ which appears in the equations of Sec. 1.2.3 can be
expressed in terms of the flat covariant derivatives of the conformal metric γ̃ as

R̃ij = −1

2
γ̃kl (DkDlγ̃ij −DkDiγ̃lj −DkDj γ̃il)

+
1

2
Dkγ̃

kl (Diγ̃lj + Dj γ̃il −Dlγ̃ij)

−∆k
il∆

l
jk. (1.44)
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This equation agrees with Eq. (2.17) of [421], provided it is restricted to Cartesian coordinates, for
which Di → ∂i and ∆k

ij → Γ̃k
ij . After some manipulations, Eq. (1.44) can be written as

R̃ij = −1

2

(
γ̃klDkDlγ̃ij + γ̃ikDjH

k + γ̃jkDjH
k

+HkDkγ̃ij + Diγ̃
klDkγ̃lj + Dj γ̃

klDkγ̃il

)

−∆k
il∆

l
jk, (1.45)

where we have introduced the vector field

H i := Dj γ̃
ij = −γ̃kl∆i

kl (1.46)

[the second equality results from Eq. (1.23)]. If we restrict ourselves to Cartesian coordinates (Di →
∂i, ∆i

kl → Γ̃i
kl), the quantity H i coincides with minus the “conformal connection functions” Γ̃i

introduced by Baumgarte and Shapiro [54]: Γ̃i = −H i. Moreover after some rearrangements, the
expression (1.45) for the Ricci tensor can be shown to agree with Eq. (22) of [54]. The motivation for
the writing (1.45) of the Ricci tensor traces back to Nakamura, Oohara and Kojima [331]; it consists in
letting appear a Laplacian acting on γ̃ij [first term on the right-hand side of Eq. (1.45)] and put all the
other second order derivatives of γ̃ij into derivatives of H i. This is very similar to the decomposition
of the 4-dimensional Ricci tensor which motivates the introduction of harmonic coordinates; note that
in general the principal part of the Ricci tensor contains 4 terms with second-order derivatives of the
metric; we have only 3 in Eq. (1.45) because det γ̃ij = f .

Starting from Eq. (1.45), we obtain, after some computations, an expression of the Ricci tensor in
terms of the flat covariant derivatives of γ̃ij , instead of γ̃ij :

γ̃ikγ̃jlR̃kl =
1

2

(
γ̃klDkDlγ̃

ij − γ̃ikDkH
j − γ̃jkDkH

i + HkDkγ̃
ij −Dlγ̃

ikDkγ̃
jl

−γ̃klγ̃
mnDmγ̃ik Dnγ̃jl + γ̃ikγ̃mlDkγ̃

mn Dnγ̃jl + γ̃jlγ̃knDlγ̃
mn Dmγ̃ik

+
1

2
γ̃ikγ̃jlDkγ̃mn Dlγ̃

mn

)
. (1.47)

If we restrict ourselves to Cartesian coordinates, the terms with second derivatives of γ̃ij , i.e. the first
three terms in the above equation, agree with Eq. (12) of [8].

The curvature scalar R̃ defined from the Ricci tensor R̃ by Eq. (1.35) is basically minus the flat
divergence of H plus some quadratic terms:

R̃ = −DkH
k +

1

4
γ̃klDkγ̃

ijDlγ̃ij −
1

2
γ̃klDkγ̃

ijDj γ̃il. (1.48)

1.3.2 Definition of the potentials hij

We will numerically solve not for the conformal metric γ̃ but for the deviation h of the inverse
conformal metric γ̃ij from the inverse flat metric, defined by the formula

γ̃ij =: f ij + hij . (1.49)
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h is a symmetric tensor field on Σt of type
(
2
0

)
(“twice contravariant tensor” hij) and we will manipulate

it as such, without introducing any bilinear form (“twice covariant tensor” hij) dual to it.

The flat covariant derivatives of h coincide with those of γ̃ij : Dkγ̃
ij = Dkh

ij . In particular the
vector field H introduced in Eq. (1.46) is the flat divergence of h:

H i = Djh
ij . (1.50)

Thanks to the splitting (1.49), we can express the differential operator γ̃klDkDl which appears in the
equations listed in Sec. 1.3.1 as γ̃klDkDl = ∆+hklDkDl , where ∆ is the Laplacian operator associated
with the flat metric:

∆ := fklDkDl = DkDk. (1.51)

1.3.3 Einstein equations in terms of h and D

Inserting Eq. (1.48) into the combination (1.41) of the Hamiltonian constraint and the trace of the
spatial part of the dynamical Einstein equations leads to

∆Q = −hklDkDlQ − HkDkQ + Ψ6

[
N

(
4πS +

3

4
ÃklA

kl +
K2

2

)
− ∂K

∂t
+ βkDkK

]

+Ψ2

[
N

(
−1

4
DkH

k +
1

16
γ̃klDkh

ijDlγ̃ij −
1

8
γ̃klDkh

ijDj γ̃il + 2D̃kΦ D̃kΦ

)

+2D̃kΦ D̃kN
]
. (1.52)

The momentum constraint (1.37) writes

DjA
ij + ∆i

klA
kl + 6AijDjΦ − 2

3
γ̃ijDjK = 8πΨ4J i, (1.53)

with the following expression for ∆i
kl, alternative to Eq. (1.23):

∆k
ij = −1

2

(
Dkγ̃ij + hklDlγ̃ij + γ̃ilDjh

kl + γ̃ljDih
kl

)
. (1.54)

Taking into account property (1.27), the trace relation (1.42) can be expressed as

∂Φ

∂t
− βkDkΦ =

1

6

(
Dkβ

k − NK
)

. (1.55)

The combination (1.38) of the trace of the dynamical Einstein equations with the Hamiltonian con-
straint equations becomes

∂K

∂t
− βkDkK = −Ψ−4

(
∆N + hklDkDlN + HkDkN

+2D̃kΦ D̃kN
)

+ N

[
4π(E + S) + ÃklA

kl +
K2

3

]
. (1.56)
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After some computations, the traceless kinematical relation (1.43) and the traceless part (1.39) of the
dynamical Einstein equations become respectively

∂hij

∂t
− £βhij − 2

3
Dkβ

k hij = 2NAij − (Lβ)ij , (1.57)

∂Aij

∂t
− £βAij − 2

3
Dkβ

k Aij =
N

2Ψ4

(
∆hij −DiHj −DjH i +

2

3
DkH

k f ij

)

− 1

2Ψ6

(
Dihjk + Djhik −Dkhij − 2

3
Hkf ij

)
DkQ + Sij , (1.58)

where Sij is given by

Sij := Ψ−4

{
N

(
R̃ij

∗ + 8D̃iΦD̃jΦ
)

+ 4
(
D̃iΦD̃jN + D̃jΦD̃iN

)

−1

3

[
N

(
(R̃∗ + 8D̃kΦD̃kΦ)γ̃ij −DkH

khij
)

+ 8D̃kΦD̃kNγ̃ij
]}

+N

[
KAij + 2γ̃klA

ikAjl − 8π

(
Ψ4Sij − 1

3
S γ̃ij

)]

−Ψ−6

[
γ̃ikγ̃jlDkDlQ +

1

2

(
hikDkh

lj + hkjDkh
il − hklDkh

ij
)
DlQ

−1

3

(
γ̃klDkDlQ γ̃ij + HkDkQhij

)]
, (1.59)

with

R̃ij
∗ :=

1

2

[
hklDkDlh

ij − hikDkH
j − hjkDkH

i + HkDkh
ij −Dlh

ikDkh
jl − γ̃klγ̃

mnDmhikDnhjl

+γ̃nlDkh
mn

(
γ̃ikDmhjl + γ̃jkDmhil

)
+

1

2
γ̃ikγ̃jlDkh

mnDlγ̃mn

]
, (1.60)

R̃∗ :=
1

4
γ̃klDkh

mnDlγ̃mn − 1

2
γ̃klDkh

mnDnγ̃ml. (1.61)

Finally the notation (Lβ)ij in Eq. (1.57) stands for the conformal Killing operator associated with the
flat metric f and applied to the vector field β:

(Lβ)ij := Diβj + Djβi − 2

3
Dkβ

k f ij . (1.62)

The writing (1.58) with the introduction of Sij by Eq. (1.59) is performed in order to single out the
part which is linear in the first and second derivatives of hij (a term like hklDkDlh

ij or hikDkh
ljDlQ

being considered as non-linear). In particular the quantities R̃ij
∗ and R̃∗ arise from the decomposition

of the Ricci tensor (1.47) and Ricci scalar (1.48) in linear and quadratic parts:

γ̃ikγ̃jlR̃kl =
1

2

(
∆hij −DiHj −DjH i

)
+ R̃ij

∗ , (1.63)

R̃ = −DkH
k + R̃∗. (1.64)
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Consequently Sij contains no linear terms in the first and second-order spatial derivatives of hij .
Regarding the time derivatives of hij (encoded in Aij), it contains only one linear term, in NKAij .
Note also that the covariant form γ̃ij of the conformal metric which appears in the expressions of R̃ij

∗

and R̃∗ is the inverse of the matrix γ̃ij , and therefore can be expressed as a quadratic function of hij ,
thanks to the fact that γ̃ = f .

1.4 Maximal slicing and Dirac gauge

1.4.1 Definitions and discussion

Let us now turn to the choice of coordinates, to fully specify the PDE system to be solved. First
regarding the foliation Σt, we choose maximal slicing:

K = 0. (1.65)

This well-known type of slicing has been introduced by Lichnerowicz [291] and popularized by York
[486, 435]. It is often disregarded in 3-D numerical relativity because it leads to an elliptic equation for
the lapse function (cf. discussion in Sec. 1.1.1). However it has very nice properties: beside the well-
known singularity avoidance capability [434], it has been shown to be well adapted to the propagation
of gravitational waves [435, 421].

Regarding the choice of the three coordinates (xi) on each slice Σt, we consider the Dirac gauge.
In Dirac’s original definition [156], it corresponds to the requirement

∂

∂xj

(
γ1/3γij

)
= 0. (1.66)

This writing makes sense only with Cartesian type coordinates. In order to allow for any type of
coordinates, we define the generalized Dirac gauge as

Dj

[(
γ

f

)1/3

γij

]
= 0. (1.67)

Obviously this covariant definition is made possible thanks to the introduction of the flat metric f on
Σt. We recognize in Eq. (1.67) the flat divergence of the conformal metric:

Dj γ̃
ij = 0. (1.68)

Since Djf
ij = 0, this condition is equivalent to the vanishing of the flat divergence of the potential

hij :

Djh
ij = 0, (1.69)

Another equivalent definition of the Dirac gauge is requiring that the vector H vanishes [cf. Eq. (1.46)]:

H i = 0. (1.70)

As discussed in Sec. 1.1.1, the Dirac gauge has been considered as a candidate for a radiation gauge
by Smarr and York [435] but disregarded in profit of the minimal distortion gauge which allows for
any choice of coordinates in the initial slice. On the contrary Dirac gauge fully specifies (up to some
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boundary conditions) the coordinates in the slices Σt, including the initial one. This property allows
the search for stationary solutions of the proposed system of equations. In particular this allows to
get quasi-stationary initial conditions for the time evolution. In this respect note that the numerous
conformally flat initial data computed to date (see Ref. [55] for a review) automatically fulfill Dirac
gauge, since the conformal flatness of the spatial metric γ is equivalent to the condition h = 0.

Another strong motivation for choosing the Dirac gauge is that it simplifies drastically the principal
linear part of the Ricci tensor R̃ associated with the conformal metric: as seen on Eq. (1.47) or
Eq. (1.60), this Ricci tensor, considered as a partial differential operator acting on h reduces to the
elliptic term γ̃klDkDlh

ij in that gauge. Consequently, the second order part of the right hand side
of Eq. (1.58) reduces to a flat Laplacian ∆hij . This reduction of the Ricci tensor to a Laplacian has
been the main motivation of the promotion of H as an independent variable in the BSSN formulation
[421, 54]. A related property of the Dirac gauge is that thanks to it, the curvature scalar R̃ of the
conformal metric does not contain any second order derivative of γ̃ij [set Hk = 0 in Eq. (1.48)].

Note that although Dirac gauge and minimal distortion gauge differ in the general case, both gauges
result asymptotically in transverse-traceless (TT) coordinates (cf. Sec. IV of Ref. [435]), which are
well adapted to the treatment of gravitational radiation. Both gauges are analogous to Coulomb gauge
in electrodynamics. In 1994, Nakamura [329] has used a gauge, called pseudo-minimal shear, which is
related to the Dirac gauge, for it writes Dj(∂γ̃ij/∂t) = 0, while Dirac gauge implies Dj(∂γ̃ij/∂t) = 0.
Note however that this pseudo-minimal shear does not fix the coordinates on the initial time slice,
contrary to Dirac gauge: as the minimal distortion condition, it only rules the time evolution of the
coordinate system. The exact Dirac gauge has been employed recently in two numerical studies, by
Kawamura, Oohara and Nakamura [273], who call it the pseudo-minimal distortion condition, and by
Shibata, Uryu and Friedman [419].

Finally let us mention that Andersson and Moncrief [17] have shown recently that the Cauchy
problem for 3+1 Einstein equations is locally strongly well posed for a coordinate system quite similar
to maximal slicing + Dirac gauge, namely constant mean curvature (K = t) and spatial harmonic

coordinates (Dj

[
(γ/f)1/2 γij

]
= 0).

1.4.2 Einstein equations within maximal slicing and Dirac gauge

Thanks to the choices (1.65) and (1.70), the combination (1.52) of the Hamiltonian constraint and the
trace of the spatial part of the dynamical Einstein equations simplifies somewhat

∆Q = −hklDkDlQ + Ψ6

[
N

(
4πS +

3

4
ÃklA

kl

)]

+2Ψ2

[
N

(
R̃∗

8
+ D̃kΦD̃kΦ

)
+ D̃kΦD̃kN

]
, (1.71)

where we have let appear the quadratic quantity R̃∗ defined by Eq. (1.61). Note that thanks to Dirac
gauge, the right hand side of the above equation does not contain any second order derivative of hij .

The momentum constraint (1.53) becomes

DjA
ij + ∆i

klA
kl + 6AijDjΦ = 8πΨ4J i. (1.72)

Now, taking the (flat) divergence of Eq. (1.57) and using the fact that ∂/∂t commutes with Di, thanks
to property (1.13), the Dirac gauge leads to an expression of the divergence of Aij which does not
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contain any time derivative of the shift vector nor any second derivative of hij :

DjA
ij = −Aij

N
DjN +

1

2N

[
∆βi +

1

3
Di

(
Djβ

j
)

+hklDkDlβ
i +

1

3
hikDk

(
Dlβ

l
)]

. (1.73)

Inserting this relation into the momentum constraint equation (1.72) results in an elliptic equation for
β:

∆βi +
1

3
Di

(
Djβ

j
)

= 16πNΨ4J i + 2AijDjN

−12NAijDjΦ − 2N∆i
klA

kl

−hklDkDlβ
i − 1

3
hikDkDlβ

l. (1.74)

Thanks to maximal slicing, the kinematical trace relation (1.55) reduces to

∂Φ

∂t
− βkDkΦ =

1

6
Dkβ

k. (1.75)

The combination (1.56) of the trace of the dynamical Einstein equations with the Hamiltonian con-
straint equations becomes an elliptic equation for the lapse function:

∆N = Ψ4N
[
4π(E + S) + ÃklA

kl
]
− hklDkDlN

−2D̃kΦ D̃kN. (1.76)

In Dirac gauge + maximal slicing, the time evolution system (1.57)-(1.58) becomes

∂hij

∂t
− £βhij − 2

3
Dkβ

k hij = 2NAij − (Lβ)ij (1.77)

∂Aij

∂t
− £βAij − 2

3
Dkβ

k Aij =
N

2Ψ4
∆hij + Sij

− 1

2Ψ6

(
Dihjk + Djhik −Dkhij

)
DkQ, (1.78)

where Sij is slightly simplified to

Sij = Ψ−4

{
N

(
R̃ij

∗ + 8D̃iΦD̃jΦ
)

+ 4
(
D̃iΦD̃jN + D̃jΦD̃iN

)
− 1

3

[
N

(
(R̃∗ + 8D̃kΦD̃kΦ)γ̃ij

)

+8D̃kΦD̃kN γ̃ij
]}

+ 2N

[
γ̃klA

ikAjl − 4π

(
Ψ4Sij − 1

3
S γ̃ij

)]

−Ψ−6

[
γ̃ikγ̃jlDkDlQ +

1

2

(
hikDkh

lj + hkjDkh
il − hklDkh

ij
)
DlQ − 1

3

(
γ̃klDkDlQ γ̃ij

)]
,(1.79)
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with

R̃ij
∗ =

1

2

[
hklDkDlh

ij −Dlh
ikDkh

jl − γ̃klγ̃
mnDmhikDnhjl + γ̃nlDkh

mn
(
γ̃ikDmhjl + γ̃jkDmhil

)

+
1

2
γ̃ikγ̃jlDkh

mnDlγ̃mn

]
. (1.80)

The quadratic term R̃∗ in Eq. (1.79) is unchanged and is given by Eq. (1.61). The Lie derivatives
along the shift vector field β which appear in Eqs. (1.77) and (1.78) can be expressed in terms of the
flat covariant derivative D by the standard formula:

£βhij = βkDkh
ij − hkjDkβ

i − hikDkβ
j , (1.81)

£βAij = βkDkA
ij − AkjDkβ

i − AikDkβ
j . (1.82)

1.4.3 Wave equation for hij

As discussed in Sec. 1.4.1, one of the main motivations for using Dirac gauge is that it changes the
second order operator acting on hij in Eq. (1.78) to a mere Laplacian. It is therefore tempting to
write the first order time evolution system (1.77)-(1.78) as a (second order) wave equation for hij .
Note that the first order operator ∂/∂t−£β which appear on the l.h.s. of the system (1.77)-(1.78) is
nothing but the Lie derivative along the vector Nn. Its square is

(
∂

∂t
− £β

)2

hij =
∂2hij

∂t2
− 2£β

∂hij

∂t
+ £β£βhij − £

β̇
hij , (1.83)

with the short-hand notation

β̇i :=
∂βi

∂t
. (1.84)

Applying the operator ∂/∂t−£β to Eq. (1.77) and inserting Eqs. (1.83) and (1.78) in the result leads
to the wave equation

∂2hij

∂t2
− N2

ψ4
∆hij − 2£β

∂hij

∂t
+ £β£βhij = £

β̇
hij +

4

3
Dkβ

k

(
∂

∂t
− £β

)
hij

− N

Ψ6
DkQ

(
Dihjk + Djhik −Dkhij

)

+
1

N

[(
∂

∂t
− £β

)
N

] [(
∂

∂t
− £β

)
hij − 2

3
Dkβ

khij + (Lβ)ij

]

+
2

3

[(
∂

∂t
− £β

)
Dkβ

k − 2

3
(Dkβ

k)2
]

hij

+2NSij −
(

∂

∂t
− £β

)
(Lβ)ij +

2

3
Dkβ

k(Lβ)ij . (1.85)

Note that the left-hand side of the above equation contains all the second-order derivatives (both in
time and space) of hij , at the linear order. Actually the only second-order derivative of hij on the
right-hand side is the non-linear term hklDkDlh

ij contained in Sij via R̃ij
∗ [cf. Eqs. (1.79) and (1.80)].
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Let us rewrite Eq. (1.85) as a flat-space tensorial wave equation:

¤hij = σij + (Lβ̇)ij , (1.86)

where ¤ denotes the d’Alembert operator associated with the flat metric f [cf. Eq. (1.51)]:

¤ := − ∂2

∂t2
+ ∆ (1.87)

and σij is given by

σij :=

(
1 − N2

ψ4

)
∆hij − 2£β

∂hij

∂t
+ £β£βhij − £

β̇
hij − 4

3
Dkβ

k

(
∂

∂t
− £β

)
hij

+
N

Ψ6
DkQ

(
Dihjk + Djhik −Dkhij

)

− 1

N

[(
∂

∂t
− £β

)
N

] [(
∂

∂t
− £β

)
hij − 2

3
Dkβ

khij + (Lβ)ij

]

−2

3

[(
∂

∂t
− £β

)
Dkβ

k − 2

3
(Dkβ

k)2
]

hij

−2NSij − £β(Lβ)ij − 2

3
Dkβ

k(Lβ)ij . (1.88)

Note that we have not included into σij the term1

∂

∂t
(Lβ)ij = (Lβ̇)ij (1.89)

which appears in the right-hand side of Eq. (1.85). Consequently this term appears explicitly in the
right-hand side of Eq. (1.86).

At a given time step during the evolution, σij is considered as a fixed source in Eq. (1.86), so that
the problem is reduced to solving a flat space wave equation. Since D and ¤ commute (thanks to the
time-independence of f), the source σij + (Lβ̇)ij must be divergence-free in order for the solution hij

of Eq. (1.86) to satisfy Dirac gauge (1.69). This means that one must have

Dj(Lβ̇)ij = −Djσ
ij , (1.90)

or, from the definition (1.62) of the conformal Killing operator and the vanishing of f ’s Riemann
tensor,

∆β̇i +
1

3
Di

(
Dj β̇

j
)

= −Djσ
ij . (1.91)

The above elliptic equation fully determines β̇ (up to some boundary conditions), and therefore, by
direct time integration, β. This shows clearly that the shift vector propagates the Dirac spatial
coordinates (xi) from one slice Σt to the next one. Hence we recover the traditional interpretation of
the shift vector. On the other side, β can be computed from the combination (1.74) of the momentum
constraint and Dirac gauge condition. Both ways must yield the same result. However, from the
numerical point of view, they may not be equivalent (due to numerical errors) and a strategy to
compute the best value of β must be devised.

1Eq. (1.89) holds thanks to the property (1.13).
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Note that, since we reduce the time evolution problem to a second-order wave equation for hij , at
each step, the extrinsic curvature term Aij must be deduced from the time derivative of hij and the
spatial derivatives of the shift vector by inverting Eq. (1.77):

Aij =
1

2N

[
(Lβ)ij +

∂hij

∂t
− £βhij − 2

3
Dkβ

k hij

]
. (1.92)

1.4.4 Transverse traceless decomposition

The generalized Dirac gauge, expressed as Eq. (1.69), makes the potential h a transverse tensor field
with respect to the metric f . However, the trace of h with respect to the metric f ,

h := fijh
ij , (1.93)

does not vanish in general, except in the linearized approximation. Therefore h is not a transverse
and traceless (TT) tensor field. Since this latter property would considerably help the treatment of
the wave equation, we perform a TT decomposition of h according to (see e.g. Sec. 7-4.2 of ADM
[35])

hij =: h̄ij +
1

2

(
h f ij −DiDjφ

)
, (1.94)

where φ is a solution of the Poisson equation

∆φ = h (1.95)

satisfying φ = 0 at spatial infinity. Then the trace of the term 1/2
(
h f ij −DiDjφ

)
on the right-hand

side of Eq. (1.94) is equal to h. Moreover this term is divergence-free. We conclude that if h is
transverse (Dirac gauge), then h̄ defined by Eq. (1.94) is a TT tensor1:

Dj h̄
ij = 0 and fij h̄

ij = 0. (1.96)

We then decompose Eq. (1.86) into a trace part, and a traceless one, to get

¤h = σ, (1.97)

¤h̄ij = σ̄ij + (Lβ̇)ij , (1.98)

where σ := fijσ
ij and σ̄ij is the traceless part of σij given by the decomposition analogous to (1.94):

σij =: σ̄ij +
1

2

(
σ f ij −DiDjΥ

)
, (1.99)

with ∆Υ = σ. Note that the quantity (Lβ̇)ij is trace-free by the very definition of operator L
[Eq. (1.62)].

The search for the potentials hij can then proceed along the following steps: compute the trace σ
of the effective source σij [Eq. (1.88)] and solve the Poisson equation

∆Υ = σ, (1.100)

1If we had removed the trace of h in the “standard” way, by defining h̃ij := hij − 1
3hf ij , the traceless part

would not have been transverse.
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with the boundary condition Υ = 0 at spatial infinity. This leads to a regular solution for Υ because
σ is a fast decaying source, due to the fact that Eq. (1.86) is the traceless part, with respect to the
metric γ̃, of the dynamical Einstein equations and that γ̃ ∼ f asymptotically. The next step is to
insert Υ and σ into Eq. (1.99) to compute σ̄ij . Then one has to solve the TT wave equation (1.98) for
h̄ij . A resolution technique based on spherical coordinates and spherical tensor components will be
presented in Sec. 1.5.3. Using this technique, the resolution of Eq. (1.98) is reduced to the resolution
of two scalar d’Alembert equations. Then one may solve the scalar d’Alembert equation

¤φ = Υ (1.101)

for φ and compute the trace h not by solving the d’Alembert equation (1.97) but directly as the
Laplacian of φ [cf. Eq. (1.95)]. Inserting h and φ into Eq. (1.94) leads then to hij . An alternative
approach to get h will be discussed in Sec. 1.5.4. It is algebraic [thus does not require to solve any
d’Alembert equation like (1.97) or (1.101)] and has the advantage to enforce the condition on the
determinant of γ̃ij [Eq. (1.19)].

1.5 A resolution scheme based on spherical coordinates

As discussed in Sec. 1.1.2, spherical coordinates have many advantages when treating neutron star or
black hole spacetimes. Moreover, as we shall see below, the use of tensor components with respect to
a spherical basis allow to compute three of the metric components γ̃ij directly from the Dirac gauge
condition (1.68). In this section we therefore specialize the coordinates (xi) on each hypersurface Σt

to spherical ones. Moreover we expand all the tensor fields onto a spherical basis which is orthonormal
with respect to the flat metric.

1.5.1 Spherical orthonormal basis

We introduce on Σt a coordinate system xi = (r, θ, ϕ) of spherical type, i.e. r spans the range [0, +∞),
θ the range [0, π] (co-latitude angle), ϕ the range [0, 2π) (azimuthal angle) and the components of the
flat metric f with respect to these coordinates are

fij = diag (1, r2, r2 sin2 θ). (1.102)

The determinant f [Eq. (1.18)] is then f = r4 sin2 θ.

From the natural vector basis associated with the coordinates (r, θ, ϕ),
(
∂/∂xi

)
= (∂/∂r, ∂/∂θ,

∂/∂ϕ), we construct the following vector fields:

er :=
∂

∂r
, eθ :=

1

r

∂

∂θ
, eϕ :=

1

r sin θ

∂

∂ϕ
. (1.103)

(eî) = (er, eθ, eϕ) forms a basis of the vector space tangent to Σt. Moreover, this basis is orthonormal
with respect to the flat metric f : fîĵ = diag(1, 1, 1). Notice that we are denoting with a hat the

generic indices î, ĵ, ... associated with this basis, but we denote by r, θ, ϕ (without a hat) indices of
specific components on this basis.
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Given a tensor field T of type
(
p
q

)
, the components of the covariant derivative DT in the orthonor-

mal basis eî1
⊗ · · · ⊗ eîp

⊗ · · · ⊗ eĵ1 ⊗ · · · ⊗ eĵq ⊗ ek̂ are given by

Dk̂T
î1...̂ip

ĵ1...ĵq
= e l

k̂

∂

∂xl
T

î1...̂ip

ĵ1...ĵq

+

p∑

r=1

Γ̂îr
l̂k̂

T
î1...l̂...̂ip

ĵ1...ĵq

−
q∑

r=1

Γ̂l̂
ĵr k̂

T
î1...̂ip

ĵ1...l̂...ĵq
, (1.104)

where e l
k̂

:= diag(1, 1/r, 1/(r sin θ)) is the change-of-basis matrix defined by Eq. (1.103), and the Γ̂k̂
îĵ

are the connection coefficients of D associated with the orthonormal frame (eî); these coefficients all
vanish, except for

Γ̂r
θθ = −Γ̂θ

rθ = −r−1 , Γ̂r
ϕϕ = −Γ̂ϕ

rϕ = −r−1 ,

Γ̂θ
ϕϕ = −Γ̂ϕ

θϕ = −(r tan θ)−1. (1.105)

1.5.2 Resolution of elliptic equations

Scalar Poisson equations

We have to solve two scalar elliptic equations: the Hamiltonian constraint (combined with the trace
of the dynamical Einstein equations) Eq. (1.71) for Q and the maximal slicing equation (1.76) for N .
Both equations are not strictly Poisson equations since they contain Q and N on their right-hand side.
Moreover the right-hand side of Eq. (1.71) is non-linear in Q (through Φ = (lnN − lnQ)/2). Therefore
these equations must be solved by iterations, solving for a Poisson equation at each step. Since we are
using spherical coordinates, it is natural to perform an expansion on spherical harmonics Y m

ℓ (θ, ϕ).
The resolution of the scalar Poisson equation is then reduced to the resolution of a system of second
order ordinary differential equations in r for each couple (ℓ, m). We refer the reader to Ref. [228] for
further details.

Vector elliptic equation for the shift

As we have seen in Sec. 1.4.2, the Dirac gauge condition once inserted into the momentum constraint
equation gives rise to the elliptic equation (1.74). Using the derivation formula (1.104) with the explicit
values (1.105) of the connection coefficients, we obtain the following components of this equation with
respect to the orthonormal frame (eî):

∂2βr

∂r2
+

2

r

∂βr

∂r
+

1

r2

(
∆θϕβr − 2βr − 2

∂βθ

∂θ
− 2

βθ

tan θ
− 2

sin θ

∂βϕ

∂ϕ

)
+

1

3

∂θ

∂r
= S(β)r (1.106)

∂2βθ

∂r2
+

2

r

∂βθ

∂r
+

1

r2

(
∆θϕβθ + 2

∂βr

∂θ
− βθ

sin2 θ
− 2

cos θ

sin2 θ

∂βϕ

∂ϕ

)
+

1

3r

∂θ

∂θ
= S(β)θ (1.107)

∂2βϕ

∂r2
+ +

2

r

∂βϕ

∂r
+

1

r2

(
∆θϕβϕ +

2

sin θ

∂βr

∂ϕ
+ 2

cos θ

sin2 θ

∂βθ

∂ϕ
− βϕ

sin2 θ

)
+

1

3r sin θ

∂θ

∂ϕ

= S(β)ϕ, (1.108)
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where ∆θϕ denotes the angular Laplacian:

∆θϕ :=
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
, (1.109)

S(β)î stands for the right-hand side of Eq. (1.74) and θ := Dkβ
k is the divergence of β with respect

to the flat connection D. In terms of the components with respect to the orthonormal frame (eî), it
reads

θ =
∂βr

∂r
+

2βr

r
+

1

r

(
∂βθ

∂θ
+

βθ

tan θ
+

1

sin θ

∂βϕ

∂ϕ

)
. (1.110)

As for the scalar elliptic equations for Q and N discussed above, the right-hand side S(β)î of
Eqs. (1.106)-(1.108) depend (linearly) on β, both explicitly and via Aij [see Eqs. (1.74) and (1.92)].
Thus an iterative resolution must be contemplated.

Equations (1.106)-(1.108) constitute a coupled system, since each equation contains all the com-
ponents of β. However, we can decouple the system by proceedings as follows. First, taking the (flat)
divergence of this vector system, and taking into account that D and ∆ commute (flat metric), we
get a scalar Poisson equation for θ only:

∆θ =
3

4
Dk̂S(β)k̂. (1.111)

Assuming this equation is solved for θ, we use Eq. (1.110) to replace the terms containing angular
components in Eq. (1.106) to get a decoupled equation for βr:

∂2βr

∂r2
+

4

r

∂βr

∂r
+

2βr

r2
+

1

r2
∆θϕβr =

S(β)r − 1

3

∂θ

∂r
+

2

r
θ. (1.112)

This equation can be solved by expanding βr in spherical harmonics. An alternative approach is to
set

χ := rβr (1.113)

which reduces Eq. (1.112) to an ordinary Poisson equation:

∆χ = rS(β)r − r

3

∂θ

∂r
+ 2θ. (1.114)

This is not surprising since χ is actually a scalar field on Σt: χ = fijr
iβj , where r denotes the

“position” vector field:

r := r er = x ex + y ey + z ez, (1.115)

(x, y, z) and (ex, ey, ez) being respectively the Cartesian coordinates and Cartesian frame canonically
associated with the spherical coordinates (r, θ, ϕ). Indeed, contrary to er, which is singular at the
origin r = 0, r is a regular1 vector field [this is obvious from the second equality in Eq. (1.115)]. Being
the scalar product of β and r (with respect to f), χ is then a regular scalar.

1As in Ref. [47], we define a regular tensor field as a tensor field whose components with respect to the
Cartesian frame (ex,ey,ez) are expandable in power series of x, y and z.
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Let us now discuss the resolution of the angular part. We introduce a poloidal potential η and a
toroidal potential µ such that β is expanded as (see also § 13.1 of Ref. [323] and § A.2.a of Ref. [478]):

β = βrer + [rDη − (er · Dη) r] + r × Dµ, (1.116)

where the scalar product and the vectorial product are taken with respect to the flat metric f . Note
that the terms containing η and µ are by construction tangent to the sphere r = const and that r×Dµ
is nothing but the angular momentum operator of Quantum Mechanics applied to µ. An alternative
expression is r × Dµ = −D × (µ r). In term of components, Eq. (1.116) results in

βθ =
∂η

∂θ
− 1

sin θ

∂µ

∂ϕ
(1.117)

βϕ =
1

sin θ

∂η

∂ϕ
+

∂µ

∂θ
. (1.118)

It can be shown easily that the potentials η and µ obey to the following relations:

∆θϕη = rθ − r
∂βr

∂r
− 2βr (1.119)

∆θϕµ = r · (D × β)

=
∂βϕ

∂θ
+

βϕ

tan θ
− 1

sin θ

∂βθ

∂ϕ
. (1.120)

These formulas show that η and µ are uniquely defined (up to the addition of some function of r). θ,
βr = χ/r and the scalar r · (D×β) being expandable in (scalar) spherical harmonics, Eqs. (1.119) and
(1.120) show also that η and µ are expandable in spherical harmonics Y m

ℓ (θ, ϕ). The computation of
η and µ from the components (βr, βθ, βϕ) can then be performed from Eqs. (1.119)-(1.120) by a mere
division by −ℓ(ℓ + 1) (eigenvalue of the operator ∆θϕ corresponding to the eigenfunction Y m

ℓ (θ, ϕ)).
In the following we call this type of computation a quasi-algebraic one.

By a straightforward computation, it can be shown that the part (1.107)-(1.108) of the original
system is equivalent to the two Poisson equations

∆η = ηS − 2βr

r2
− 1

3

θ

r
(1.121)

∆µ = µS , (1.122)

where ηS and µS are the poloidal and toroidal potentials of the source S(β) [they can thus be

determined from S(β) by formulas (1.119)-(1.120) with β î replaced by S(β)î].
Having reduced the complicated coupled PDE system (1.106)-(1.108) to Poisson type equations

(1.111), (1.112), (1.114), (1.121) and (1.122), various strategies can be devised to get the solution.
In all of them, we take advantage of the fact that the Poisson equation (1.122) for the toroidal part
is fully decoupled from the others to solve it first and hence get µ. Similarly the Poisson equation
(1.111) for the divergence is decoupled from the other equations. So we can solve it to get θ. Then
we plug θ on the right-hand side of Eq. (1.112) and solve it to get βr. An alternative approach is to
solve the Poisson equation (1.114) for χ and obtain βr as χ/r. Then we have the following options:
(i) deduce η from Eq. (1.119); (ii) solve the Poisson equation (1.121) to get η. Method (ii) requires
to solve an additional Poisson equation, while method (i) requires only a division by −ℓ(ℓ + 1) of
the coefficients of spherical harmonics expansions, making a total of three scalar Poisson equations to
solve the system. However method (i) involves the radial derivative of βr which may result in a low
order of differentiability of the numerical solution.
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1.5.3 Resolution of the tensor wave equation

Spherical components

By means of the derivation formula (1.104) with the explicit values (1.105) of the connection coeffi-

cients, the tensor wave equation (1.98) can be written explicitly in terms of the components h̄îĵ of the
TT part of h with respect to the orthonormal spherical basis:

− ∂2h̄rr

∂t2
+

∂2h̄rr

∂r2
+

2

r

∂h̄rr

∂r
+

1

r2

[
∆θϕh̄rr − 4h̄rr − 4

∂h̄rθ

∂θ
− 4h̄rθ

tan θ
− 4

sin θ

∂h̄rϕ

∂ϕ
+ 2h̄θθ + 2h̄ϕϕ

]

= S̄rr, (1.123)

−∂2h̄rθ

∂t2
+

∂2h̄rθ

∂r2
+

2

r

∂h̄rθ

∂r
+

1

r2

[
∆θϕh̄rθ −

(
4 +

1

sin2 θ

)
h̄rθ + 2

∂h̄rr

∂θ
− 2

∂h̄θθ

∂θ

−2
cos θ

sin2 θ

∂h̄rϕ

∂ϕ
− 2h̄θθ

tan θ
− 2

sin θ

∂h̄θϕ

∂ϕ
+

2h̄ϕϕ

tan θ

]
= S̄rθ, (1.124)

−∂2h̄rϕ

∂t2
+

∂2h̄rϕ

∂r2
+

2

r

∂h̄rϕ

∂r
+

1

r2

[
∆θϕh̄rϕ −

(
5 +

1

tan2 θ

)
h̄rϕ +

2

sin θ

∂h̄rr

∂ϕ
+ 2

cos θ

sin2 θ

∂h̄rθ

∂ϕ

−2
∂h̄θϕ

∂θ
− 2

sin θ

∂h̄ϕϕ

∂ϕ
− 4h̄θϕ

tan θ

]
= S̄rϕ, (1.125)

− ∂2h̄θθ

∂t2
+

∂2h̄θθ

∂r2
+

2

r

∂h̄θθ

∂r
+

1

r2

[
∆θϕh̄θθ − 2h̄θθ

sin2 θ
+ 4

∂h̄rθ

∂θ
− 4

cos θ

sin2 θ

∂h̄θϕ

∂ϕ
+ 2h̄rr +

2h̄ϕϕ

tan2 θ

]

= S̄θθ, (1.126)

−∂2h̄θϕ

∂t2
+

∂2h̄θϕ

∂r2
+

2

r

∂h̄θϕ

∂r
+

1

r2

[
∆θϕh̄θϕ − 2

(
1 +

2

tan2 θ

)
h̄θϕ +

2

sin θ

∂h̄rθ

∂ϕ
+ 2

∂h̄rϕ

∂θ

+2
cos θ

sin2 θ

(
∂h̄θθ

∂ϕ
− ∂h̄ϕϕ

∂ϕ

)
− 2h̄rϕ

tan θ

]
= S̄θϕ, (1.127)

−∂2h̄ϕϕ

∂t2
+

∂2h̄ϕϕ

∂r2
+

2

r

∂h̄ϕϕ

∂r
+

1

r2

[
∆θϕh̄ϕϕ − 2h̄ϕϕ

sin2 θ
+

4

sin θ

∂h̄rϕ

∂ϕ
+ 4

cos θ

sin2 θ

∂h̄θϕ

∂ϕ
+ 2h̄rr

+
2h̄θθ

tan2 θ
+

4h̄rθ

tan θ

]
= S̄ϕϕ, (1.128)

where S̄ îĵ denotes the right-hand side of Eq. (1.98) : S̄ îĵ := σ̄îĵ + (Lβ̇)îĵ . These equations must be
supplemented by the TT conditions [Eq. (1.96)], which read, in term of components with respect to
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(eî),

∂h̄rr

∂r
+

2h̄rr

r
+

1

r

[
∂h̄rθ

∂θ
+

1

sin θ

∂h̄rϕ

∂ϕ
− h̄θθ − h̄ϕϕ +

h̄rθ

tan θ

]
= 0 (1.129)

∂h̄rθ

∂r
+

3h̄rθ

r
+

1

r

[
∂h̄θθ

∂θ
+

1

sin θ

∂h̄θϕ

∂ϕ
+

1

tan θ

(
h̄θθ − h̄ϕϕ

)]
= 0 (1.130)

∂h̄rϕ

∂r
+

3h̄rϕ

r
+

1

r

[
∂h̄θϕ

∂θ
+

1

sin θ

∂h̄ϕϕ

∂ϕ
+

2h̄θϕ

tan θ

]
= 0, (1.131)

h̄rr + h̄θθ + h̄ϕϕ = 0. (1.132)

As discussed in Sec. 1.4.4, the TT conditions and the ¤ operator commute, so provided that the source
S̄ is TT, the solution h̄ will also be TT.

For the steady state case (∂/∂t = 0) or for an implicit time scheme1, we need to invert the full
operator on the left hand side of the system (1.123)-(1.128). One immediately notices that this system

couples all the components hîĵ .

A natural idea to solve the system (1.123)-(1.128) would be to expand h̄ onto a a basis of tensor
spherical harmonics. Notice that, contrarily to scalar spherical harmonics, there are several types of
tensor ones (for a review, see [464]). A first family has been introduced by Mathews [313] and Zerilli
[498]; they are called pure orbital harmonics in [464] and are eigenvectors of the angular Laplacian
(1.109) acting on tensors. A second family is made of pure spin harmonics [384, 498] which are very
well suited for describing gravitational radiation in the radiation zone (where one supposes that the
wave vector is parallel to the radial direction). However, it should be realized that all families of
tensor spherical harmonics are based on a longitudinal/transverse decomposition with a notion of
transversality different from the one used here: in our acceptation, transverse means divergence-free
[Eqs. (1.69) and (1.96)], whereas in tensor spherical harmonics literature, transverse means orthogonal
with respect to the radial vector er. Asymptotically both notions coincide, but this is not the case at
finite r. From the very definition of Dirac gauge [Eqs. (1.69)], it is clear that the notion of transversality
relevant to our problem is the divergence-free one. As shown by Mathews [313] and explicited in the
quadrupolar case by Teukolsky [460], it is possible a form linear combinations of tensor spherical
harmonics which are divergence-free. We propose here a different route, which is actually simpler. We
do not perform any expansion onto the tensor spherical harmonics, but use directly the traceless and
divergence-free properties to reduce the tensor wave equation to two scalar wave equations, reflecting
the two degree of freedoms of a TT symmetric tensor.

Before presenting this method, let us comment upon another tentative of decoupling the system
(1.123)-(1.128) that one might naively contemplate. It would consist in solving separately each equa-

tion (1.123),...,(1.128) by treating as source the terms with h̄k̂l̂ (k 6= i or l 6= j) so that only an

operator acting on the component h̄îĵ would appear on the left-hand side. Of course, since the other
components of h̄ would be present on the right-hand side, such a method would require some iteration.
However this method is not applicable, due to the bad behavior of the truncated operator (i.e. the

operator which acts only on h̄îĵ in the component îĵ): for a regular source, it gives a non-regular
solution. Take for instance Eq. (1.123) in the stationary case (∂/∂t = 0): the operator acting on h̄rr

1With Chebyshev spectral methods, the accumulation of collocation points near the boundaries implies a
very severe Courant-Friedrich-Levy condition and in practice prohibits explicit schemes.
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is

Oh̄rr :=
∂2h̄rr

∂r2
+

2

r

∂h̄rr

∂r
+

1

r2

(
∆θϕh̄rr − 4h̄rr

)
. (1.133)

Now h̄rr = χ/r2, where χ = fikfjlh̄
ijrkrl is a regular scalar field on Σt [see Eq. (1.142) below]. h̄rr is

therefore expandable in scalar spherical harmonics Y m
ℓ (θ, ϕ). For a given (ℓ, m), the behavior of h̄rr

near the origin r = 0 must therefore be

h̄rr ∼ rn Y m
ℓ (θ, ϕ), (1.134)

where n is some positive integer, in order for h̄rr to be regular. Inserting this expression into Eq. (1.133)
results in

Oh̄rr = [n(n − 1) + 2n − ℓ(ℓ + 1) − 4] rn−2 Y m
ℓ (θ, ϕ). (1.135)

Thus we get a regular solution of the homogeneous equation Oh̄rr = 0 near r = 0 only if, for any ℓ,
there exists a strictly positive integer n such that n2 + n − ℓ(ℓ + 1) − 4 = 0. However in general, this
last equation does not admit any integer solution n. The generalization to the time-dependent case
is straightforward. Moreover, even if r = 0 is excluded from the computational domain (for example
when treating black holes), a similar regularity problem appears in the other equations on the axis
θ = 0 or π.

Reduction to two scalar wave equations

As mentioned above, it is possible to use the four TT conditions (1.129)-(1.132) to decouple the system
(1.123)-(1.128) and to reduce it to the resolution of two scalar wave equations.

A first way to proceed is to manipulate directly equations (1.123)-(1.132). For instance, inserting
the first divergence-free condition (1.129) into (1.123) and using the traceless condition (1.132) results
in the disappearing of the terms involving h̄rθ, h̄rϕ, h̄θθ and h̄ϕϕ:

−∂2h̄rr

∂t2
+

∂2h̄rr

∂r2
+

6

r

∂h̄rr

∂r
+

1

r2

(
∆θϕh̄rr + 6h̄rr

)
= S̄rr. (1.136)

To perform a more systematic treatment, as well as to gain some insight, it is worth to introduce
the scalar product (with respect to f) of h̄ with the position vector r defined by Eq. (1.115):

V i := fkl h̄
ikrl, (1.137)

or, in term of components,

V î = (rh̄rr, rh̄rθ, rh̄rϕ). (1.138)

Note that the vector field V thus defined is regular (for f , h̄ and r are regular tensor fields on Σt).
From the identities ¤V i = fklr

l¤h̄ik + 2Dkh̄
ik and DiV

i = fklr
lDih̄

ik + fij h̄
ij and the TT character

of h̄, we deduce immediately that the (rr, rθ, rϕ) part of the system (1.123)-(1.128) with the TT
conditions (1.129)-(1.132) is equivalent to the vector wave equation

¤V i = fklS̄
ikrl with DiV

i = 0. (1.139)

Let us introduce the (regular) scalar field χ 1 as the scalar product (with respect to f) of r and V ,

χ := fklr
kV l = rV r = r2h̄rr. (1.140)

1we use the same notation χ as for the decomposition of the shift vector in Sec. 1.5.2, assuming that no
confusion may arise.
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From the identity ¤χ = fklr
k¤V l + 2DkV

k and the divergence-free character of V , we see that
Eq. (1.139) implies the following scalar wave equation

¤χ = r2S̄rr. (1.141)

Solving this equation immediately provides h̄rr by

h̄rr =
χ

r2
. (1.142)

Note that inserting this last relation into Eq. (1.136) would have lead directly to Eq. (1.141).
We then proceed as for the vector Poisson equation treated in Sec. 1.5.2, namely we perform the

radial/angular decomposition of V following Eq. (1.116)1:

V = V rer + [rDη − (er · Dη) r] + r × Dµ. (1.143)

Combining the above equation with Eq. (1.138), we see that the potentials η and µ are related to the
components h̄rθ and h̄θθ by

h̄rθ =
1

r

(
∂η

∂θ
− 1

sin θ

∂µ

∂ϕ

)
(1.144)

h̄rϕ =
1

r

(
1

sin θ

∂η

∂ϕ
+

∂µ

∂θ

)
. (1.145)

Performing the same decomposition of the source, we get:

S̄rθ =
1

r

(
∂ηS̄

∂θ
− 1

sin θ

∂µS̄

∂ϕ

)
, (1.146)

S̄rϕ =
1

r

(
1

sin θ

∂ηS̄

∂ϕ
+

∂µS̄

∂θ

)
. (1.147)

Given S̄rθ and S̄rϕ, ηS̄ and µS̄ are computed from the analog of Eqs. (1.119)-(1.120) by

∆θϕηS̄ = r

(
∂S̄rθ

∂θ
+

S̄rθ

tan θ
+

1

sin θ

∂S̄rϕ

∂ϕ

)
(1.148)

∆θϕµS̄ = r

(
∂S̄rϕ

∂θ
+

S̄rϕ

tan θ
− 1

sin θ

∂S̄rθ

∂ϕ

)
. (1.149)

As already discussed in Sec. 1.5.2, the potentials ηS̄ and µS̄ are expandable in scalar spherical har-
monics Y m

ℓ (θ, ϕ). Equations (1.148)-(1.149) are then algebraic (∆θϕu → −ℓ(ℓ + 1)u) in terms of the
coefficients of the spherical harmonics expansion.

The angular part of the vector wave equation (1.139) is equivalent to the following system, analo-
gous to Eqs. (1.121)-(1.122) with θ = 0 (since V is divergence-free) and V r = rh̄rr:

¤η = ηS̄ − 2h̄rr

r
, (1.150)

¤µ = µS̄ . (1.151)

1again, we use the same notation η and µ as for the decomposition of β presented in Sec. 1.5.2, assuming
that no confusion may arise.
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We can see here that the equation for µ is fully decoupled from the other equations, contrarily to
that for η which contains h̄rr. Actually the divergence-free condition DiV

i = 0 relates η to h̄rr by
Eq. (1.119) (with V r = rh̄rr = χ/r):

∆θϕη = −r

(
r
∂h̄rr

∂r
+ 3h̄rr

)
= −∂χ

∂r
− χ

r
. (1.152)

This last equation can be used to compute η, once h̄rr has been obtained as the solution of (1.136)
[or from the system (1.141)-(1.142)], instead of solving the wave equation (1.150).

At this stage, there remains to compute the angular components h̄θθ, h̄θϕ and h̄ϕϕ. They can be
deduced fully from the other components, by means of the TT relations (1.130)-(1.132). Indeed, using
the traceless condition (1.132), the transverse conditions (1.130) and (1.131) can be written as

∂

∂θ
(sin2 θ h̄ϕϕ) − 1

sin θ

∂

∂ϕ
(sin2 θ h̄θϕ) = T θ, (1.153)

1

sin θ

∂

∂ϕ
(sin2 θ h̄ϕϕ) +

∂

∂θ
(sin2 θ h̄θϕ) = Tϕ, (1.154)

with

T θ := sin2 θ

(
r
∂h̄rθ

∂r
+ 3h̄rθ − ∂h̄rr

∂θ
− h̄rr

tan θ

)
, (1.155)

Tϕ := − sin2 θ

(
r
∂h̄rϕ

∂r
+ 3h̄rϕ

)
. (1.156)

Taking the angular divergence and the angular curl of Eqs. (1.153)-(1.154), as in Eqs. (1.148)-(1.149),
we get the system

∆θϕ(sin2 θ h̄ϕϕ) =
∂T θ

∂θ
+

T θ

tan θ
+

1

sin θ

∂Tϕ

∂ϕ
(1.157)

∆θϕ(sin2 θ h̄θϕ) =
∂Tϕ

∂θ
+

Tϕ

tan θ
− 1

sin θ

∂T θ

∂ϕ
. (1.158)

Again, this system is algebraic in the spherical harmonics representation, and therefore can be easily
solved to get sin2 θ h̄ϕϕ and sin2 θ h̄θϕ, after T θ and Tϕ have been evaluated by means of Eqs. (1.155)-
(1.156). The components h̄ϕϕ and h̄θϕ are then obtained by a division by sin2 θ. Finally h̄θθ is obtained
by the traceless condition (1.132):

h̄θθ = −h̄ϕϕ − h̄rr. (1.159)

In conclusion we propose to solve the tensor wave equation (1.98) by solving two scalar wave
equations: for χ [Eq. (1.141)] and for µ [Eq. (1.151)]. h̄rr is then obtained by dividing χ by r2

[Eq. (1.142)]. η is obtained from χ by the quasi-algebraic equation (1.152). From µ and η, we compute
h̄rθ and h̄rϕ from Eqs. (1.144)-(1.145). Then solving the quasi-algebraic equations (1.157) and (1.158)
gives h̄ϕϕ and h̄θϕ. Finally h̄θθ is computed by the traceless condition (1.159). The advantage of this
procedure consists in solving only for two scalar wave equations which are linearly decoupled. This
guarantees numerical stability, at least in the linear case.
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Asymptotic behavior

Providing that the source S̄ij is decaying sufficiently fast, the general asymptotic outgoing solutions
of the two scalar wave equations to be solved, Eqs. (1.141) and (1.151), have the form

χ ∼ 1

r
Fχ(t − r, θ, ϕ) and µ ∼ 1

r
Fµ(t − r, θ, ϕ), (1.160)

where Fχ and Fµ are two bounded functions. From Eq. (1.152), we then get the following asymptotic
behavior for the potential η:

η ∼ 1

r
Fη(t − r, θ, ϕ), (1.161)

where Fη is a bounded function. The asymptotic behavior of the components h̄rr, h̄rθ and h̄rϕ follow
immediately from Eqs. (1.142), (1.144) and (1.145):

h̄rr ∼ 1

r3
Fχ(t − r, θ, ϕ), (1.162)

h̄rθ ∼ 1

r2
F1(t − r, θ, ϕ), (1.163)

h̄rϕ ∼ 1

r2
F2(t − r, θ, ϕ), (1.164)

where F1 and F2 are two bounded functions. This faster than O(1/r) decay shows that the (h̄rr, h̄rθ,
h̄rϕ) part of h̄ does not transport any wave, as expected (cf. the asymptotic TT structure of Dirac
gauge discussed in Sec. 1.4.1).

Thanks to the terms r∂h̄rθ/∂r and r∂h̄rϕ/∂r in Eqs. (1.155)-(1.156), it can be shown easily that
the asymptotic behavior of h̄θϕ and h̄ϕϕ deduced from Eqs. (1.162)-(1.164) are

h̄ϕϕ ∼ −1

r
h+(t − r, θ, ϕ) and h̄θϕ ∼ 1

r
h×(t − r, θ, ϕ), (1.165)

where h+ and h× are two bounded functions. From Eqs. (1.159), (1.162) and (1.165), one gets

h̄θθ ∼ 1

r
h+(t − r, θ, ϕ). (1.166)

Contemplating Eqs. (1.165) and (1.166), we recover the usual behavior of a radiating metric in the
TT gauge, h+ and h× being the two gravitational wave modes.

1.5.4 Computing the trace h by enforcing the unit value of the de-
terminant of γ̃ îĵ

Having solved the TT wave equation for h̄, there remains to determine the trace h = fijh
ij to

reconstruct h by Eq. (1.94), and then the conformal metric γ̃ = f + h. h can be obtained by solving
the scalar wave equation (1.97). However, h can also be computed in order to enforce a relation arising
from the very definition of the conformal metric, namely that the determinant of the components γ̃ij

is equal to the inverse of that of the flat metric: det γ̃ij = f−1 [cf. Eq. (1.19)]. It is easy to show this
is equivalent to the following requirement about the orthonormal components:

det γ̃ îĵ = 1. (1.167)
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Replacing γ̃ îĵ by f îĵ + hîĵ , this relation writes

∣∣∣∣∣∣

1 + hrr hrθ hrϕ

hrθ 1 + hθθ hθϕ

hrϕ hθϕ 1 + hϕϕ

∣∣∣∣∣∣
= 1. (1.168)

Expanding the determinant and using h = hrr + hθθ + hϕϕ results in

h = −hrrhθθ − hrrhϕϕ − hθθhϕϕ + (hrθ)2 + (hrϕ)2

+ (hθϕ)2 − hrrhθθhϕϕ − 2hrθhrϕhθϕ + hrr(hθϕ)2

+ hθθ(hrϕ)2 + hϕϕ(hrθ)2. (1.169)

This relation shows clearly that among the six components hîĵ only five of them are independent.
The Dirac gauge adds three relations between the hîĵ , leaving two independent components: the two
dynamical degrees of freedom of the gravitational field. Equation (1.169) shows also that, at the linear

order in hîĵ , the condition det γ̃ îĵ = 1 is equivalent to h = 0.
We propose to use Eq. (1.169) in a numerical code to compute h, in order to enforce the condition

(1.167) by means of the following iterative procedure: initialize hîĵ by the TT part h̄îĵ obtained as
a solution of the wave equation (1.98); then (i) compute h from Eq. (1.169); (ii) solve the Poisson

equation (1.95) to get φ; (iii) insert the values of h and φ into Eq. (1.94) to get hîĵ ; (iv) go to (i). In
practice, this procedure converges up to machine accuracy (sixteen digits) within at a few iterations.

1.5.5 A constrained scheme for Einstein equations

Let us sketch the constrained scheme we propose to solve the full 3-D time dependent Einstein equa-
tions. Our aim here is not to provide a detailed numerical algorithm, but to show how the Dirac
gauge condition, in conjunction with the use of spherical coordinates, leads to a method of resolution
in which the constraints are automatically satisfied and the time evolution equations are reduced to
only two scalar wave equations.

At a given time step, one has to solve the two scalar Poisson equations (1.71) and (1.76) to get
respectively Q and N , and therefore the conformal factor Ψ = (Q/N)1/2. The Hamiltonian constraint
is then automatically satisfied. We have outlined the resolution technique of these two scalar Poisson
in Sec. 1.5.2. Let us stress here that a very efficient numerical technique to solve within spherical
coordinates scalar Poisson equations with non-compact support has been presented in Ref. [228].

Then one has to solve the vector elliptic equation (1.74) to get the shift vector β, following the
procedure presented in Sec. 1.5.2. The momentum constraint is then automatically satisfied.

The next equation to be solved is the TT tensor wave equation (1.98) for h̄, which arises from the
Einstein dynamical equation (1.78). As detailed in Sec. 1.5.3, by fully exploiting the TT character
of h̄, the resolution of this equation is reduced to the resolution of two scalar wave equations for
two scalar potentials χ and µ [Eqs. (1.141) and (1.151)]. From χ and µ one can reconstruct all the
components of h̄ by taking some derivatives or inverting some angular Laplacian (which reduces to a
mere division by −ℓ(ℓ + 1) on spherical harmonics expansions).

Then the trace h of h is determined algebraically through Eq. (1.169) which ensures that det γ̃ij = f
[Eq. [1.19)]. From h and h̄, one reconstructs h via Eq. (1.94), at the price of solving the Poisson
equation (1.95) for φ.

Finally, from h, β and N , one has to compute the conformal extrinsic curvature Aij via Eq. (1.92).
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In the above scheme, the only equations which are not satisfied by construction are (i) Eq. (1.75)
which relates the time derivative of the conformal factor Ψ to the divergence of the shift vector β

and (ii) Eq. (1.97) which is the trace part of the wave equation for h. These two scalar equations
must however be fulfilled by the solution and could be used as evaluators of the numerical error.
Alternatively, Eq. (1.75) could be enforced as a condition on Dkβ

k in the resolution of the elliptic
equation (1.74) for β.

In the above discussion, we have not mentioned the inner boundary conditions to set on some
excised black hole. This point is discussed briefly in Appendix 1.A and will be the main subject of a
future study.

Figure 1.1: Evolution of the hϕϕ component of h in the plane θ = π/2, between t = 0
(upper left) and t = 8r0 (lower right). The various snapshots are separated by a constant time
interval ∆t = r0. The size of the depicted square is 16r0, so that the wave extraction surface
at Rext = 8r0 is given by the circle inscribed in this square.
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1.6 First results from a numerical implementation

1.6.1 Short description of the code

We have implemented the constrained scheme given in Sec. 1.5.5 in a numerical code designed to evolve
vacuum spacetimes within maximal slicing and Dirac gauge. The code is constructed upon the C++
library Lorene [216]. It uses multidomain spectral methods [69, 72] to solve the partial-differential
equations within spherical coordinates. The scalar Poisson solver is that of Ref. [228], whereas the
vector Poisson equation for the shift is solved via the method (ii) presented in Sec. 1.5.2. The scalar
wave equations for χ and µ [Eqs. (1.141) and (1.151)] are integrated forward in time by means of
the technique presented in Ref. [341], namely a second-order semi-implicit Crank-Nicholson scheme
with efficient outgoing-wave boundary conditions. By “efficient” we mean that all wave modes with
spherical harmonics indices ℓ = 0, 1 and 2 are extracted at the outer boundary without any spurious
reflection. This is far better than the Sommerfeld boundary condition commonly used in numerical
relativity and which is valid only for the mode ℓ = 0.

Various concentric shell-like domains are used, the outermost one being compactified, to bring
spatial infinity to the computational domain. The compactified domain is employed to solve all the
elliptic equations, allowing for the correct asymptotic flatness boundary conditions. On the contrary,
the wave equations are solved only in the non-compactified domains, the outgoing-wave boundary
condition [341] being imposed at the boundary between the last non-compactified shell and the com-
pactified one. Further details upon the numerical code will be presented in a future publication.

1.6.2 Initial data and computational setting

We have employed the code to evolve pure 3-D gravitational wave spacetimes, as in the two BSSN
articles [421, 54]. Initial data have been obtained by means of the conformal thin sandwich formalism
[487, 364]. The freely specifiable parameters of this formalism are γ̃, ∂γ̃/∂t, K and ∂K/∂t. In
accordance with our choice of maximal slicing, we set K = 0 and ∂K/∂t = 0. Moreover, we use
momentarily static data, ∂γ̃/∂t = 0, along with a conformal metric γ̃ resulting from

χ(t = 0) =
χ0

2
r2 exp

(
−r2

r2
0

)
sin2 θ sin 2ϕ (1.170)

µ(t = 0) = 0. (1.171)

The constant numbers χ0 and r0 parametrize respectively the amplitude and the width of the initial
wave packet. Let us recall that, within Dirac gauge, the two scalars χ and µ fully specify h and thus
γ̃: (χ, µ) determine a unique TT tensor h̄ according to the decomposition presented in Sec. 1.5.3 and
the full h is reconstructed from the trace h computed in order to ensure det γ̃ij = f−1, following the
method given in Sec. 1.5.4. It can be shown that the metric defined by Eq. (1.170)-(1.171) corresponds
to an even-parity Teukolsky wave [460] with M = 2. These initial data are similar to those used by
Baumgarte and Shapiro [54] except theirs correspond to a M = 0 (axisymmetric) Teukolsky wave. In
particular, we choose an amplitude χ0 = 10−3 similar to that in Ref. [54].

A total of 6 numerical domains have been used: a spherical nucleus of radius r = r0, surrounded
by 4 spherical shells of outer radius r = 2r0, 4r0, 6r0 and 8r0, and an external compactified domain
of inner radius r = 8r0. The outgoing wave boundary conditions discussed above are set at r = 8r0,
which we call the wave extraction radius Rext. In particular, this means that we do not solve for h for
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r > 8r0. Consequently we set h to zero in the region r > 8r0. More precisely, we perform a smooth
matching of the value of h at r = 6r0 to zero at r = 8r0. This means that we solving all the Einstein
equations only for r < 6r0. For r ∈ [6r0,∞) we are solving the Einstein equations only for the lapse
N , the shift vector β and the conformal factor Ψ, with h set to zero in the r > 8r0 part of their source
terms. We take into account the symmetries present in the initial data (1.170)-(1.171): (i) symmetry
with respect to the plane θ = π/2 and (ii) symmetry with respect to the transformation ϕ 7→ ϕ + π.
Accordingly, the computational coordinate θ spans the interval [0, π/2] only and ϕ the interval [0, π).
In each domain, the following numbers of collocations points (= numbers of polynomials in the spectral
expansions) are used: Nr ×Nθ ×Nϕ = 17×9×8. The corresponding memory requirement is 260 MB.
This modest value allows the computation to be performed on a laptop. We have used two different
time steps δt = 10−2r0 and δt = 5 10−3r0, to investigate the effects of time discretization.
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Figure 1.2: Evolution of the ADM mass for three different computational settings, correspond-
ing to different values of the time step δt and the wave extraction radius Rext.

1.6.3 Results

The time evolution of the component hϕϕ of h is shown in Fig. 1.1. All the wave packet leaves the
computational domain r < 8r0 around t ∼ 8r0 and we do not notice on Fig. 1.1 any spurious reflexion.

In order to test the code, we have monitored the ADM mass defined by

MADM =
1

16π

∮

∞

[
Djγij −Di

(
fklγkl

)]
dSi, (1.172)

where the integral is taken over a sphere of radius r = +∞ and where we have adapted the original
definition [35] to general coordinates (i.e. non asymptotically Cartesian) by the explicit introduction of
the flat metric f . The above integral can be re-written in terms of the conformal metric and conformal
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Figure 1.3: Evolution of the ADM mass (logarithmic scale, contrary to Fig. 1.2) for two
different values of the wave extraction radius Rext.

factor:

MADM = − 1

16π

∮

∞

(
8DiΨ + fijDkh

jk −Dih
)

dSi. (1.173)

Within Dirac gauge, the second term in the integrand vanishes identically, whereas the last one does
not contribute to the integral, due to the fast decay of h (at least O(r−2)) implied by Eq. (1.169).
Therefore the expression for the ADM mass reduces to the flux of the gradient of the conformal factor:

MADM = − 1

2π

∮

∞
DiΨ dSi. (1.174)

Hence the expression of ADM mass in Dirac gauge is identical to the well known expression for
conformally flat hypersurfaces. The evolution of the ADM mass computed by means of Eq. (1.174)
(let us recall that the sphere at r = ∞ belongs to our computational domain) is presented in Fig. 1.2.
For t < 3r0, one sees that the ADM mass is conserved, as it should be, with an accuracy of four digits.
Moreover, Fig. 1.2 shows that the main source of error in the ADM mass is the finite value of the
time step δt. For t > 3r0, the ADM mass starts to decrease, reflecting the fact that that the wave is
leaving the domain r ≤ Rext. Note that by increasing the wave extraction radius from Rext = 8r0 to
Rext = 10r0, we get a conservation of the ADM mass up to t ≃ 5r0 (dashed curved in Fig. 1.2). In
Fig. 1.3, we present the evolution of the ADM mass on a longer timescale. We see clearly that, after
remaining constant (the part shown in Fig. 1.2), the ADM mass decreases by four orders of magnitude
after t ≃ 10r0 (resp. t ≃ 12r0) for the wave extraction radius Rext = 8r0 (resp. Rext = 10r0). The
very small value of the ADM mass at late times demonstrates that all the wave packet has leaved the
domain r ≤ Rext and no spurious reflection has occurred. This is due to the efficient outgoing wave
boundary conditions [341] set at the wave extraction radius.
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Figure 1.4: Relative error ε [Eq. (1.175)] on the time derivative of the conformal factor Ψ in
the central domain (r ≤ r0).

Another test is provided by Eq. (1.75) which relates the time derivative of the conformal factor Ψ
to the divergence of the shift vector β. As mentioned in Sec. 1.5.5, this equation must hold but is not
enforced in our scheme. In a given numerical domain we define the relative error on Eq. (1.75) by

ε :=

∣∣∂Φ/∂t − βkDkΦ − 1
6Dkβ

k
∣∣

max |∂Φ/∂t| + max
∣∣βkDkΦ + 1

6Dkβk
∣∣ , (1.175)

where the max are taken on the considered domain. We represent the value of ε in the domain where
it is the largest, namely the nucleus (r ≤ r0), in Fig. 1.4. We see that Eq. (1.75) is actually very well
satisfied. The error is in fact dominated by the time discretization (second order scheme), and is as
low as a few 10−4 for δt = 5 10−3r0. The increase of ε at t ∼ 4r0 is spurious and is due to the arrival
of the wave packet in the wave extraction domain 6r0 ≤ r ≤ 8r0.

To check the long term stability of the code, we have let it run well after the wave packet has
leaved the area r < 8r0, namely until t = 400r0. This very long time scale is similar with that used in
Ref. [54] to assess the stability of the BSSN scheme. We found no instability to develop. In particular
the maximum value of the potential χ remains at the round-off error value of 10−12 that has been
reached at t ∼ 40r0 (see Fig. 1.5).

1.7 Summary and conclusions

We have introduced on each hypersurface t = const of the 3+1 formalism a flat 3-metric f , in addition
to the (physical) 3-metric γ induced by the spacetime 4-metric g, in such a way that asymptotically
both metrics coincide. This allows us to define properly the conformal metric γ̃ and not to stick to
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Figure 1.5: Evolution of the maximum of absolute value of the potential χ [Eq. (1.140)] for
the long term run.

Cartesian coordinates. A flat metric is introduced anyway, more or less explicitly, when perform-
ing numerical computations. We have written the 3+1 equations entirely in terms of the covariant
derivative associated with the flat metric f .

The Dirac gauge is expressed simply in terms of this flat metric as the vanishing of the divergence
with respect to f of the conformal metric γ̃. Moreover in spherical components, the Dirac gauge reduces
the resolution of the equations for γ̃ to two scalar wave equations. The remaining four components
γ̃ij are then obtained from the condition det γ̃ij = det f ij and the three components of the Dirac
condition Dj γ̃

ij = 0. This clearly shows that the gravitational field has two degrees of freedom and
this exhibits the TT wave behavior of the metric at infinity. Let us stress that the usage of spherical
coordinates and spherical components is essential for the reduction to two scalar wave equations. To
our knowledge, this is the first time that a differential gauge is used to directly compute some of the
metric components, thus decreasing the number of PDE to be solved. Previously, this was done only
for algebraic gauges (i.e. setting some of the metric components to zero).

Contrary to e.g. the minimal distortion gauge [435] or the “Gamma-driver” gauge [14], the Dirac
gauge completely fix the coordinates (up to some boundary conditions) in the initial hypersurface
Σ0. This implies that initial data must be prepared within this gauge, which might be regarded as
a drawback (for instance an analytic expression for the Kerr solution is not known in Dirac gauge).
On the contrary, an advantage of the full coordinate fixing is to allow to compute stationary solutions
by simply setting ∂/∂t = 0 in the various equations. For instance, Shibata, Uryu and Friedman [419]
have recently proposed to use the Dirac gauge to compute quasiequilibrium configurations of binary
neutron stars.

In addition to the Dirac gauge, the use of the maximal slicing results in an elliptic equation for the
lapse function. Another elliptic equation for the conformal factor Ψ (or equivalently for Q := Ψ2N)
arises from the Hamiltonian constraint. The Dirac gauge itself, in conjunction with the momentum
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constraint, results in an elliptic equation for the shift β. The maximal slicing relates the divergence
of β to the time derivative of the conformal factor.

Solving the above equations implies that the four constraints are fulfilled by the solution. As
already mentioned in the Introduction, some authors have proposed very recently a scheme in which
the constraints, re-written as time evolution equations, are satisfied up to the time discretization errors
[202]. On the contrary, in our scheme the constraints are fulfilled within the precision of the space
discretization errors (which can be very low with a modest computational cost, thanks to spectral
methods).

It is worth noticing that the five elliptic equations of the widely used Isenberg-Wilson-Mathews
approximation to General Relativity [260, 261, 482] (see also Ref. [186]) are naturally recovered in our
scheme by simply setting h = 0: they are the equations for N , Q and β.

We have demonstrated the viability of the proposed constrained scheme by numerically computing
the evolution of a gravitational wave packet in a vacuum spacetime. The numerical evolution has
been found to be both very accurate and stable. We are also made confident by existing constrained
schemes for vector equations which have proved to be successful: the divergence-free hydro scheme of
Ref. [478] (the constraint being that the velocity field is divergence-free) and some MHD schemes in
cylindrical coordinates [275] (the constraint being that the magnetic field is divergence-free).

In this paper we have focused on space slices with R3 topology, except for Appendix 1.A where
we briefly discuss the properties of degenerate second order operators and the number of boundary
conditions at the surface of excised holes with vanishing lapse. In a future work, we shall focus on
black hole spacetimes.

APPENDIX

1.A Degenerate elliptic operators on a black hole hori-

zon

In our view, a numerical scheme for black hole spacetimes should recover known stationary solutions
in coordinate-time independent form (i.e. with the ∂/∂t coordinate vector coinciding with the Killing
vector of stationarity). Indeed we require arbitrary long term evolution of steady state, or quasi-steady
state, black hole spacetimes. For classical solutions (Kerr) in usual coordinates, this requirement
results in a vanishing lapse on the horizon (see discussion in Refs. [219, 239]). Therefore we excise
from our computational domain a sphere H (or two spheres for binary systems) with N = 0 as a
boundary condition on that sphere and choose spherical coordinates such that r = 1 on H 1.

In this case, the spatial operator acting on h in Eq. (1.85) must not be merely the Laplacian ∆
but

Nhij := N∆hij −DkN
(
Dihjk + Djhik −Dkhij

)
. (1.176)

This operator is formed by writing DkQ = Ψ2DkN +2NΨDkΨ in the right-hand side of Eq. (1.85) and
gathering the DkN term with the ∆hij one. The operator N is degenerate, because of the vanishing
of N at the boundary H. Similarly, the operator acting on the shift vector β is degenerate on H
(cf. Eq. (1.74) with Aij given by Eq. (1.92) which contains a division by the lapse N). Letting the

1For a binary system, we introduce two coordinate systems, each centered on one hole, cf. [229]
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unknown u be a component of hij or βi, these equations are of the kind

N∆u + ǫDiNDiu = S, (1.177)

with the associated homogeneous equation

N∆u + ǫDiNDiu = 0, (1.178)

where N = 0 and ∂N/∂r > 0 at r = 1, ǫ = ±1 and S is some effective source. Since Eq. (1.177)
is linear, a solution is a linear combination of a particular solution and a homogeneous solution, i.e.
a solution of Eq. (1.178). In the non-degenerate case, since Eq. (1.178) is of second order, we have
two independent homogeneous solutions, which allow us to impose two boundary conditions. In the
degenerate case (N = 0 at r = 1), the number of regular homogeneous solutions depends upon the
sign of ǫ: two for ǫ = −1 and only one for ǫ = +1. To illustrate this, let us consider the following
one-dimensional second order equation analogue to Eq. (1.178) with x = r − 1:

x
d2u

dx2
+ ǫ

du

dx
= 0, with x ∈ [0, 1]. (1.179)

The involved second-order operator is clearly degenerate at x = 0. For ǫ = −1, we have two indepen-
dent homogeneous solutions:

u1(x) = const and u2(x) = x2, (1.180)

whereas for ǫ = 1, the two independent homogeneous solutions are

u1(x) = const and u2(x) = lnx. (1.181)

The last one is clearly not regular at x = 0, so that in this case, one can use only one homogeneous
solution to satisfy a Dirichlet boundary condition.

This behavior of the degenerate operator can also be understood by considering the parabolic
(heat-like) equation associated with Eq. (1.178):

∂u

∂t
= N∆u + ǫDiNDiu. (1.182)

The solution of the elliptic equation (1.178) is the eigenfunction corresponding to the zero eigenvalue
of the spatial operator acting on the right-hand side of Eq. (1.182). In other words, the solution u we
search for is the relaxed solution of the heat-like equation (1.182). When N → 0, Eq. (1.182) becomes
an advection equation near r = 1, for which the number of boundary conditions at r = 1 is zero or one
depending whether the “effective velocity” −ǫDiN = −ǫ ∂N

∂r er is ingoing or outgoing at the boundary
r = 1.

For the spherical components of the shift vector, we have ǫ = −1, so that a boundary condition can
always be given at r = 1, in addition to the boundary condition at r = ∞. Regarding the spherical
components of the metric potential hij , ǫ = 1 for hrr, which means that no boundary condition can be
set at r = 1 in addition to hrr = 0 at r = ∞. On the contrary, ǫ = −1 for the potential µ introduced
in Eqs. (1.144)-(1.145). These points shall be studied more in details in a future work. It is worth
to mention that the boundary conditions for hij at r = 1 determine fully the coordinates within the
Dirac gauge.
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2.1 A Fully-Constrained evolution scheme

A second-order fully-constrained evolution formalism for the Einstein equations has been proposed in
Ref. [73]. This evolution scheme, that will be referred in the following as Fully-Constrained Formula-
tion (FCF), is based on a conformal 3+1 formulation of General Relativity and makes use of an elliptic
condition for the choice of spatial coordinates, a generalized Dirac gauge, and a maximal condition for
the slicing. The enforcement of the constraints along the evolution together with the elliptic nature of
the employed gauge conditions, translates the FCF formalism into a mixed elliptic-hyperbolic Partial
Differential Equations (PDE) system, consisting in five quasi-linear elliptic equations coupled with
a tensorial second-order in time and in space evolution equation for the conformal metric. In this
article, we aim at gaining insight on some mathematical issues associated with this PDE system and,
in particular, assessing the hyperbolicity of the tensorial evolution part. A good understanding of the
mathematical structure of the system will be crucial in the context of full 3D numerical relativity sim-
ulations, since the choice of state-of-the-art numerical tools will be adapted to the specific structures
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of the whole system governing the evolution of matter fields in a dynamical space-time: spectral meth-
ods for the elliptic subsystem [230], and modern high-resolution shock-capturing techniques for the
hyperbolic part [311, 176]. The implementation of the scheme in [73] will naturally extend previous
works —following the Conformal Flatness Condition (CFC) approach of Isenberg-Wilson-Mathews
[260, 481]— devoted to the study of some relevant astrophysical sources of gravitational radiation
[147, 148, 149, 151].

2.1.1 Gauge reduction, PDE evolution systems and well-posedness

The gauge character of General Relativity (GR) strongly conditions any attempt of finding a solution
by solving a Partial Differential Equations (PDE) problem. In its standard formulation through the
Einstein equation

Rµν − 1

2
R gµν = 8π Tµν , (2.1)

solutions are given in terms of spacetime geometries (M, gµν), i.e. classes of Lorentzian metrics gµν

equivalent under diffeomorphisms of M, rather than by specific 4-metrics in some particular coordinate
system. As a consequence of this, any attempt to cast (2.1) as a standard PDE system necessarily
must go through a gauge reduction process. This fixing of the gauge involves four different (differential)
systems: i) the reduced system, whose solution provides the metric in a given coordinate system, ii)
the constraint system, consequence of the gauge character of the theory and that characterizes the
solution manifold, iii) the gauge system, which fixes the coordinate chart and permits to write the
reduced system as a standard PDE problem, and iv) the subsidiary system, guaranteeing the overall
consistency along the evolution and, in particular, between the reduced and gauge systems. The
mathematical consistency of the evolution formalism involves two aspects. First, one must assess the
analytic well-posedness of the PDE system that is actually solved during the evolution, that we will
refer to in the following as the evolution PDE system, that includes the reduced system but possibly
other additional PDEs. Second, one must guarantee the fulfillment of the subsidiary system during
the evolution.

As in other evolution formalisms based on the Initial Value problem for the Einstein equation
[190], the constrained system in the FCF scheme follows from the Gauss-Codazzi-Ricci conditions

(3)R − KijK
ij + K2 = 16πρ

Dj

(
Kij − γijK

)
= 8πJ i , (2.2)

i.e. the Hamiltonian and momentum constraints in the 3+1 formulation (ρ is the energy density
and J i the current vector) which are elliptic in nature. The currently most successful numerical
evolution formalisms are free schemes in which the constraint system (2.2) is not enforced during the
evolution. This is the case of certain generalized harmonic formalisms [374, 232] and the 3+1 BSSN
(from Baumgarte, Shapiro, Shibata and Nakamura; see references [421, 54]) used in recent binary
black hole breakthroughs [373, 101, 44, 375] and in fully 3D evolution of binary neutron stars (see e.g.
[424]). In these free schemes, the corresponding evolution PDE system is formed by the respective
reduced systems together with some additional evolution equations to fix the harmonic gauge sources,
in the case generalized harmonic schemes, or the lapse function and shift vector, in the BSSN case.
No elliptic equation is solved during the evolution and standard hyperbolic techniques can in principle
be used to assess the well-posedness of the evolution system (cf. in this sense [233] for the case
of the BSSN system). In contrast, the FCF here discussed actually incorporates the constraints to
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the evolution PDE system. Moreover, the use of the above-mentioned elliptic gauge conditions adds
additional elliptic equations during the evolution. The resulting FCF scheme presents some interesting
properties as compared with free evolution schemes. Apart from the absence of constraint violations
(an issue under control in current BSSN and generalized harmonic formulations), we can highlight the
following features (cf. [73] for a more complete discussion): first, the FCF naturally generalizes (as
commented above) the successful scheme employed in the CFC approximation to General Relativity;
second, it permits to read the gravitational waveforms directly from the metric components; third, the
scheme can be straightforwardly adapted to the extraction of gravitational radiation at null infinity by
making use of hyperboloidal 3-slices implemented by means of a constant mean curvature elliptic gauge
condition; and fourth, it provides a well-suited framework for the formulation of realistic (approximate)
prescriptions in the construction of quasi-stationary astrophysically configurations [471]. However, the
well-posedness analysis of such a mixed elliptic-hyperbolic system can be a formidable problem, since
part of the dynamics related to the characteristic fields in the hyperbolic part is encoded in fields
obtained only once the elliptic part is solved. Even though analyses of such systems exist in the GR
literature (see e.g. Refs.[119, 120, 121] and particularly Ref. [17]) they deal with free evolution systems,
in which the elliptic part follows only from the gauge conditions. The well-posedness analysis of the
complete elliptic-hyperbolic system in the FCF scheme, which in addition includes the constraints, is
beyond the scope of this work and we will mainly focus on the hyperbolicity analysis of the tensorial
evolution equation. Before referring to the additional issues related to the subsidiary system, we must
provide some details about the FCF formalism.

2.1.2 Brief review of the FCF scheme

Following Ref. [73], we consider a standard 3+1 decomposition of an asymptotically flat spacetime
(M, gµν) in terms of a foliation by spacelike hypersurfaces (Σt). We denote the unit timelike normal
vector to the spacelike slice Σt by nµ, the spatial 3-metric by γµν , i.e. γµν = gµν + nµnν , and adopt
the following sign convention for the extrinsic curvature: Kµν = −1

2Lnγµν . The evolution vector
tµ ≡ (∂t)

µ is decomposed in terms of the lapse function N and the shift vector βµ, as tµ = Nnµ + βµ.
Under this 3+1 decomposition, Einstein equation (2.1) splits into the 3+1 constraints in (2.2) and

a set of evolution equations for the extrinsic curvature that, together with the kinematical relation
defining the extrinsic curvature, constitute the 3+1 evolution equations

(∂t − Lβ) γij = −2NKij

(∂t − Lβ)Kij = −DiDjN + N
{

(3)Rij + KKij − 2Ki
kKkj + 4π [(S − E)γij − 2Sij ]

}
. (2.3)

This is a first-order in time and second-order in space evolution system for (γij , K
ij).

The first specific element in the FCF scheme is the introduction of a time independent fiducial flat
metric fij , which satisfies Ltfij = ∂tfij = 0. This rigid structure is chosen to coincide with γij at spatial
infinity, capturing its asymptotic Euclidean character, and permits to work with tensor quantities
rather than with tensor densities. We will denote by Di the Levi-Civita connection associated with
fij .

Conformal decomposition. As a step forward in the reduction process to the PDE system in
the present FCF, we perform a conformal decomposition of the 3+1 fields:

γij = Ψ4γ̃ij , Kij = Ψ4Ãij +
1

3
Kγij , (2.4)



54 Mathematical issues in a fully-constrained. . .(Cordero-Carrión et al. 2008)

where K = γijKij , the representative γ̃ij of the conformal class of the 3-metric is chosen to satisfy
the unimodular condition det(γ̃ij) = det(fij), and the traceless part Ãij of the extrinsic curvature is
decomposed as

Ãij =
1

2N

(
D̃iβj + D̃jβi − 2

3
D̃kβ

kγ̃ij + ∂tγ̃
ij

)
, (2.5)

with D̃i the Levi-Civita connection associated with γ̃ij . Finally, in the following we will denote by hij

the deviation of the conformal metric from the flat fiducial metric, i.e.

hij := γ̃ij − f ij . (2.6)

Using these conformal decompositions of γij and Kij , the 3+1 constraints (2.2) and evolution system
(2.3) can be expressed in terms of the basic variables hij , Ψ, N, βi, K. Before giving more explicit
expressions, let us remove the gauge freedom.

Gauge system. Following the prescriptions in [73], namely maximal slicing and the so-called
generalized Dirac gauge, we choose

K = 0, H i := Dkγ̃
ki = 0, (2.7)

These gauge conditions fix the coordinates, even in the initial slice, up to boundary terms (see e.g.
sections 9.3. and 9.4. in [214]). These two relations define the gauge system in the FCF scheme. Since
the gauge system is meant to hold at all times, the following conditions must also be satisfied

K̇ = 0, ∂t

(
Dkγ̃

ki
)

= 0. (2.8)

The FCF scheme actually enforces the first of these conditions, K̇ = 0, during the evolution. Taking
the trace in the second equation in (2.3), and using the Hamiltonian constraint that is also enforced
during the evolution (see below), an elliptic equation for the lapse follows

D̃kD̃
kN + 2D̃k lnΨ D̃kN = SN [N, Ψ, βi, γ̃ij ]. (2.9)

Main or reduced system. In the FCF scheme in Ref. [73] the reduced system is a second-order
in time and second-order in space evolution system for the deviation tensor hij . This is obtained
by: i) combining equations in (2.3) into a single second-order in time equation; ii) inserting in it the
conformal decompositions (2.4) and (2.5), and iii) imposing the gauges (2.7). The resulting expression
is formally written as (see next section for a detailed account):

∂2hij

∂t2
− N2

Ψ4
γ̃klDkDlh

ij − 2Lβ
∂hij

∂t
+ LβLβhij = Sij

h , (2.10)

where the source Sij
h does not contain second derivatives of hij . Use of the Dirac gauge results in

the wave-like form of this equation, since it eliminates certain second derivatives of the type DiDkh
kj

coming from the expression of the Ricci tensor.
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Constrained system. The Hamiltonian constraint in (2.2) can be written as an elliptic equation
for the conformal factor Ψ:

D̃kD̃
kΨ −

3R̃

8
Ψ = SΨ[Ψ, N, βi, γ̃ij ]. (2.11)

Again SΨ[Ψ, N, βi, γ̃ij ] represents a non-linear source. Momentum constraint poses a more subtle issue.
In Ref. [73] an elliptic equation for the shift vector is deduced using both the momentum constraint
and the preservation in time of the Dirac gauge (second relation in (2.8)):

D̃kD̃
kβi +

1

3
D̃iD̃kβ

k + 3R̃i
kβ

k = Si
β [Ψ, N, βi, γ̃ij ] (2.12)

An equation for the shift could be derived from the momentum constraint alone, but the coupling to
the tensorial equation (2.10) would become more complicated due to the presence of a mixed time-
space second-order derivative of hij . This term is eliminated by the use of a Dirac, or a similar,
gauge.

Alternatively, an elliptic equation for the shift can be drawn from the preservation of the Dirac
gauge alone, renouncing, therefore, to the fully-constrained character of the scheme —e.g. this is the
strategy in Ref. [17], but using a spatial harmonic gauge condition instead of the Dirac one. At the
end of the day, the choice (2.12) in the FCF scheme provides an elliptic equation for the shift that
enforces the momentum constraint, as long as the Dirac gauge is satisfied.

FCF evolution PDE system. The mixed elliptic-hyperbolic PDE system that evolves some
initial data given on an Cauchy slice is formed by: a) Eqs. (2.9), (2.11) and (2.12), the elliptic part,
and b) Eq. (2.10), the wave-like tensorial equation. As we have pointed out, we will not consider here
the well-posedness analysis of the whole system. To give an idea of the involved difficulties, we note
that the elliptic part is very similar to the Extended Conformal Thin Sandwich (XCTS) [364, 358]
employed in the construction of initial data, though here it is solved all along the evolution. Even the
restriction to the elliptic subsystem represents a very hard problem, as it is illustrated by the lack of
the existence results for the XCTS system and the preliminary numerical [365] (see also [265]) and
analytical [53, 480] results pointing towards a generic non-uniqueness of the elliptic system. For these
reasons, we will focus on the study of the hyperbolicity of the tensorial evolution equation (2.10),
understanding this as a necessary condition for the overall well-posedness.

Subsidiary system. The resolution of the PDE evolution system only guarantees the consistency
between the reduced and gauge systems as far as the slicing condition is regarded, since equation (2.9)
for the lapse is indeed enforced. This is in principle not the case for the Dirac gauge. More dramatically,
if the Dirac gauge is actually not satisfied, the FCF scheme is not really fully-constrained, since in
that situation Eq. (2.12) no longer enforces the momentum constraint. A control of the evolution of
the Dirac gauge is therefore crucial in the scheme. A wave-like equation for Dkh

ki can be obtained by
taking the divergence of the tensorial Eq. (2.10). The vanishing of Dkh

ki in the evolution would then
follow from the initial conditions Dkh

ki = 0 and ∂t

(
Dkh

ki = 0
)

= 0 imposed in the construction of

the initial data, and the satisfaction of Eq. (91) in Ref. [73] for β̇i. The latter can be considered as
the subsidiary system in the FCF scheme.
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2.1.3 Specific objectives and organization

Though the wave character of Eq. (2.10) essentially guarantees its hyperbolicity, we aim here at
developing a more detailed analysis. This is motivated by the need of controlling the characteristics
in initial boundary problems and also when trying to make use of first-order techniques employed in
matter evolutions. Our main specific goal in this article is the development of a hyperbolicity analysis
of a first-order version of the evolution part in the FCF formalism, where N , Ψ and βi are considered
as fixed parameters. In particular, we aim at obtaining explicit expressions for the characteristic fields
and speeds. As pointed out above, this point represents a fundamental ingredient in the study of the
appropriate boundary conditions if boundaries are present in the integration domain. This constitutes
only a preliminary study of the well-posedness of the evolution system since no stability analysis
whatsoever will be considered. Certainly further analysis is required. However, in the absence of a full
treatment and being ultimately motivated by practical numerical implementations needs, the level of
rigor and completeness in this article is adapted to the achievement of limited but concrete results.

On behalf of self-consistency, and in spite of the lack of a fully rigorous treatment of the FCF
subsidiary system, we also aim at discussing certain (numerical) algorithms devised to guarantee the
fulfillment of the Dirac gauge along the evolution. Though this is not the substitute of a formal proof
it provides, on the one hand, support for the coherence among the reduced, gauge and constrained
systems. On the other hand, and more importantly from a practical point of view, the implementation
of the FCF scheme is then guaranteed to be fully-constrained, even in numerical implementations where
errors can occur even if analytic well-posedness has been established.

The article is organized as follows. Section 2.2 presents first-order formulation of the FCF scheme,
more concretely of its reduced system. In section 2.3 the characteristic structure of the reduced system
is analyzed, with a brief application to inner boundaries in excised black hole spacetime evolutions.
Section 2.4 discusses the possibility of writing the first-order reduced FCF system as a system of
conservation laws, by making explicit use of the Dirac gauge. In section 2.5 two different manners of
enforcing the Dirac gauge in the evolution are introduced, providing key support for overall consistency
and guaranteeing the fully-constrained character of the scheme. Finally section 2.6 concludes with a
discussion of the results.
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2.2 First-order reduction of the reduced system in the

FCF

Equations governing the evolution of hij in the FCF are:

∂2hij

∂t2
− N2

ψ4
γ̃klDkDlh

ij − 2Lβ

∂hij

∂t
+ Lβ Lβ hij = L

β̇
hij +

4

3
Dkβ

k

(
∂

∂t
− Lβ

)
hij

− N

ψ6
DkQ

(
Dihjk + Djhik −Dkhij

)
+

[(
∂

∂t
− Lβ

)
lnN

] [(
∂

∂t
− Lβ

)
hij

− 2

3
Dkβ

khij + (Lβ)ij

]
+

2

3

[(
∂

∂t
− Lβ

)
Dkβ

k − 2

3

(
Dkβ

k
)2

]
hij

−
(

∂

∂t
− Lβ

)
(Lβ)ij +

2

3
Dkβ

k (Lβ)ij + 2Nψ−4Zij

−2Nψ−6

[
γ̃ikγ̃jlDkDlQ +

1

2

(
hikDlh

lj + hjkDkh
il − hklDkh

ij
)
DlQ − 1

3
γ̃ij γ̃klDkDlQ

]

+ (2N)2
[
γ̃klA

ikAjl − 4π

(
ψ4Sij − 1

3
Sγ̃ij

)]
, (2.13)

where Sij and S are, respectively, the spatial components of the stress tensor Sαβ := γµ
αγν

βTµν , asso-

ciated with the matter energy-momentum tensor Tµν , and its trace. (Lβ)ij is the conformal Killing
operator associated with the flat metric fij acting on the vector field βi:

(Lβ)ij := Diβj + Djβi − 2

3
Dkβ

kf ij , (2.14)

and the auxiliary quantities Q and Zij are

Q := Nψ2 , (2.15)

Zij = N
[
R̃ij

∗ + 8ψ−2
(
γ̃ikDkψ

) (
γ̃jlDlψ

)]

+4ψ−1
(
γ̃ikDkψ

) (
γ̃jlDlN

)
+ 4ψ−1

(
γ̃jkDkψ

) (
γ̃ilDlN

)

−1

3
N

[
R̃∗ + 8ψ−2Dkψ

(
γ̃klDlψ

)]
γ̃ij − 8

3
ψ−1Dkψ

(
γ̃klDkN

)
γ̃ij . (2.16)

The symmetric tensor R̃ij
∗ is defined by

R̃ij
∗ :=

1

2

[
−Dlh

ikDkh
jl − γ̃klγ̃

mnDmhikDnhjl + γ̃nlDkh
mn

(
γ̃ikDmhjl + γ̃jkDmhil

)]

+
1

4
γ̃ikγ̃jlDkh

mnDlγ̃mn , (2.17)

and the scalar R̃∗ is

R̃∗ :=
1

4
γ̃klDkh

mnDlγ̃mn − 1

2
γ̃klDkh

mnDnγ̃mn . (2.18)
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Let us write Eqs. (2.13) as a first-order system, by introducing the following auxiliary variables:

uij :=
∂hij

∂t
, (2.19)

wij
k := Dkh

ij . (2.20)

With these new variables the system for hij can be cast into

∂uij

∂t
− N2

ψ4
γ̃klDkw

ij
l − 2βkDku

ij + βkβlDkw
ij
l = φij

(
βk, N, ψ, ∂µβk, ∂µN, ∂µψ, hij , uij , wij

k

)
, (2.21)

where φij are source terms which do not contain partial derivatives of uij or wij
k . From definition

(2.20) we obtain

∂wij
k

∂t
= Dku

ij , (2.22)

where we have taken into account that ∂tf
ij = 0. In terms of the above new auxiliary variables, the

system of Eqs. (2.19, 2.21, 2.22), can be written as:

∂v̄

∂t
+ AlDlv̄ = g

(
βk, N, ψ, ∂µβk, ∂µN, ∂µψ, hij , uij , wij

k

)
, (2.23)

where the vector v̄ is:

v̄ =




(
hij

)
(
uij

)
(
wij

k

)


 , (2.24)

and the source g is

g
(
βk, N, ψ, ∂µβk, ∂µN, ∂µψ, hij , uij , wij

k

)
=




(
uij

)
(
φij

)

(0)


 . (2.25)

In these equations, v̄ and g are vectors of dimension 30, as it results from the symmetry properties of
hij , uij , and wij

k . Let us remind that, besides the above symmetry properties, the following algebraic

constraints have to be satisfied: i) det γ̃ij = det fij ; and wij
i = 0, which is equivalent to Dirac’s

gauge. In order to write the matrices of the system in a simple way, the following auxiliary quantities
are defined:

qij := βiβj − N2ψ−4γ̃ij , (2.26)

Qi :=
(

q1i q2i q3i
)
, (2.27)

−δi :=




−δi
1

−δi
2

−δi
3


 . (2.28)
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Then, the explicit form of the matrices Al are:

Al =




06×6 06×24

024×6

−2βlI6

Ql 0
. . .

0 Ql

−δl 03×5

015

−δl 03×4

012

−δl 03×3

09

−δl 03×2

06
−δl 03

03 −δl

018×18




(2.29)

2.3 Characteristic structure of the reduced system

Let us present here a preliminary analysis of the mathematical structure of system (2.23).
First, we give the explicit expressions of the characteristic speeds in terms of the functions ψ, N ,

βi and γ̃ij .
Lemma 1: Let us consider the evolution vector ∂t, whose components are ξα = (1, 0, 0, 0), and a
generic spacelike covector of components ζα = (0, ζi) orthogonal to the evolution vector. The associated
eigenvalue problem (see, e.g., ref. [24]):

[
Alζl − λI

]
Xλ = 0, (2.30)

where λ denotes the eigenvalue and Xλ the corresponding eigenvector, has the following solution:

λ0 = 0,

λ
(ζ)
± = −βµζµ ± N

ψ2
(γ̃µνζµζν)

1/2

= −βµζµ ± N (ζµζµ)1/2 , (2.31)

where λ0 has multiplicity 18, and each λ
(ζ)
± has multiplicity 6.

Imposing Dirac’s gauge in (2.7) indeed guarantees the real character of the eigenvalues correspond-
ing to matrices Ai, and therefore the hyperbolicity of the evolution system. Even though this is not
a prerogative of the Dirac gauge, other prescriptions for H i in condition (2.7) lead to a more compli-
cated structure of the resulting sources. As mentioned after Eq. (2.12), a more important point is the
fact that other choices of H i will generally introduce time derivatives of hij in the elliptic subsystem,
complicating further the complete PDE system. Of course, if no gauge is imposed at all, one can check
that the Al matrices admit complex eigenvalues. This reflects the property that Einstein equations by
themselves do not have a definite type, without the specification of a gauge. We conclude that when
imposing Dirac’s gauge the eigenvalues of the linear combination Alζl are real:
Lemma 2: Dirac’s gauge is a sufficient condition for the hyperbolicity of system (2.23).
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In the above eigenvalue problem, the first 6 eigenvectors, with 0 eigenvalue and associated with
the hij components of v̄ in (2.24), completely decouple from the other eigenvectors. Therefore, the
rest of eigenvectors can be studied independently. For the sake of clarity in the notation, let us define
some auxiliary quantities before writing the matrix of (right-)eigenvectors:

C1 :=




−ζiq
i2 −ζiq

i3

ζiq
i1 0

0 ζiq
i1




C2 :=




ζ1

ζ2

ζ3


 . (2.32)

The matrix of (right) eigenvectors, R(ζ), associated with the eigenvalue problem described in the
above Lemma 1 is:

R(ζ) =




I6 06×24

024×6

06×12 −λ
(ζ)
+ I6 −λ

(ζ)
− I6

C1 0
C1

. . .

0 C1

C2 0
C2

. . .

0 C2

C2 0
C2

. . .

0 C2




(2.33)

If the determinant of this matrix vanishes, the set of eigenvalues is not complete. This happens in the
following cases:

- Case 1: λ
(ζ)
+ = λ

(ζ)
− . Since

λ
(ζ)
+ = λ

(ζ)
− ⇒ N2ψ−4ζiζj γ̃

ij = N2ζiζ
i = 0 , (2.34)

and ζiζ
i does not vanish (ζi is a spatial vector different from zero) non-completeness only occurs

if the lapse N vanishes.

- Case 2: ζiζjq
ij = 0. From the definition of qij , it follows

ζiζj

(
βiβj − N2ψ−4γ̃ij

)
= 0

⇔
(
ζiβ

i
)2

= N2
(
ζiζ

i
)
. (2.35)

One can see that the previous equality depends only on the direction of the vector ζi (i.e.
ζiζi = 1). From now up to the end of the study of the different cases, the vector ζi will be
considered to be unitary. So (2.35) leads to:

ζiζj

(
βiβj − N2ψ−4γ̃ij

)
= 0 ⇔

(
ζiβ

i
)2

= N2.

Decomposing βi into components parallel and normal to ζi, we write βi =
(
β‖

)
ζi+

(
β⊥

)i
, where(

β‖
)

= ζiβ
i and ζi

(
β⊥

)i
= 0. From (2.36), we conclude:

ζiζjq
ij = 0 ⇔

(
β‖

)2
= N2 . (2.36)

Note that this case is independent of the choice of ζi, since it corresponds to
(
β‖

)i (
β‖

)
i
, i.e.

|ζiβi|2. Therefore, non-completeness occurs if |β‖| = N .
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- Case 3: ζiq
ij = 0, ∀j = 1, 2, 3. This is a stronger case than the previous one. Again from the

definition of qij , we have:

ζi

(
βiβj − N2ψ−4γ̃ij

)
= 0 ⇔

(
ζiβ

i
)
βj = N2ζj . (2.37)

From this, and the decomposition βi =
(
β‖

)
ζi +

(
β⊥

)i
, it follows:

ζiq
ij = 0 ⇔

(
β⊥

)i
= 0 and

(
β‖

)2
= N2 (2.38)

This is just a stronger version of the second case above.

As a consequence of the above analysis we can set up the following lemma.
Lemma 3: The (right-)eigenvectors associated with the matrix Alζl define a complete system iff i) the
lapse N does not vanish, and ii) the projection of the evolution vector onto the plane spanned by nµ

and ζµ, i.e.
(
t‖

)µ
= Nnµ + bβζµ, is non-null, i.e.

(
β‖

)2 6= N2.
In the eigenvalue problem (2.30), ζi stands for an arbitrary spatial vector. In particular, we can

always choose ζi = βi. In that case, the degeneracy condition in cases 2 and 3 above reduces to
βiβi = N2. This happens if the vector tµ becomes null. Moreover, if the vector tµ is spacelike then
we are in case 2, since then there exists a vector ζi (in fact, a cone obtained by the rotation of the
non-vanishing βi by an appropriate angle) such that the projection of βi onto that ζi, refered to as(
β‖

)i
, satisfies

(
β‖

)i (
β‖

)
i
=

(
ζiβ

i
)2

= N2. We conclude:
Proposition 1 : The system (2.23) is strongly hyperbolic if tµ is timelike, i.e. if N 6= 0 and
N2 − βiβi > 0.

In some particular cases, degeneracy in the eigenvalues can occur. In particular, it could happen
that one of the eigenvalues λ+ or λ− coincides with λ0. These degeneracies can appear where:

λ
(ζ)
+ λ

(ζ)
− = 0 ⇔ (βµζµ)2 = N2 (ζµζµ) . (2.39)

Again, one can consider ζi to be unitary. Hence, either λ+ or λ− vanishes when
(
β‖

)2
= N2. As seen

in (2.36), in this case the system of eigenvectors is incomplete.
Another relevant property is the following:

Proposition 2: All the characteristic fields associated with the eigenvalue problem (2.30) are linearly
degenerate, i.e., they satisfy the following condition:

Dλp (v̄) · rp (v̄) = 0, (2.40)

where rp is the eigenvector associated to the eigenvalue λp, and the operator D is defined in the space
of the variables of the system.
This shows the good behaviour of the Dirac gauge since, in the language from fluid dynamics, it means
that no shocks can be propagated along these curves, in particular gauge shocks. Hence, if there were
discontinuities, they have to be contact discontinuities.

Regarding the characteristics speeds λ
(ζ)
± we have:

Corollary 1: The non-zero eigenvalues associated with ζi correspond to the coordinate velocity of
light.
This feature, which is an expected result, can be shown by considering a unitary ζi and a curve whose

spatial part points in the ζi direction:
dxi

dt
=

∣∣∣∣
dxi

dt

∣∣∣∣ ζi. Using the 3+1 expression of the metric, the

vanishing of the line element of the curve, where the component of βi in the ζi direction is considered,

is imposed. It follows, using the expression for λ(ζ) in (2.31) that λ(ζ) =

∣∣∣∣
dx

dt

∣∣∣∣.
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2.3.1 Application to inner boundary conditions

The explicit expressions (2.31) for the characteristic speeds are specially useful in the assessment of
the boundary conditions to be imposed on a given border. We illustrate this by considering inner
boundaries in the context of excised black hole spacetimes. Before doing so, let us underline that
the FCF can be employed in combination with any of the standard techniques dealing with the black
hole singularity in numerical evolutions of black hole spacetimes, namely excision, punctures or stuffed
black holes. However, the excision technique is favoured if (the elliptic subsystem of) the FCF is
implemented by means of spectral methods. Focusing on the excision approach, let us denote by St

the inner sphere employed as inner boundary at a given spacelike slice Σt, and by H the worldtube
hypersurface generated along the evolution by piling up the different St. A natural expectation is
that no inner boundary conditions should be prescribed for radiation fields on inner superluminal
(growing) inner boundaries. This would avoid the need to incorporate boundary conditions in the
well-posedness analysis of the associated initial boundary value problem. From this reason, spacelike
inner hypersurfaces H are good candidates for inner boundary conditions. However, this general idea
must be assessed in the context of every specific evolution scheme. In our particular case, we must
check that characteristic speeds (2.31) are outgoing (with respect to the integration domain). The
tangent vector hµ to H which is normal to each St, and transports St into St+δt, can be written as

hµ = Nnµ + hss
µ, (2.41)

where sµ is the normal vector to St, lying on Σt and pointing toward spatial infinity. Then, since the
norm of hµ is given by hµhµ = −N2 + h2

s, it follows that H is spacelike as long as b > N . Choosing
a coordinate system adapted to H, i.e. where all the spheres St stay at the same coordinate position
—say r = const = ro— it follows that hs = βisi ≡ β⊥. In this case, H is spacelike as long as β⊥ > N .
Evaluating expression (2.31) for ζi = si, it follows

λ
(s)
± = −β⊥ ± N (2.42)

From this it follows that:

Corollary 2: For a coordinate system adapted to a spacelike inner worldtube H, where β⊥ > N , no
ingoing radiative modes flow into the integration domain Σt at the excision surface.

Under these conditions no inner boundary conditions whatsoever must be prescribed for the hy-
perbolic part. Of course, it is not obvious how to choose dynamically an inner boundary H that is
guaranteed to be spacelike during the evolution. A proposal in this line has been presented in [268]
in the context of the dynamical trapping horizon framework (see e.g. Ref. [222]). Quasi-local ap-
proaches to black hole horizons aim at modeling the boundary of a black hole region as world-tubes of
apparent horizons (St). Dynamical horizons provide a geometric prescription for H that is guaranteed
to be spacelike, as long as the black hole is dynamical, and remain inside the event horion, if cosmic
censorship holds. The corresponding geometric dynamical horizon characterization is enforced as an
inner boundary condition on the the elliptic part of the FCF, in particular on the shift equation (2.12).
This shows the key interplay between elliptic and hyperbolic modes in the coupled fully-constrained
PDE evolution system. Note however that, according to Proposition 1, the hyperbolic evolution sys-
tem ceases to be strongly hyperbolic. In fact, the evolution vector tµ, tangent to H in the adapted
coordinate system, becomes spacelike in a finite region. This can be bypassed by adopting a coordi-
nate system in which the coordinate radii of the St slices grow in time: r = r(t) 6= 0, where r(t) is
appropriately chosen. In this case, hs = β⊥ holds no longer, and this relation is rather substituted by
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β⊥ = hs − [r(t) − ro]. This condition is again under control through the appropriate boundary condi-
tion on the elliptic equation for βi. Note that in this case the characteristics are still outgoing from
the integration domain though, in this case with a coordinate growing excision sphere, this feature is

no longer characterized by the negativity of the characteristics speeds λ
(s)
± . The outgoing character is

guaranteed by the characterization of λ
(s)
± as the coordinate velocity of light in Corollary 1, together

with the spacelike character of H.

2.4 Dirac gauge and system of conservation laws

A hyperbolic system of conservation laws, without sources, is:

∂tu + Dif
i(u) = 0. (2.43)

In this system we can identify the set of unknowns, i.e., the vector of conserved quantities u, and their
corresponding fluxes f(u).

The choice of Dirac’s gauge allows us to find the following set of l vector fluxes f l (l = 1, 2, 3), of
dimension 30:

f l :=




(06)(
−2uijβl + wij

k

[
βkβl − N2ψ−4γ̃kl

])

(
−uijδl

k

)


 . (2.44)

in terms of which system (2.23) can be rewritten as a hyperbolic system of conservation laws (with
sources). The Jacobian matrices associated to the fluxes f l, (A∗)l are:

(A∗)l =




06×30

−N2ψ−4El −2βlI6

Ql 0
. . .

0 Ql

018×6

−δ 03×5

015

−δl 03×4

012

−δl 03×3

09

−δl 03×2

06
−δl 03

03 −δl

018×18




,(2.45)

where

Eij,l :=
(

wij
1 δl

1 wij
(1δ

l
2) wij

(1δ
l
3) wij

2 δl
2 wij

(2δ
l
3) wij

3 δl
3

)
,

El :=




E11,l

E12,l

E13,l

E22,l

E23,l

E33,l




, (2.46)
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and the parentheses in the subindices represent a symmetric sum, e.g., wij
(1δ

l
2) = wij

1 δl
2 + wij

2 δl
1.

These matrices have the same eigenvalues as the matrices Al. The corresponding eigenvectors are
different but they keep the same fundamental properties as the ones associated to the matrices Al,
namely they define a complete system. Hence, the following lemma is in order:

Proposition 3: Taking advantage of Dirac’s gauge, it is possible to convert the hyperbolic part
of the coupled elliptic-hyperbolic system of the FCF formalism, into a (strongly) hyperbolic system of
conservation laws (with sources).

2.5 Preservation of the Dirac gauge in the evolution: the

Dirac system

The importance of the enforcement of the Dirac gauge during the evolution in time has already been
stressed in the introduction. In this section we give a brief description of some numerical algorithms
that can be used to fulfill the Dirac gauge, when solving the reduced system (2.10). In particular, we
do not intend to provide a formal proof of the consistency of the method. Because of the unimodularity
of the conformal metric γ̃ij , the symmetric tensor hij has only five degrees of freedom. For simplicity,
here we shall illustrate the scheme by considering the case where the trace h = fijh

ij = 0. The
unimodular condition would be satisfied by an iteration on the value of the trace, as described in [73].
We consider the particular case of spherical polar coordinate system (r, θ, ϕ), and note by ∆ the flat
Laplace operator, i.e.

∆ := DiDi =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∆θϕ , (2.47)

where ∆θϕ involves only angular derivatives. Thus, the problem to be solved can be written as a wave
equation with constraints

(
∂2

∂t2
− ∆

)
hij = Sij , (2.48)

Djh
ij = 0 , (2.49)

h = 0 ; (2.50)

where the source Sij gathers all the other terms of Eqs. (2.13), including the shift terms in the
differential operator. The structure of the differential operator in the left-hand side is here simplified
with respect to the full evolution one of Sec. 2.2, in order to focus on the propagation aspects, which
are already contained in the simple wave operator. The full evolution operator can also be handled
with a similar technique, but involving more technical justifications. The system (2.48)-(2.50) can be
seen as the evolution of two scalar fields, two dynamical degrees of freedom, from which one recovers
the full tensor hij using the trace and divergence-free conditions. To gain insight, it is helpful to
decompose the tensor on a basis of Mathews-Zerilli [313, 498] tensorial spherical harmonics. We use
the basis of six families of pure-spin tensor harmonics as referred to by Thorne [464], with the same
notations: T L0,ℓm, T E1,ℓm, T B1,ℓm, T E2,ℓm, T B2,ℓm, T T0,ℓm. If we note the coefficients of hij in this
basis

(
cL0,ℓm, cE1,ℓm, cB1,ℓm, cE2,ℓm, cB2,ℓm, cT0,ℓm

)
, we can define for any rank 2 symmetric tensor the



2.5 Dirac system 65

following six scalar fields:

L0 :=
∑

ℓ,m

cL0,ℓmYℓm = hrr,

η :=
∑

ℓ≥1,m

cE1,ℓmYℓm,

µ :=
∑

ℓ≥1,m

cB1,ℓmYℓm,

W :=
∑

ℓ≥2,m

cE2,ℓmYℓm,

X :=
∑

ℓ≥2,m

cB2,ℓmYℓm,

T0 :=
∑

ℓ,m

cT0,ℓmYℓm , (2.51)

where Yℓm(θ, ϕ) are the scalar spherical harmonics, which are eigenfunctions of the angular Laplace
operator ∆θϕYℓm = −ℓ(ℓ+1)Yℓm. Note that there is a one-to-one relation between the six components
of hij and these six scalar fields. The trace condition (2.50) simply turns into T0 + hrr = 0, therefore
we shall replace T0 with −hrr in all forthcoming expressions. The divergence-free conditions (2.49)
turn into:

∂hrr

∂r
+

3hrr

r
+

1

r
∆θϕη = 0, (2.52)

∂η

∂r
+

3η

r
+ (∆θϕ + 2)

W
r

− hrr

2r
= 0, (2.53)

∂µ

∂r
+

3µ

r
+ (∆θϕ + 2)

X
r

= 0; (2.54)

where all the angular derivatives are expressed in terms of ∆θϕ, introduced in Eq. (2.47).
A first way to solve the system (2.48)-(2.50) has been described in Ref. [73] and uses evolution

equations for hrr and µ, from which other scalar fields are deduced through the gauge equations (2.52)-
(2.54) as solutions of the angular Laplace operator, with radial derivatives as sources. However, this
method has the great disadvantage of requiring the computation of two radial derivatives to get
hij , when the source Sij already contains second-order radial derivatives of hij . This fourth-order
derivation introduces a great amount of numerical noise, which has been observed to rapidly spoil the
numerical integration. An alternative way is to evolve two other scalar fields and then to integrate (or
solve PDEs coming from) the Dirac gauge condition to obtain the others. Unfortunately, this is not
possible using only the six scalar fields (2.51), but one can devise the following procedure in a similar
spirit.

Any rank 2 symmetric tensor T ijcan be split into two pieces:

T ij =
(
L̂V

)ij
+ T̃ ij ≡ DiV j + DjV i + T̃ ij , (2.55)

with Dj T̃
ij = 0. For a given T ij the divergence of Eq. (2.55) allows for the determination of the vector

V i through the elliptic PDE
DkDkV

i + DiDjV
j = DjT

ij , (2.56)
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where V i is fixed up to isometries of fij , which are set by the choice of boundary conditions. If we now
return to the case T ij = hij and consider only asymptotically flat spatial metric defined on R3 —no
holes— the Dirac gauge condition (2.49) is equivalent to having V i = 0, since there are no Euclidean
symmetries vanishing at infinity. If one similarly seeks three scalar fields (A, B, C) such that:

A = B = C = 0 ⇐⇒ T̃ ij = 0, (2.57)

one can check that a solution is:

A =
∂X
∂r

− µ

r
, (2.58)

B =
∂W
∂r

− ∆θϕW
2r

− η

r
− hrr

4r
, (2.59)

C =
∂hrr

∂r
+

3hrr

r
+ 2∆θϕ

(
∂W
∂r

+
W
r

)
. (2.60)

In the present case where the trace (or the determinant) is given, B and C are actually coupled and
it is sufficient to consider:

B̃ =
∑

ℓ,m

B̃ℓmYℓm, with

B̃ℓm = (ℓ + 2)

(
∂W
∂r

+ ℓ
W
r

)
− 2η

r
− 1

2(ℓ + 1)

(
∂hrr

∂r
+ (ℓ + 4)

hrr

r

)
, (2.61)

to recover B and C using the trace. A nice property of A and B̃ is that, when expressed in terms
of these potentials related to hij , the tensor Poisson equation, with F ij being a symmetric-tensor
representing a source:

∆hij = F ij (2.62)

has a rather simple form. Namely, if we define FA and F B̃ as the scalar potentials similar to A and
B̃, but deduced from F ij , a consequence of Eq. (2.62) is:

∆A = FA,

∆̃B̃ = F B̃, (2.63)

with

∆̃ :=
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∆̃θϕ and ∆̃θϕYℓm := −ℓ(ℓ − 1)Yℓm. (2.64)

Obviously, a very similar property holds for the wave equation (2.48). Therefore, a way of solving
numerically the constrained system of Eqs. (2.48)-(2.50), by making use of the potentials A and B, is
the following. With the source Sij and hij known at the initial hypersurface, it is possible to deduce
the potentials SA and SB̃ of the source and thus to advance the potentials A and B̃ of hij to next
time-step through the evolution equations

(
∂2

∂t2
− ∆

)
A = SA,

(
∂2

∂t2
− ∆̃

)
B̃ = SB̃. (2.65)
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Then the six scalar fields (2.51) can be computed by solving the PDE system formed by the following
five elliptic equations: the definitions of A and B̃, i.e. Eqs. (2.58) and (2.61), together with the Dirac
gauge conditions (2.52)-(2.54) plus the trace-free condition (2.50) —used to get T0. All the components
of hij can be finally recovered by taking angular derivatives of the scalar fields defined in Eqs. (2.51).
With this algorithm, only two scalar potentials, A and B̃, are evolved in time. The whole tensor is
deduced from these potentials and the gauge and trace conditions. Note that, when decomposing all
the scalar fields onto a spherical harmonics function basis, the elliptic system of five PDEs described
above reduces to a system of coupled ordinary differential equations in the radial coordinate r.

With either of these approaches (the one described here or that presented in Ref. [73]) it is
possible to evolve two scalar potentials using hyperbolic wave-like operators and recover the symmetric
tensor hij through an elliptic system of PDEs obtained from the gauge conditions. A numerical
implementation of these techniques being beyond the scope of the present article, we have here only
exhibited both algorithms in order to show that it is, in principle, possible to build-up the whole
conformal metric from the gauge conditions, while being consistent with the evolution equations.
This might inversely be linked toward the property of the Dirac gauge system being preserved by the
3+1 evolution system. Future numerical developments in these directions shall certainly bring better
insight into the problem.

2.6 Discussion.

All evolution formalisms for the resolution of Einstein equations as an initial value boundary problem
exploit the intrinsic hyperbolicity of Eqs. (2.1), although the associated evolution systems are not
necessarily hyperbolic from the PDE theory point of view [188]. In the present case of the FCF
formalism [73], Einstein equations result in a coupled elliptic-hyperbolic PDE system. The hyperbolic
part PDE evolution system consists of the reduced system, governing the evolution of the gravitational
degrees of freedom, whereas the elliptic part is formed by the constrained system and part of the gauge
system (maximal slicing equation). In fact, in the context of the algorithms presented in section 2.5,
the elliptic Dirac system, Eqs. (2.52)-(2.54), can be actually seen as a part of the PDE evolution
system. In summary, the evolution PDE system is formed by the reduced, constraint, and gauge
systems, whereas the the fulfillment of the subsidiary system, represented by Eq. (91) in Ref. [73]

for β̇i, can be used as a control test of the scheme along the evolution. We have carried out a first
analysis of the mathematical structure of the PDE evolution system paying particular attention to
the equations (2.10) governing the evolution for the deviation hij of the conformal metric from the
flat fiducial one fij , i.e. hij = γ̃ij − f ij . Dirac’s gauge plays an important role in getting a well
defined hyperbolic structure. This elliptic gauge is close in spirit and properties to other gauges
employed in the literature, like the spatial harmonic gauge in [17], the minimal distortion introduced
by York & Smarr, the new minimal distortion gauge introduced by Jantzen & York, or the numerically
motivated pseudo-minimal distortion gauge by Nakamura, approximate minimal distortion by Shibata
or the Gamma freezing (cf. Secs. 9.3. and 9.4 in Ref. [214] for a review of them). In particular,
all of them can be written as elliptic equations on the shift vector βi. The Dirac gauge fixes spatial
coordinates in the evolution (including on the initial data, as the spatial harmonic gauge does) up to
boundary conditions. For boundary conditions (enforced when solving the elliptic PDE for βi) such
that the evolution vector is timelike, the Dirac gauge provides a sufficient condition for the strong
hyperbolicity of Eq. (2.10). Moreover, using this gauge it is possible to derive a flux vector in terms
of which the first-order system of equations, equivalent to (2.10), has the structure of a hyperbolic
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system of conservation laws (with sources). Likewise, the analysis of the characteristics sheds light
on the prescription of inner boundary conditions on a spacelike inner cylinder, when employing an
excision approach to black hole evolutions. More generally, maximal and Dirac gauges can be relaxed
to admit more general gauges, while preserving the hyperbolic properties of the system but possibly
complicating the structure of the sources.

Having said this, it is clear that further analysis is necessary. First, particular attention should
be payed to the source terms in equation (2.13). They can introduce, in the so-called stiff case, new
characteristic time scales (relaxation times in the language of fluid dynamics) which may be much
smaller than the CFL (Courant-Friedrichs-Lewy) numerical time step (see, e.g., [271, 394, 318]). In
particular, authors in reference [271] have studied general hyperbolic systems with supercharacteristic
relaxations, and they shown in which conditions a source term can be damping or, on the contrary,
enforces growth of instabilities. Looking, in our case, at the quantity Rij

∗ (Eq. (2.17)), one can notice
the presence of quadratic terms in the wij

k ; it suggests that huge spatial gradients of hjk can introduce
some degree of stiffness in the source terms. Second, nothing has been said about the possible outer
boundary conditions to be prescribed when studying the initial boundary value problem with an outer
timelike cylinder. Certainly, in this case the well-posedness analysis is more complicate. However,
thanks the enforcement of the constraint along the evolution, there is no need of devising specific
constraint preserving boundary conditions, and Sommerfeld-like conditions as in [341, 96] can be
straightforwardly employed. Third, nothing has been said about the elliptic part and its coupling
with the hyperbolic subsystem. On the one hand, this coupling is crucial in the overall well-posedness
of the problem, as clearly illustrated in the inner boundary conditions issue, where inner boundary
conditions on the elliptic part determine the ingoing or outgoing nature of the characteristics in
the hyperbolic part. On the other hand, the analysis of the elliptic system by itself represents an
outstanding challenge. This is illustrated by the XCTS elliptic system [364, 358] referred to in Section
2.1.2, very closely related to the FCF elliptic subsystem. We note that, in this case, no results on
existence are available and very little is known on uniqueness, where recent numerical [365, 265] and
analytical works [53, 480] works point toward the essential non-uniqueness of the system (related to
a wrong sign in the differential operator of the maximal slicing equation). Fourth, nothing has been
said about consequences on well-posedness of coupling matter equations to the gravitational degrees
of freedom.

Although our analysis is far from being exhaustive, it has the advantage of giving some clues about
which numerical strategies are the most convenient in order to solve Einstein equations in the FCF
formalism. In this sense, we have attempted to obtain some limited but concrete results, rather than
remained frozen by the “non-attainability” of complete and fully rigorous results.
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3.1 Introduction

The recent years have seen the successful application of numerical codes to accurately calculate the
spacetimes of compact astrophysical objects like collapsing stellar cores, (proto-)neutron stars, and
black holes. Most of these codes are based on the 3 + 1 formalism of general relativity (see, e.g.,
[486, 7, 214] for reviews). They typically fall into two classes. One approach relies on the free
evolution of the 3 + 1 Einstein equations, recast in order to cure long-term stability problems. Here
the constraint equations are only solved initially, and closely monitored at each timestep to control
the accuracy of the numerical solution.

Alternatively, formulations based on a constrained evolution, where the constraints are solved in
parallel with evolution equations, have proven to be successful as well. Such approaches exhibit the
advantage that the solution cannot violate the constraints by definition (within the accuracy of the
numerical scheme). In particular, the conformally flat approximation [260, 482] (hereafter CFC) of the
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full Einstein equations, which constitutes a fully constrained formulation, has shown to yield long-term
stable evolutions of such astrophysical scenarios (see, e.g., [149, 345, 397, 3]). However, apart from
computational challenges, arising from the need to frequently solve the elliptic constraint equations,
constrained formulations suffer from mathematical non-uniqueness problems when the configuration
becomes too compact. In the case of the collapse of a stellar core or a (proto-)neutron star to a black
hole, such a situation is encountered already before the apparent horizon forms. This issue has in the
past been prohibitive to successfully applying such formulations in numerical simulations of a wide
range of astrophysical problems.

The non-uniqueness of solutions stems from the non-linearity of the constraint equations and has
been studied within the so-called extended conformal thin sandwich (XCTS) [487, 364, 358] approach
to the initial data problem in general relativity. In Ref. [365] a parabolic branching was numerically
found in the solutions to the XCTS equations for perturbations of Minkowski spacetime, providing
the first evidence of non-uniqueness in this elliptic system. First analytical studies have been carried
out in [53, 480], finding support for the genericity of this non-uniqueness behavior. More specifically,
the XCTS elliptic system is formed by the Einstein constraint equations in a conformal thin sandwich
(CTS) decomposition [487] supplemented with an additional elliptic equation for the lapse function,
which follows from the maximal slicing condition. Although no general results on existence and
uniqueness for the XCTS system are available (in contrast to the CTS case and similar elliptic systems
encompassing only the constraints; see, e.g., [347, 348, 486, 487, 364]), the analysis in [53] strongly
suggests the presence of a wrong sign in a certain term of the lapse equation as the culprit for the
loss of uniqueness, essentially because it spoils the application of a maximum principle to guarantee
uniqueness. Moreover, in these circumstances (namely, the existence of a non-trivial kernel for the
XCTS elliptic operator) it is shown in [480] that the parabolic behavior found in [365] is indeed generic.

Certain constrained evolution formalisms which incorporate elliptic gauges in their schemes con-
tain elliptic subsystems which share essential points with the XCTS equations. Non-uniqueness in
the elliptic subsystem is certainly an issue for the well-posedness of the whole elliptic-hyperbolic evo-
lution system. In numerical implementations this can depend on the employed numerical scheme, in
particular on its capability to remain close to one of the solutions, at least as long as the solution
stays sufficiently apart from the branching point. In fact, constrained or partially constrained evolu-
tions have shown to be robust in a variety of contexts (see, e.g., the references in [389] and Sec. 5.2.2
of [267]). However, the problems described above have also emerged, for instance in the axisymmetric
case in [118, 387] (see also [392]). The analysis in [389] concludes that the reason behind the failures in
these axisymmetric formulations is in fact related to the presence of wrong signs or, more precisely, to
the indefinite character of certain non-linear Helmholtz-like equations present in the scheme (see [389]
for details and also for a parallel numerical discussion in terms of a class of relaxation methods for
the convergence of the elliptic solvers). Regarding the full three-dimensional case, fully constrained
formalisms have been presented in [73, 134].

The goal of the present work is to discuss a scheme addressing the non-uniqueness issues of XCTS-
like elliptic systems in the full three-dimensional case, with astrophysical applications as our main
motivation. Having the analysis of the fully constrained formalism (hereafter FCF ) of [73, 134] as
our ultimate aim, we focus on an approximation in the spirit of the CFC approximation by Isenberg,
Wilson, and Mathews [260, 481]. This methodological choice is justified since the CFC scheme already
contains the relevant elliptic system of FCF, but in a setting in which potential additional problematic
issues related to the FCF hyperbolic part do not mix up with the specific problem we are addressing
here. Therefore, we discuss in detail a modification of the CFC scheme (in the presence of matter)



3.2 The fully constrained formalism and CFC 71

where maximum-principle lines of reasoning can be used to infer the uniqueness of the solutions. We
investigate numerically the performance of the new CFC scheme and finally indicate the main lines
for its generalization to the full Einstein FCF case.

The article is organized as follows. In Sec. 3.2 we review the FCF and CFC formalisms, and then
discuss the limitations found in the numerical implementations of the latter. In Sec. 3.3 we introduce
the modification of the CFC scheme aiming at solving the uniqueness issues, and present various
numerical tests of the new scheme in Sec. 3.4. In Sec. 3.5 the guidelines for the generalization to the
FCF case are discussed and conclusions are drawn in Sec. 3.6. In Appendix 3.A we justify a further
approximation assumed in Sec. 3.3 which is consistent with the CFC setting. Throughout the paper
we use the signature (−, +, +, +) for the spacetime metric and units in which c = G = M⊙ = 1. Greek
indices run from 0 to 3 whereas Latin ones from 1 to 3 only.

3.2 The fully constrained formalism and the conformal

flatness condition

3.2.1 A brief review of the fully constrained formalism

Given an asymptotically flat spacetime (M, gµν) we consider a 3+1 splitting by spacelike hypersurfaces
Σt, denoting timelike unit normals to Σt by nµ. The data on each spacelike hypersurface Σt are given
by the pair (γij , K

ij), where γµν = gµν + nµnν is the Riemannian metric induced on Σt. We choose
the convention Kµν = −1

2Lnγµν for the extrinsic curvature. With the lapse function N and the shift
vector βi, the Lorentzian metric gµν can be expressed in coordinates (xµ) as

gµν dxµ dxν = −N2 dt2 + γij(dxi + βi dt)(dxj + βj dt). (3.1)

On the other hand, we can write

2NKij = ∂tγ
ij + Diβj + Djβi, (3.2)

where Di is the Levi–Civita connection associated with γµν and ∂tγ
ij represents the Lie derivative with

respect to the evolution vector tµ := (∂t)
µ = Nnµ + βµ. As in [73] we introduce a time independent

flat metric fij , which satisfies Ltfij = ∂tfij = 0 and coincides with γij at spatial infinity. We define
γ := det γij and f := det fij . This fiducial metric permits the use of tensor quantities rather than
tensor densities. The next step in the formulation of [73] is the conformal decomposition of the 3 + 1
fields. First, a representative γ̃ij in the conformal class of γij is chosen, so we can write

γij = ψ4γ̃ij , Kij = ψζ−8Ãij +
1

3
Kγij , (3.3)

where K = γijKij and γ̃ := det γ̃ij , and ζ ∈ R. In Ref. [73], the choice ζ = 4 was adopted, leading to
the following expression of Ãij in terms of the lapse N and shift βi:

Ãij =
1

2N

(
D̃iβj + D̃jβi − 2

3
D̃kβ

kγ̃ij + ∂tγ̃
ij

)
, (3.4)

D̃i being the Levi–Civita connection associated with γ̃ij . This is in the spirit of the decomposition
employed in the (X)CTS approach to initial data. Regarding the choice of representative of the
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conformal metric γ̃ij , a unimodular condition γ̃ = f was adopted in [73], so that ψ = (γ/f)1/12. The
deviation of the conformal metric from the flat fiducial metric is denoted by hij , i.e.

hij := γ̃ij − f ij . (3.5)

Once the 3+1 conformal decomposition is performed, a choice of gauge is needed in order to properly
reformulate the Einstein equations as partial differential equations. The prescriptions in [73] are
maximal slicing and the so-called generalized Dirac gauge,

K = 0, Dkγ̃
ki = 0, (3.6)

where Dk stands for the Levi–Civita connection associated with the flat metric fij . The Einstein
equations become then a coupled elliptic-hyperbolic system to be solved for the basic variables hij , ψ,
N , and βi [73].

Expressing the differential operators in terms of the connection of the flat metric, the elliptic part
can be written as

∆ψ = −2πEψ5 − hklDkDlψ + ψ
R̃

8

− ψ5

8(2N)2
γ̃ikγ̃jl

[
(Lβ)ij+

∂hij

∂t
−Lβhij− 2

3
Dkβ

khij

]

×
[
(Lβ)kl+

∂hkl

∂t
−Lβhkl− 2

3
Dmβmhkl

]
, (3.7)

∆(Nψ) = 2Nψ5π(E + 2S) + Nψ
R̃

8
− hklDkDl(Nψ)

+
7

32

ψ6

(Nψ)
γ̃ikγ̃jl

[
(Lβ)ij+

∂hij

∂t
−Lβhij− 2

3
Dkβ

khij

]

×
[
(Lβ)kl+

∂hkl

∂t
−Lβhkl− 2

3
Dkβ

khkl

]
, (3.8)

∆βi +
1

3
DiDjβ

j = 16πNψ4Si − hklDkDlβ
i − 1

3
hikDkDlβ

l +
ψ6

N
Dj

(
N

ψ6

) [
(Lβ)ij

]

+
ψ6

N
Dj

(
N

ψ6

) [
∂hij

∂t
− Lβhij− 2

3
Dkβ

khij

]
− 2N∆i

klÃ
kl, (3.9)

where ∆ stands for the flat Laplacian (∆ := f ijDiDj), E, Si and S are respectively the energy
density, momentum density and trace of the stress tensor, all measured by the observer of 4-velocity nµ

(Eulerian observer): in terms of the energy-momentum tensor Tµν , E := Tµνn
µnν , Si := −γiµTµνn

ν ,
and S := γijSij , with Sij := Tµνγ

µ
iγ

ν
j . Furthermore,

R̃ =
1

4
γ̃klDkh

mnDlγ̃mn − 1

2
γ̃klDkh

mnDnγ̃ml, (3.10)

(Lβ)ij := Diβj + Djβi − 2

3
f ijDkβ

k, (3.11)

∆k
ij :=

1

2
γ̃kl (Diγ̃lj + Dj γ̃il −Dlγ̃ij) . (3.12)
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Equation (3.7) follows from the Hamiltonian constraint, whereas Eq. (3.9) results from the momentum
constraint together with the preservation of the Dirac gauge in time. Equation (3.8) corresponds to
the preservation in time of the maximal slicing condition, ∂K/∂t = 0. Note that expression (3.10) for
the Ricci scalar of the conformal metric does not involve any second order derivative of the metric;
this property follows from Dirac gauge [73]. The resulting elliptic subsystem coincides with the XCTS
system [364], except from the field chosen to solve the maximal slicing equation: Eq. (3.8) above is to
be solved for Nψ, whereas in [364] the conformal lapse Ñ := Nψ−6 is employed instead. This affects
directly the value (and in particular the sign) of the power of the conformal factor in the non-linear
terms of Eqs. (3.7)–(3.8). More generally, one could define a generic rescaling of the lapse, N = Ñψa,
such that the choice in [364] corresponds to a = 6, whereas the choice in Eq. (3.8) above corresponds to
a = −1 (see [265] for the general equations in the vacuum case). An important remark is the absence of
a choice of a such that the factors multiplying ψ and Ñ on the right hand side of the linearized versions
of Eqs. (3.7) and (3.8) present both a positive sign. In the presence of matter, terms multiplying the
energy density E also contribute to these sign difficulties, though in this case they can be fixed by an
appropriate conformal rescaling of the energy density (see later). An additional concern in a generic
evolution scenario is the sign of R̃, also relevant in the linearized equations. Implications of this issue
are discussed in Sec. 3.3.

The Einstein equations in the form of the elliptic equations (3.7)-(3.9) and the hyperbolic equation
for hij as given in Ref. [73] are to be solved together with the hydrodynamic equations,

∇µ(ρuµ) = 0, (3.13)

∇µTµ
ν = 0, , (3.14)

where ∇µ is the Levi–Civita connection associated with the metric gµν , ρ is the rest-mass (baryon
mass) density, and uµ is the 4-velocity of the fluid.

3.2.2 The conformal flatness approximation

If the hyperbolic part of the FCF system is not solved, but rather the condition hij = 0 is imposed, the
resulting 3-metric γij is conformally flat, and the CFC approximation is recovered. Therefore, FCF is
a natural generalization of the CFC approximation. The latter has been used in many astrophysical
applications like the rotational collapse of cores of massive stars [149, 151, 351, 115] or supermassive
stars [397], the phase-transition-induced collapse of rotating neutron stars to hybrid quark stars [3],
equilibrium models of rotating neutron stars [131, 152], as well as for binary neutron star merger [481,
345, 346, 170]. The elliptic subsystem of the FCF, Eqs. (3.7)–(3.9), reduces in CFC to

∆ψ = −2πψ−1

[
E∗+

ψ6KijK
ij

16π

]
, (3.15)

∆(Nψ) = 2πNψ−1

[
E∗+2S∗+

7ψ6KijKij

16π

]
, (3.16)

∆βi+
1

3
DiDjβ

j = 16πNψ−2(S∗)i+ 2ψ10KijDj
N

ψ6
, (3.17)

where the following rescaled matter quantities have been introduced, following York [486]:

E∗ :=
√

γ/f E = ψ6E, (3.18)

S∗ :=
√

γ/f S = ψ6S, (3.19)

(S∗)i :=
√

γ/f Si = ψ6Si. (3.20)
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Equations (3.15) and (3.16) inherit the local non-uniqueness problems already present in the FCF
equations. Although the sign problems specifically related to the energy density terms are solved by
the conformal rescaling of the components of the energy-momentum tensor and the CFC eliminates
the R̃ term, problems related to the KijK

ij term remain in the scalar CFC equations. This is apparent
once the extrinsic curvature is expressed in terms of the lapse and the shift.

Conformal rescaling of the hydrodynamical variables are not only relevant for local uniqueness
issues. The hydrodynamic equations (3.13)-(3.14) can be formulated as a first-order hyperbolic system
of conservation equations for the quantities (D∗, (S∗)i, E

∗) [46, 177], where, similarly to Eqs. (3.18)–
(3.20), D∗ := ψ6D, D := Nu0 ρ being the baryon mass density as measured by the Eulerian observer.
We can thus consider E∗ and (S∗)i as known variables in the computation of the CFC metric. Note
that these quantities differ from E and Si by a factor ψ6, and hence it is not possible to compute
the non-starred quantities before knowing the value of ψ. If the energy-momentum tensor represents
a fluid, then the source of Eq. (3.16) cannot be explicitly expressed in terms of (D∗, (S∗)i, E

∗), the
reason for that being the dependence of S∗ on the pressure P . The pressure can only be computed
in terms of the “primitive” quantities, e.g., as a function P (ρ, ǫ) of the rest-mass density and the
specific internal energy ǫ. The primitive quantities are in general recovered from (D, Si, E) implicitly
by means of an iteration algorithm. So far, two solutions of the problem related to the fact that S∗

directly contains P have been used in numerical simulations performed using the CFC approximation.

The first approach [481] is to consider P , and hence also S∗, as an implicit function of ψ. Then
Eqs. (3.15)–(3.17) can be solved as a coupled set of non-linear equations using a fixed-point iteration
algorithm. The convergence of the algorithm to the correct solution depends not only on the proximity
of the initial seed metric to the solution, but also on the uniqueness of this solution. The latter point
is extensively discussed in Sec. 3.3. Furthermore, one problem of this approach is the necessity of
performing the recovery of the primitive variables, which is numerically a time consuming procedure,
to compute the pressure during each fixed point iteration. Due to the uniqueness problem, this
approach can be only successfully applied in numerical simulations for at most moderately strong
gravity (like stellar core collapse to a neutron star or inspiral and initial merger phase of binary
neutron stars), but fails for more compact configurations like the collapse of a stellar core or a neutron
star to a black hole. For such scenarios with very strong gravity, one finds convergence of the metric
to a physically incorrect solution of the equations or even non-convergence of the algorithm.

A second approach to the recovery algorithm problem is the attempt to calculate P independently
of the CFC equations. This can be achieved by computing the conformal factor by means of the
evolution equation

∂ψ′

∂t
=

ψ′

6
Dkβ

k. (3.21)

The conformal factor ψ′ obtained in this way is analytically identical to the ψ from Eqs. (3.15)–(3.17),
but here we use a different notation to keep track of the way it is computed. The value of ψ′ is solely
used to evaluate P , and the coupled system of Eqs. (3.15)–(3.17) is solved for determining ψ, N , and
βi. Although this approach allows to avoid the problem of recovering the primitive variables at each
iteration, it also suffers from the convergence problem, and the simulation of configurations with very
strong gravity is still not feasible. Furthermore, new complications are introduced by the fact of using
two differently computed values, ψ and ψ′, of the same quantity. For some scenarios like the formation
of a black hole from stellar collapse, the numerical values of these two quantities during the evolution
of the system start to diverge significantly at some point. We find that this inconsistency cannot be
avoided, since any attempt to artificially synchronize both values leads to numerical instabilities.
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3.3 The new scheme in the conformally flat case

3.3.1 Uniqueness of the elliptic equations and convergence of elliptic
solvers

Well-posed elliptic partial differential systems admit non-unique solutions whenever the associated dif-
ferential operator has a non-trivial kernel. When discussing sufficient conditions guaranteeing unique-
ness, it is illustrative to first consider the case of a scalar elliptic equation. In particular, for the class
of scalar elliptic equations for the function u of the form

∆u + hup = g, (3.22)

where h and g are known functions independent of u, a maximum principle can be used to prove local
uniqueness of the solutions as long as the sign of the exponent p is different from the sign of the proper
function h [381, 486, 458, 164].

In the CFC case, we are not dealing with a single scalar elliptic equation, but rather with the
coupled non-linear elliptic system (3.15)-(3.17). Therefore, assessing if the scalar equations (3.15)
and (3.16) do present the good signs for the application of a maximum principle is an important step
for understanding the uniqueness properties of the whole system. However, as pointed out in the
previous section, the CFC equations for the conformal factor and the lapse possess the wrong signs
in the quadratic extrinsic curvature terms (once everything is expressed in terms of the lapse and the
shift). This problem can be fixed in Eq. (3.15) by an appropriate rescaling of the lapse, N = Ñψ6, but
this strategy does not solve the problem for the lapse equation (cf. the discussion on the conformal
lapse Ñ in Sec. 3.2.1). Therefore we cannot use the maximum principle to infer local uniqueness of the
solutions to the CFC equations. In these conditions of potential non-unique solutions, convergence
to a non-desirable solution may happen. As mentioned in the introduction, this pathology has been
illustrated using simple analytical examples of scalar equations of the type (3.22) in [53], as well as
in numerical implementations of the vacuum Einstein constraints in the XCTS approach [365] and
certain constrained evolution formalisms (see, e.g., [389]).

In the context of the CFC approximation this sign issue has also appeared, in particular associated
with the “recovery algorithm” problem discussed in Sec. 3.2.2 since it involves the evaluation of the
conformal factor. Non-unique solutions of ψ, either due to the use of the non-conformally rescaled E or
the quadratic extrinsic curvature term, spoil the convergence of the algorithm when density and thus
compactness increases. We again emphasize that a possible synchronization of ψ and ψ′ does not solve
the problem in general, since numerical instabilities eventually arise at sufficiently high compactness.

3.3.2 Numerical examples

The non-uniqueness of solutions has also been observed in FCF, as described in the following example.
Let us consider a vacuum spacetime, with initial data formed by a Gaussian wave packet, as in [73],
but with much higher amplitude χ0 = 0.9 instead of χ0 = 10−3 in [73] (see the latter reference for
notations). The integration technique and numerical settings are the same as in [73], but contrary
to the results for small amplitude obtained in that reference, the wave packet does not disperse to
infinity and instead starts to collapse. Fig. 3.1 displays the time evolution of the central lapse Nc at
r = 0 and of the system’s ADM mass MADM, which in the present conformal decomposition can be
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Figure 3.1: Time evolution of the central lapse Nc (left panel) and the ADM mass MADM (right
panel) for a collapsing packet of gravitational waves, using the integration scheme proposed
in [73]. The unit of t is given by the initial width of the wave packet

expressed as

MADM = − 1

2π

∮

∞

(
Diψ − 1

8
Dj γ̃ij

)
dAi

= − 1

2π

∮

∞
Diψ dAi, (3.23)

where the integral is taken over a sphere of radius r = ∞ and the second equality follows from the
use of Dirac gauge [Eq. (3.6)].

The very sudden change at t ≃ 0.4 in both the central lapse and the ADM mass, which is also
present in, e.g., the central conformal factor ψc, originates from the convergence of the elliptic sys-
tem (3.7)-(3.9) to another solution with a different (unphysical) value of the ADM mass. The good
conservation of MADM and the smooth evolution of Nc for t & 0.4 indicate that this other solution
remains stable until t ≃ 2, when high-frequency oscillations appear. These oscillations may be due to
the overall inconsistency of the system, destabilizing the whole scheme. On the other hand, the time
evolution of hij does not show any such type of behavior, and hij exhibits a continuous radial profile at
all times. This is numerical evidence that, also for the full Einstein case (i.e. without approximation)
the generalized elliptic equations suffer from a similar convergence problem as in the CFC case.

The same subject is also exemplified when one tries to calculate the spacetime metric for an
equilibrium neutron star model from the unstable branch using either Eqs. (3.7)–(3.9) in the FCF
case or Eqs. (3.15)–(3.17) in the CFC approximation. Even for the simple setup of a polytrope with
adiabatic index Γ = 2 in spherical symmetry, those metric equations yield – when converging at all –
a grossly incorrect solution if the matter quantities (D, Si, E) in the source terms are held fixed. Both
the metric components as well as the ADM mass can deviate from the physical solution by several ten
percent, even though that incorrect metric satisfies the asymptotic flatness condition. The reason why
programs for constructing rotating relativistic neutron star models like the KEH code [283], the RNS
code [445], or the BGSM code [67] are not obstructed by this non-uniqueness problem apparently is
that they all utilize an iteration over both the metric and the hydrodynamic equations simultaneously,
thereby allowing the matter quantities to change during the calculation of the metric.
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We want to stress here that these non-convergence issues in the CFC case are not related to the
approximation that is made. If one considers this system in the spherical (one-dimensional) case, CFC
is no longer an approximation, but is the choice of the so-called isotropic gauge. Even then, the elliptic
system (3.15)-(3.17) no longer converges to the proper (physical) solution.

3.3.3 The new scheme and its theoretical properties

Despite the above mentioned convergence problems, numerically simulating the physical problem of
spherical collapse to a black hole in isotropic coordinates has been successfully studied by Shapiro
and Teukolsky in [410]. Due to the spherical symmetry, there exists only one independent component
of the extrinsic curvature. It is then possible to compute directly a conformal extrinsic curvature,
ψ6Kr

r , from the conserved hydrodynamical variables. The elliptic equation for ψ then decouples
from the other elliptic equations by introducing this conformal extrinsic curvature and using the
conserved hydrodynamical variables in the source. This source term presents no problem for proving
local uniqueness and the equation for ψ always converges to the physically correct solution. Once
the conformal factor, the extrinsic curvature (from the conformal factor and the conformal extrinsic
curvature) and the conserved hydrodynamical variables are known, the elliptic equation for Nψ can
be solved and, again, the source exhibits no local uniqueness problem. This follows from the fact that
the extrinsic curvature is not expressed in terms of the lapse and the shift. This contrasts with the
CFC equation (3.16) where a division by N2 occurs in the last term when the extrinsic curvature is
expressed in terms of its constituents N , ψ, and βi. In addition, there is no necessity of using ψ′.
Finally, the elliptic equation for the shift vector can be solved. In summary, no problems of instabilities
or divergence are encountered.

We now generalize this scheme to the CFC case in three dimensions. This involves the use of two
different conformal decompositions of the extrinsic curvature. That is, first, two different conformal
rescaling and, second, two different decompositions of the traceless part into longitudinal and trans-
verse parts. Adopting maximal slicing, K = 0, a generic conformal decomposition can be written as

Kij = ψζ−8(A(ζ))ij := ψζ−8

(
1

σ
(LX)ij + Aij

TT

)
, (3.24)

where ζ is a free parameter and σ a free function, Aij
TT is transverse traceless and L in the conformal

Killing operator defined by Eq. (3.11). We implicitly make use of a flat conformal metric, with respect
to which Aij

TT is transverse although, in principle it would be more general to use the metric γ̃ij and
the conformal Killing operator associated with it, L̃. But such a decomposition would introduce many
technical difficulties in our treatment. In particular, it is numerically easier to handle tensors which
are divergence-free with respect to the flat metric in the generalization to FCF. The vector Xi, on
which L is acting, is therefore called the longitudinal part of (A(ζ))ij . The first decomposition we use
is the one introduced in Eqs. (3.3)–(3.4) with the choice ζ = 4 and σ = 2N . This corresponds to a
CTS-like decomposition of the traceless part, so that Xi is given by the shift vector βi and Aij

TT can
be expressed in terms of the time derivative of the conformal metric. We denote this traceless part as
Ãij := (A(4))ij . In the CFC approximation this becomes

Kij = ψ−4Ãij , Ãij =
1

2N
(Lβ)ij . (3.25)

The second conformal decomposition,

Kij = ψ−10Âij , Âij = (LX)ij + Âij
TT, (3.26)
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refers to ζ = −2 and σ = 1. It rather corresponds to a conformal transverse traceless (CTT) decom-
position of the traceless part of extrinsic curvature introduced by Lichnerowicz [291]. Notice that we
have defined Âij := (A(−2))ij , not to be confused with Ãij := (A(4))ij . The relation between Âij and
Ãij is given by

Âij = ψ10Kij = ψ6Ãij . (3.27)

In terms of Âij , the CFC momentum constraint can be written as

DjÂ
ij = 8πψ10Si = 8πψ6f ijSj = 8πf ijS∗

j . (3.28)

Consistency between the CTT-like decomposition (3.26) and the CTS-like one (3.25) generically re-
quires a non-vanishing tranverse part Âij

TT in Eq. (3.26). However, as it is shown in Appendix 3.A,

this Âij
TT is smaller in amplitude than the non-conformal part hij of the spatial metric and Âij can be

approximated on the CFC approximation level as

Âij ≈ (LX)ij = DiXj + DjXi − 2

3
DkX

kf ij . (3.29)

From Eqs. (3.26) and (3.28), an elliptic equation for the vector Xi can be derived,

∆Xi +
1

3
DiDjX

j = 8πf ijS∗
j , (3.30)

from which Xi can be obtained. With this vector field, one can calculate the tensor Âij via (3.29).
Notice that in the case of spherical symmetry, Ârr = ψ10Krr = ψ6Kr

r is the quantity used by Shapiro
and Teukolsky [410].

The elliptic equation for the conformal factor can be rewritten in terms of the conserved hydrody-
namical variables and Âij :

∆ψ = −2πψ−1E∗ − ψ−7 filfjmÂlmÂij

8
. (3.31)

This equation can be solved in order to obtain the conformal factor. Once the conformal factor is
known, the procedure to implicitly recover the primitive variables from the conserved ones is possible,
the pressure P can be computed using the equation of state, and therefore S∗ is at hand. The elliptic
equation for Nψ can be reformulated by means of the conserved hydrodynamical variables, Âij , and
the conformal factor:

∆(ψN) = 2πNψ−1 (E∗ + 2S∗) + Nψ−7 7filfjmÂlmÂij

8
.

(3.32)

From this equation Nψ can then be obtained, and consequently the lapse function N . Note that, since
Âij is already known at this step, no division by N2 spoils the good sign for the maximum principle.

Using the relation between the two conformal decompositions of the extrinsic curvature, Âij =
ψ6Ãij , Eq. (3.25) can be expressed as (Lβ)ij = 2Nψ−6Âij . Taking the divergence we arrive at an
elliptic equation for the shift vector,

∆βi +
1

3
Di

(
Djβ

j
)

= Dj

(
2Nψ−6Âij

)
, (3.33)
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where the source is completely known. This elliptic equation can be solved in order to obtain the shift
vector βi consistent with ∂tγ̃ij = 0, as required by the CFC approximation.

In this recast of the CFC equations an extra elliptic vectorial equation for the vector field Xi is
introduced. However, now the signs of the exponents of ψ and N are compatible with the maximum
principle for scalar elliptic equations, and the problem is linearization stable. While this does not
guarantee global uniqueness of the solutions, it provides a sufficient result for local uniqueness. This
strongly relies on the fact that the system decouples in a hierarchical way, which we summarize here
once more:

1. With the hydrodynamical conserved quantities at hand, solve Eq. (3.30) for Xi, and thus for
Âij .

2. Solve Eq. (3.31) for ψ, where local uniqueness is now guaranteed. Then S∗ can be calculated
consistently.

3. Solve Eq. (3.32) for Nψ, a linear equation where the maximum principle can be applied and
uniqueness and existence follow with appropriate boundary conditions.

4. As the source of Eq. (3.33) is then fully known, solve it for βi.

Note that this scheme is similar to that used by Shibata and Uryū [426] to compute initial data for
black hole - neutron star binaries. We will discuss this point further in Sec. 3.6.2.

The new CFC metric equations presented here not only allow to evolve the hydrodynamical equa-
tions and recover the metric variables from the elliptic equations in a consistent way (no auxiliary
quantity ψ′ is needed). It also permits to introduce initial perturbations in the hydrodynamical vari-
ables (strictly speaking in the conserved quantities) in a set of previously calculated initial data and
directly delivers the correct values for the metric. It is even possible to perturb only the primitive
quantities, and consistently resolve for the metric by iterating until the conformal factor ψ, which
links the primitive to the conserved quantities, converges. We find that such an iteration method fails
for sufficiently strong gravity if the original CFC formulation is used.

3.4 Numerical results

We recapitulate that the original CFC formulation exhibits serious convergence problems when deal-
ing with highly compact configurations such as nascent black holes. This weakness of the original
formalism is noticeable in the fact that no simulations of rotational collapse to a black hole substan-
tially beyond the formation of the apparent horizon have been performed so far in CFC. Furthermore,
already some scenarios which do not involve the formation of a black hole are feasible with the old
formulation only if procedures like using Eq. (3.21) with all associated problems and inconsistencies
are employed. An example is the migration of a neutron star model from the stable to the unstable
branch, which is a standard test for relativistic hydrodynamics codes. In contrast, the new CFC
scheme presented in this work solves all problems which prevented performing such simulations in the
past. In order to show the suitability of the new scheme we present the results of numerical simulations
of the migration test and of the rotational collapse to a black hole.
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Table 3.1: Initial models used in the migration test and the rotational collapse to a black
hole. ρc,i is the initial central rest-mass density, Ωi is the initial angular velocity, rp,i/re,i is the
initial ratio of polar to equatorial coordinate radius, MADM is the gravitational ADM mass,
and J is the total angular momentum (which is conserved in CFC during the evolution in the
axisymmetric case). Units in which G = c = M⊙ = 1 are used.

Model ρc,i Ωi rp,i/re,i re,i MADM J/M2
ADM

[10−3] [10−2]

SU 8.000 0 1.00 4.267 1.447 0
SS 1.346 0 1.00 7.999 1.424 0

D1 3.280 1.73 0.95 5.947 1.665 0.207
D2 3.189 2.88 0.85 6.336 1.727 0.362
D3 3.134 3.55 0.75 6.839 1.796 0.468
D4 3.116 3.95 0.65 7.611 1.859 0.542

3.4.1 Model setup

The numerical simulations presented here are performed using the numerical code CoCoNuT [148, 151].
This code solves the evolution of the hydrodynamics equations coupled to the elliptic equations for
the spacetime metric in the CFC approximation. Standard high-resolution shock-capturing schemes
are used in the hydrodynamic evolution, while spectral methods are employed to solve the metric
equations. The code is based on spherical polar coordinates, and for the tests presented here we assume
axisymmetry and symmetry with respect to the equatorial plane. Note that the metric equations
presented in this paper are covariant. Thus the formalism can be used for any coordinate basis as well
as without any symmetry conditions.

The initial models are general relativistic Γ = 2 polytropes in equilibrium with a polytropic
constant K = 100. The models are chosen to be situated on the unstable branch, i.e. ∂MADM/∂ρc < 0,
where ρc is the central rest-mass density. Therefore, any perturbation of the star induces either the
collapse to a black hole or the migration to a configuration of the same baryon mass on the stable
branch. Table 3.1 shows the main features of these initial models. Models D1 to D4 are uniformly
rotating models which are identical to those presented in [41]. The model labeled SU is a spherical
model, while model SS is the counterpart model with the same baryon mass but located on the stable
branch. The equilibrium rotating star models in Dirac gauge (the axisymmetric and stationary limit
of FCF) used here are described in [293], and are computed using the Lorene [216] library. We map
the hydrodynamic and metric quantities to the CFC code neglecting the hij ∼ 10−3 terms, which are
negligible due to their smallness. Alternatively, we compute CFC equilibrium initial models. In this
case we find that the differences with respect to the FCF models are small (∼ 0.1%) for representative
metric and hydrodynamic quantities initially and during the evolution, and therefore we discuss only
the FCF initial models here.

The hydrodynamic equation are discretized on the finite difference grid with nr × nθ grid points.
The radial grid size is ∆r0 for the innermost cell and increases geometrically outwards, while the
angular grid is equidistantly spaced. The metric equations are solved on a spectral grid consisting
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of nd − 1 radial domains distributed such as to cover homogeneously the finite difference grid and a
compactified exterior domain extending to radial infinity. On the spectral grid we resolve each radial
domain with 33 collocation points. The spherical model needs only one angular collocation point,
while we use 17 angular points for the rotating models.

We track the location of the apparent horizon by means of a three-dimensional spectral apparent
horizon finder, described in detail and tested in [294]. The apparent horizon location is given by a
function H(r, θ), which is decomposed into a set of spherical harmonics. The coefficients of H in this
basis are computed iteratively, in order to satisfy the condition that the expansion in the outgoing
null direction vanishes at the apparent horizon location.

3.4.2 Migration of unstable neutron stars to the stable branch

The first test we consider is the migration of a neutron star model in equilibrium from the unstable
branch to the stable branch, which is a standard but still demanding test for general relativistic
hydrodynamics codes, as it involves the dynamic transition between two very compact equilibrium
states. This test has been performed in the past in full general relativistic simulations [181]. We start
the evolution with the non-rotating equilibrium model labeled SU. Since it belongs to the unstable
branch, any perturbation from exact equilibrium (which can for instance be caused by discretization
errors) leads either to a collapse or to an expansion to a new equilibrium configuration of the same
baryon mass on the stable branch. The corresponding equilibrium configuration with the same baryon
mass, model SS, has smaller ADM mass than the initial system (see Table 3.1). Therefore, to preserve
the ADM mass, the final configuration cannot be exactly the equilibrium model SS. The energy
difference between models SU and SS should be transformed into kinetic energy, remaining in the final
object in the form of pulsations.

In our case the numerical truncation error is sufficient to trigger the migration. Since the final
neutron star on the stable branch is larger than the initial model (see Table 3.1) the outer boundary
of the finite difference grid is chosen to be 4.5 times the radius of the model SS. We perform two
simulations on a finite difference grid with 150 or 300 radial cells and ∆r0 = 0.022 or 0.012, respectively.
We use nd = 6 radial domains for the spectral grid. We evolve the system with either a polytropic or
an ideal gas equation of state.

Figure 3.2 shows the time evolution of the central values of the rest-mass density and the lapse. As
the star expands, ρc decreases while Nc grows until the new stable equilibrium configuration is reached.
In the polytropic case, there are no physical mechanisms to damp the strong pulsations, and the final
state resembles a star oscillating around the equilibrium configuration until numerical dissipation
finally damps the oscillations. This can be seen in the pulsating values of rest-mass density and lapse
around the value corresponding to the equilibrium model on the stable branch (solid horizontal line
in Fig. 3.2).

In the ideal gas case, shock waves are formed at every pulsation which dissipate kinetic energy
into thermal energy, thereby damping the oscillations. As these shocks reach the surface of the star,
a small amount of mass is expelled from the star and matter is ejected outwards into the surrounding
artificial low-density atmosphere until it is lost from the grid across the outer numerical boundary.
We approximately compute the escape velocity as ve =

√
2U ≈

√
ψ2 − 1, where U is the Newtonian

potential. This formula is not exact in general relativity, but it should by sufficiently accurate near the
outer numerical boundary where gravity is weaker. We find that the shock waves leaving the computa-
tional domain exceed the escape velocity and therefore the lost mass is gravitationally unbounded. We
also check that these results are not affected by changing the resolution or setting the outer boundary



82 Improved constrained scheme. . .(Cordero-Carrión et al. 2009)

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

ρ c
/ρ

c,
0

0 2 4 6 8
ρ

c
 [10

-3
]

1.2

1.4

1.6

1.8

M
b

SS SU

0 500 1000 1500 2000

t

0.2

0.4

0.6

0.8

1.0

N
c

polytrope

ideal gas

Figure 3.2: Time evolution of the central rest-mass density ρc (left panel) and the central lapse
Nc (right panel) for the migration of the unstable neutron star model SU to the stable branch,
with either a polytropic (solid lines) or an ideal gas (dashed lines) equation of state. The dotted
horizontal lines mark the value of ρc and Nc for the equilibrium configuration SS from the stable
branch with the same baryon mass Mb as model SU, while the dash-dotted lines are obtained
from a series of equilibrium models where mass shedding, like in the migration model with an
ideal gas equation of state, is taken into account. In the inset the baryon mass Mb versus ρc

relation for this model setup is displayed. The models SU (the initial model) and SS (the final
state for a polytropic equation of state) as well as the final state for an ideal gas equation of
state are marked. The arrows symbolize the respective migration paths.

twice as far away. As the oscillations are damped, the shocks become weaker and the mass expelled
at each oscillation is smaller. At the end of the simulation the star has lost about 10% of its initial
baryon mass approaching a state of constant baryon mass. As a consequence, the final equilibrium
configuration on the stable branch is not the model SS anymore but the corresponding model from the
stable branch with lower baryon mass and central density. In Fig. 3.2 we plot the central rest-mass
density and lapse of a series of equilibrium models on the stable branch corresponding to the baryon
mass remaining in the computational domain at each time. It can be seen that these values deviate
with time from model SS and fit the final state in the hydrodynamical evolution of the star.

As a by-product of this study we draw reader’s attention to the consistency (as it should be)
between the amplitude and the frequency of the oscillations. The period of these oscillations is
approximately of the order of the hydrodynamical characteristic time τρ, which decreases with density
like τρ ≈ ρ−1/2. In the polytropic case, the maxima of the oscillations in ρc are systematically higher
than in the ideal gas case. Consequently, the characteristic time is shorter than in the ideal gas case,
as Fig. 3.2 shows. A second property worth to be pointed out is that the low numerical viscosity of our
code is responsible for maintaining a nearly constant amplitude of the oscillations (in the polytropic
case) during many characteristic times.

Our simulations are consistent with the results from a fully relativistic three-dimensional code
in [181]. Similar simulations of this test with the original, unmodified CFC scheme lead from the
start to a completely incorrect solution with a grossly wrong ADM mass. When running with the new
improved CFC scheme, we obtain a MADM = 1.451M⊙ and initial values for the conformal factor and
lapse of ψc = 1.561 and αc = 0.273, respectively. On the other hand, with the unmodified conventional
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Figure 3.3: Collapse to a black hole for the spherical model SU, and the rotating models D1 and
D4. The left panel shows the time evolution of the central lapse Nc (thin lines) and the central
rest-mass density ρc relative to the initial value ρc,0 (thick lines). The right panel shows the
time evolution of the apparent horizon radius rAH,e in the equatorial plane (thin lines) and the
rest mass Moutside AH remaining outside the apparent horizon relative to the total rest mass M
(thick lines). The dashed vertical lines mark the time when the apparent horizon first appears.
If the axes of the lower panel were exchanged, the resulting plot would resemble the typical
spacetime diagram of a star collapsing to a black hole.

CFC scheme, the metric solver already initially converges to a solution with MADM = 0.647M⊙ (55%),
ψc = 1.221 (61%) and αc = 0.532 (63%), where the relative differences to the physically correct solution
are given in parentheses.

As presented in [309] the migration test can be successfully simulated using the old CFC scheme, if
one resorts to additionally solving the evolution equation (3.21) for the conformal factor (which would
lead to large inconsistencies in scenarios with higher compactness but still yields acceptable results for
the standard migration case). Already here the superiority of the new, fully consistent CFC scheme,
which does not depend on such scenario-dependend amendments, becomes apparent.

3.4.3 Collapse of unstable neutron stars to a black hole

As the second test we present the collapse of a (spherical or rotating) neutron star model to a black
hole. Following [41] we trigger the collapse to a black hole by reducing the polytropic constant K by
2% in the initial models D1 to D4. Alternatively, in the spherical model SU we increase the rest-mass
density by 0.1%, which yields a similar dynamic evolution. However, since the models are initially in
equilibrium, the total collapse time depends strongly on the perturbation applied. In these collapse
cases, the outer boundary of the finite difference grid is 20% larger than the star radius. For the
spherical model SU, we perform two simulations using 150 or 300 radial cells and ∆r0 ∼ 10−3 or 10−4,
respectively, to assess the resolution dependence of our simulations. For the rotating models D1 to
D4 the grid is made up of 150 × 20 and 150 × 40 cells, with the same radial grid spacing as in the
spherical model. We choose nd = 8 radial domains for the spectral grid. As in [41] we use a polytropic
equation of state in the evolution.

The top panel of Fig. 3.3 shows the evolution of the rest-mass density and lapse at the center.
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Figure 3.4: Isocontours of the rest-mass density for model D4 after the apparent horizon first
appears at t = 129.9. The dashed line shows the location of the apparent horizon.

Since for the maximal slicing condition the singularity cannot be reached in a finite time, Nc rapidly
approaches zero once the apparent horizon has formed. In parallel, ρc grows, which results in a
decrease of the numerical time step due to the Courant condition applied to the innermost grid cell.
We terminate the evolution as the central regions of the collapsing star inside the apparent horizon
become increasingly badly resolved on the regular grid and thus numerical errors grow. We check
in model SU that by refining the radial resolution we are able to follow the collapse to even higher
densities. Therefore, the only limitation to perform a stable evolution after the apparent horizon
formation is the numerical resolution used. Note, however, that the spatial gauge condition is fixed in
CFC, and thus we are not able to utilize the common method of exploiting the gauge freedom for the
radial component of the shift vector in order to effectively increase the central resolution.

In the bottom panel of Fig. 3.3 we display the time evolution of the apparent horizon radius.
As expected, the apparent horizon appears at a finite radius and already encompasses a significant
fraction of the total mass of the star (∼ 70 – 80%) at that time. Afterwards its radius grows as the
surrounding matter falls inside beyond the horizon. The fraction of rest mass remaining outside the
horizon is also plotted in the figure. In the rotating case the apparent horizon is slightly non-spherical.
The ratio of polar to equatorial proper circumferential radius of the apparent horizon at the end of
the simulation is Rp/Re = 0.998 – 0.978 for models D1 to D4, where Re :=

∫ 2π
0

√
gϕϕ dϕ/(2π) and

Rp :=
∫ π
0

√
gθθ dθ/π.

Since we cannot reasonably determine the location of the event horizon, as this would require the
evolution of spacetime until the black hole has become practically stationary, we utilize the apparent
horizon radius to estimate the mass of the newly formed black hole. Following the prescription in [41]
we use the expression MBH = Re/2. Note that this formula is only strictly valid for a stationary
Kerr black hole. In our case, however, first of all some (albeit a small) amount of matter is still
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outside the horizon and the black hole is still dynamically evolving, and secondly the metric of a
Kerr black hole is not conformally flat [196]. Still, according to [41] this approximation (excluding
the effects of CFC) introduces an error in the mass estimate of only ∼ 2%. For the spherical model
the estimated value for MBH at the end of the simulation agrees within 0.5% with the ADM mass
MADM of the initial model, while in the rotating models D1 to D3 the error is ≤ 4%. In all these
cases the above formula overestimates the black hole mass. Due to its rapid rotation and the resulting
strong centrifugal forces, in model D4 the collapse deviates significantly from sphericity, leading to a
strongly oblate form of the density stratification. Consequently, we still find a non-negligible amount
of matter outside the apparent horizon at the end of the simulation (about 12% of the total rest mass).
Therefore the value for MBH is 8.2% smaller than MADM. In Fig. 3.4 we present the distribution of
the rest-mass density and the location of the apparent horizon at the end of the simulation for this
particular model. Since the time evolution is limited by our chosen, still computationally affordable
grid resolution in the central region we are not able to evolve this model to times when a disk forms
as in [41]. Nevertheless, all other quantities qualitatively agree with the results in that work, although
we refrain from performing a more detailed comparison due to the respective differences in the gauge
of the two formulations used in [41] and in this study, respectively.

In the near future we plan to carry out an exhaustive analysis of the scenario of a collapse to a
black hole by comparing on one hand the CFC formulation with FCF (see Sec. 3.5), and on the other
hand by comparing FCF with other (free evolution) formulations. The difficulties induced by the use
of different gauges can be overcome by using gauge-invariant quantities for comparison and analyzing
their behavior as a function of proper time.

3.5 Generalization to the fully constrained formalism

The ideas presented in Sec. 3.3 can be generalized to the FCF approach of the full Einstein equations
described in Sec. 3.2.1.

As shown in [134], the hyperbolic part of FCF can be split into a first order system. The reformu-
lation of the CFC equations presented in Sec. 3.3 relies on the rescaled extrinsic curvature Âij given
by Eq. (3.27). Consequently, we write the FCF hyperbolic part as a first order system in (hij , Âij),
instead of first order system in (hij , ∂hij/∂t) as in [134], arriving at

∂hij

∂t
= 2Nψ−6Âij + βkwij

k − γ̃ikDkβ
j − γ̃kjDkβ

i +
2

3
γ̃ijDkβ

k, (3.34)

∂Âij

∂t
= −Dk

(
−Nψ2

2
γ̃klwij

l − βkÂij

)
− ÂkjDkβ

i − ÂikDkβ
j +

2

3
ÂijDkβ

k

+2Nψ−6γ̃klÂ
ikÂjl − 8πNψ6

(
ψ4Sij − Sγ̃ij

3

)
+ N

(
ψ2R̃ij

∗ + 8γ̃ikγ̃jlDkψDlψ
)

+4ψ
(
γ̃ikγ̃jlDkψDlN + γ̃ikγ̃jlDkNDlψ

)

−1

3

[
N

(
ψ2R̃ + 8γ̃klDkψDlψ

)
+ 8ψγ̃klDkψDlN

]
γ̃ij
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2

(
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k + γ̃kjwil
k

)
Dl(Nψ2) − γ̃ikγ̃jlDkDl(Nψ2) +

1

3
γ̃ij γ̃klDkDl(Nψ2), (3.35)
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where

wij
k := Dkh

ij , (3.36)

R̃ij
∗ := 1

2

[
−wik

l wjl
k − γ̃klγ̃

mnwik
mwjl

n + γ̃nlw
mn
k

(
γ̃ikwjl

m + γ̃jkwil
m

)]
+ 1

4 γ̃ikγ̃jlwmn
k Dlγ̃mn. (3.37)

The system is closed by adding the equation

∂wij
k

∂t
−Dk

(
βlwij

l + 2Nψ−6Âij
)

= −wil
kDlβ

j − γ̃ilDkDlβ
j − wlj

k Dlβ
i − γ̃ljDkDlβ

i +
2

3
γ̃ijDkDlβ

l

+
2

3
wij

k Dlβ
l, (3.38)

which is derived from applying partial derivatives with respect to t in the definition of wij
k . Moreover,

the system observes the constraint of Dirac gauge, wij
i = 0 [Eq. (3.6)], and for the determinant of the

conformal metric, we obtain γ̃ = f . The first order system given by Eqs. (3.34)–(3.38) has the same
properties regarding hyperbolicity and existence of fluxes as the one in [134]. It has the advantage
over the second order system for hij proposed in Ref. [73] of getting rid of partial derivatives with
respect to t of the lapse N , the shift βi, or the conformal factor ψ.

The elliptic part of FCF can be rewritten, using the tensor Âij , as

γ̃klDkDlψ = −2πψ−1E∗ − γ̃ilγ̃jmÂlmÂij

8ψ7
+

ψR̃

8
, (3.39)

γ̃klDkDl(Nψ) =

[
2πψ−2(E∗ + 2S∗) +

(
7γ̃ilγ̃jmÂlmÂij

8ψ8
+

R̃

8

)]
(Nψ), (3.40)

γ̃klDkDlβ
i+

1

3
γ̃ikDkDlβ

l = 16πNψ−6γ̃ij(S∗)j + ÂijDj

(
2Nψ−6

)
− 2Nψ−6∆i

klÂ
kl. (3.41)

The strategy to evolve the two symmetric tensors hij and Âij relies on a decomposition of these
tensors in longitudinal and transverse traceless parts. The longitudinal parts (divergences with re-
spect to the flat metric) are either known a priori or are determined by the elliptic equations. More
specifically, the divergence of hij vanishes according to the Dirac gauge, whereas the divergence of Âij

is determined by the momentum constraint (3.42) – see below. Consequently, focus is placed on the
transverse traceless parts of these tensors. The latter are described in a pure-spin tensor harmonic
decomposition, as it has been discussed in a previous article [134]. In particular, each transverse
traceless tensor is fully expressed in terms of two scalar potentials (named A and B̃ in [134]) that are
evolved according to evolution equations obtained from the transverse traceless parts of Eqs. (3.34)
and (3.35) for hij and Âij , respectively, by applying consistently the decomposition in [134]. Once the
scalar potentials on the next time slice are determined, the tensors hij and Âij

TT can be reconstructed

completely, satisfying the divergence-free conditions. This fully fixes hij , whereas in the case of Âij

the longitudinal part is computed in a very similar way to the CFC case, i.e. by determining the vector
Xi from the momentum constraint as described hereafter.

From Eq. (3.26), the momentum constraint can be written as

DjÂ
ij = 8πγ̃ij(S∗)j − ∆i

klÂ
kl, (3.42)
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which is equivalent to the following elliptic equation for Xi:

DjDjXi +
1

3
DiDkX

k + γ̃im

(
Dkγ̃ml −

Dmγ̃kl

2

)
×

(
DkX l + DlXk − 2

3
fklDpX

p
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=

8πγ̃ij(S∗)j − γ̃im

(
Dkγ̃ml −

Dmγ̃kl

2

)
Âkl

TT. (3.43)

This elliptic equation for the vector Xi is linear. Since hij and Âij
TT have been calculated previously,

we can solve the elliptic equation (3.43) to obtain the vector Xi. With this method, the Dirac gauge
and the momentum constraint are guaranteed to be satisfied. Then, Âij is reconstructed from Âij

TT

and Xi on the new time slice.

At this point, since the tensors hij and Âij are known, we can follow exactly the same scheme
as in the CFC case to solve in a hierarchical way the elliptic equations. First the conformal factor
is obtained from Eq. (3.39), then the lapse function from Eq. (3.40), and finally the shift vector is
acquired from Eq. (3.41). These equations are decoupled in the order mentioned. No sign problems
are exhibited in the scalar elliptic equation and therefore the maximum principle can be applied. A
minor concern is associated with the sign of the term R̃ in Eq. (3.39), but unique solutions also exist
for negative conformal Ricci scalars (closely related to R̃). Note that, contrary to the CFC case, here
no (additional) approximation has been made: it is simply a new scheme to write down FCF, where
the elliptic part is better behaved from the point of view of local uniqueness. Numerical simulations
with this FCF scheme will be presented in a future publication.

3.6 Discussion

3.6.1 Summary

We have presented an approach to the solution of the uniqueness issues appearing in certain constrained
formulations of Einstein equations. We have illustrated the problem and its solution through a detailed
analytical and numerical study of a waveless approximation that retains all the involved essential
features.

More specifically, we have reformulated XCTS-like elliptic systems appearing in constrained evo-
lution schemes of the Einstein equations like FCF of [73, 134], as well as in the CFC approxima-
tion [260, 482]. Such systems require the simultaneous solution of the constraints, in particular the
momentum constraint for the shift, together with a maximal slicing condition for the lapse. The result-
ing elliptic system presents potential local non-uniqueness problems, and numerical implementations
have indeed encountered such obstacles. The original CFC formulation has not been able to cope with
these problems, suffering from convergence of the system to unphysical solutions or non-convergence at
all in high density regimes. We have suggested that these problems are not due to the approximative
nature of CFC, since FCF in the variant of [73, 134], which is a natural generalization of CFC to the
non-conformally flat case, also suffers from the same problems. In order to address these issues, and
first focusing on the simpler CFC case, we have considered the conformal rescaling of the traceless part
of the extrinsic curvature, resulting in the expression for Âij in Eq. (3.27), which is a rescaling different
from the respective ones employed in FCF and the CFC approximation, but coincides with the one in
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the XCTS approach of [487, 364]. This is motivated by the work of Shapiro and Teukolsky [410], who
simulated the collapse of a neutron star model using such a reformulation of the CFC metric equations
(however restricted to spherical symmetry in their case) and apparently did not encounter any of the
problems described above. Extending their approach to three dimensions, we have decomposed Âij

into longitudinal and transverse parts as in the CTT formulation of the constraint equations (3.29).
The divergence (i.e. the longitudinal part) of this tensor is determined by the momentum constraints,
Eqs. (3.28) in the CFC case, just as in the CTT formulation. In the CFC scheme, we have neglected
the transverse part of this tensor, as the order of its error is higher than the one arising from the
CFC approximation itself. In the non-approximate FCF case, the transverse part of Âij is determined
by an evolution equation. Once the conformal extrinsic curvature is obtained it can be employed in
the Hamiltonian equation to calculate the conformal factor ψ. The lapse is then fixed through the
maximal slicing condition, and the resulting equation allows the application of a maximum principle
uniqueness argument. Finally, the shift is found through the kinematical relationship defining the
extrinsic curvature, leading to Eq. (3.33).

By performing a variety of tests, we have provided evidence that the problem of convergence to
an unphysical solution of the metric equations (or even complete non-convergence) in the original
formulation of the CFC scheme is fully cured by our new reformulation. Not only numerical results
in the original CFC scheme (in the at most moderately gravitationally compact regime where that
system still yields physically correct solutions) can be reproduced by the new formulation but, more
importantly, the new numerical results presented here exhibit the proper numerical and physical
behavior even for highly compact configurations. For the first time, it has been possible to successfully
perform both the migration test and the collapse of a neutron star to a black hole in the CFC case in
a consistent way. Our new formulation thus facilitates simulations in the high density regime of those
scenarios where CFC is still a reasonably fair approximation, that is, for systems which are not too
far from sphericity like stellar gravitational collapse.

3.6.2 Comparison with previous works

As compared to the original CFC formulation by Isenberg [260] and Mathews and Wilson [482], the
scheme presented here is augmented by an additional vector elliptic equation for Xi, while the elliptic
character of the system of metric equations is preserved. The new scheme reformulates the CFC
approximation in a CTT shape (one scalar and one vector elliptic equation), and then solves for the
lapse and the shift (one additional scalar and one vector elliptic equation). In contrast, the original
CFC scheme employed an (X)CTS approach where, together with two scalar elliptic equations, only
one vector elliptic equation was present. In contrast to the original scheme, the elliptic system in the
new formulation not only corrects the problem of local uniqueness in the scalar elliptic equations, but
also introduces a hierarchical structure that decouples the system in one direction.

In the context of the conformally flat approximation, the same “augmented CFC” scheme as
that discussed here has been introduced already by Saijo [397] to compute gravitational collapse of
differentially rotating supermassive stars. However, in this work the inconsistency between Eq. (3.25)
and Eq. (3.29), i.e. setting to zero the transverse traceless part of Âij , has not been pointed out. On
the contrary, we have analyzed this inconsistency in detail (cf. Appendix 3.A) and have shown that it
leads to an error of the same order as that of the CFC approximation. In addition, we have shown here
that the introduction of the vector potential Xi is the key ingredient for solving the non-uniqueness
issue.

The same scheme, but without the conformal rescaling of the matter quantities, has also been
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used recently by Shibata and Uryū [426] in the context of computing initial data. As in [397], the
inconsistency resulting from setting to zero the transverse traceless part of Âij and the uniqueness
issue are not discussed in their work. We emphasize that the these studies [397, 426] do not discuss
the extension of the new scheme to the non-conformally flat case, as done here.

Let us also mention that the augmented CFC scheme presented here can be regarded as a hybrid
mixture between some of the waveless approximation theories (WAT) proposed by Isenberg [260]. In
fact, the CFC approximation using the two choices γ̃ij = fij and ∂tγ̃ij = 0 [as employed in Eq. (3.33)]

corresponds to version WAT-I. On the other hand, the approximation Âij
TT = 0 used in Eq. (3.29) is in

the spirit of the vanishing transverse traceless part of the extrinsic curvature in the (coupled) version
WAT-II (although WAT-II refers to the physical extrinsic curvature, whereas here we have dealt with
the conformal one). As mentioned above, both assumptions are consistent at the considered level of
approximation as shown in Appendix 3.A.

Regarding the complete constrained evolution of the Einstein equations, we have generalized the
ideas presented here for the CFC case to the elliptic part of FCF. In previous studies [73, 134], the
hyperbolic part of Einstein equations resulted in a wave-type equation for the tensor hij , representing
the deviation of the 3-metric from conformal flatness. With the introduction of Âij we have recovered
here a first-order evolution system, analogous to the standard Hamiltonian 3 + 1 system, in which
we have however retained only the divergence-free terms. Thus, for both hij and Âij , the transverse
(divergence-free) parts are evolved by this system, while the longitudinal parts are fixed either by
the gauge (for hij), or by the momentum constraint (for Âij). Numerical results for this case will be
presented in future studies.

We finally comment on the recent work by Rinne [389], where uniqueness problems appearing
in certain constrained and partially constrained schemes for vacuum axisymmetric Einstein equa-
tions [118, 200] are addressed. As in the present case, uniqueness issues related to the Hamiltonian
constraint equation are solved by adopting an appropriate rescaling the extrinsic curvature. On the
other hand, problems associated with the slicing condition are tracked to the substitution in that
equation of the extrinsic curvature by its kinematical expression in terms of the (shift and the) lapse.
The latter spoils the uniqueness properties by reversing the sign of the relevant term in the slicing
equation. This problem is solved by enlarging the elliptic system with an additional vector so as to
re-express the relevant components of the extrinsic curvature without resorting to the lapse. The
resulting elliptic system presents also a hierarchical structure. Although the spirit of such approach
is close to the one here presented, the specific manner of introducing the additional vector variable
in [389] critically relies on the two-dimensionality of the axisymmetric problem (specifically, on a choice
of a particular gauge and on the fact that vectors and rank-two traceless symmetric tensors have the
same number components in two dimensions, a property lost in three dimensions). On the contrary,
the introduction of the vector Xi through the CTT decomposition (3.29) is properly devised to work
in three dimensions. Relevant related discussions in the three-dimensional context can be found in
Sec. 3.4 of [389], where the relation between non-uniqueness problems in XCTS and axisymmetric
constrained evolution schemes is discussed.

APPENDIX
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3.A Consistency of the approximation

In the derivation of the new formalism we make use of the fact that (LX)ij ≈ Âij in CFC. We show
next that this assumption is completely consistent at the accuracy level of the CFC approximation.
In the first place, we need to estimate the error of the CFC approximation itself. By definition the
CFC 3-metric deviates linearly with hij from the (exact) FCF case. It can be easily shown from the
FCF equations (3.39)-(3.41) that the metric quantities behave as

ψ = ψCFC + O(h), (3.44)

N = NCFC + O(h), (3.45)

βi = βi
CFC + O(h). (3.46)

Therefore hij can be used as an estimator for the error of the CFC approximation.
Two limits in which CFC is exact will be considered. First, in spherical symmetry the CFC metric

system is an exact reformulation of the Einstein equations since hij = 0 in the FCF metric. If the
system is close to spherical symmetry (i.e. spheroidal), and if we are able to define a quasi-spherical
surface of the system (e.g., the surface of a star or the apparent horizon of a BH) then the equatorial
and polar circumferential proper radius, Re and Rp, can be computed, and we can define the ellipticity
of the system as

e2 := 1 − R2
p/R2

e . (3.47)

Close to sphericity e2 scales linearly with hij , and we can ensure that the error of CFC is hij ∼ O(e2).
The second limit to consider is if a post-Newtonian expansion of the gravitational sources is possible,
i.e. if the post-Newtonian parameter max(v2/c2, GM/Lc2) < 1, where v, M , and L are the typical
velocity, mass, and length of the system, respectively. In this case the CFC metric behaves like the
first post-Newtonian approximation [281, 114], i.e.

ψ = ψCFC + O
(
1/c4

)
, (3.48)

N = NCFC + O
(
1/c4

)
, (3.49)

c βi = c βi
CFC + O

(
1/c4

)
. (3.50)

Note that, for clarity, we explicitly retain powers of the speed of light c as factors in the equations
throughout this appendix. In the case that both limits are valid, i.e. close to sphericity and in the
post-Newtonian expansion, the non-conformally-flat part of the 3-metric behaves like hij ∼ O(e2/c4).
The next step is to compute the behavior of the CFC metric if we assume (LX)ij ≈ Âij , considering
the two limiting cases introduced above.

In the spherically symmetric case the relation (LX)ij = Âij is trivially fulfilled. Therefore the
behavior for a quasi-spherical configuration is also hij ∼ O(e2) even if Âij

TT = 0 is assumed. This limit
in the approximation is very important, since it is independent of the strength of the gravitational
field. For example it allows us to evolve black holes, with the only condition that hij should be small,
i.e. close to the sphericity.

To check the approximation in the post-Newtonian limit we need to compare βi
CFC and Xi. This

can be done by means of the post-Newtonian expansion of the sources of Eqs. (3.17) and (3.30),
respectively,

∆βi
CFC +

1

3
DiDjβ

j
CFC = 16πS∗i + O

(
1/c7

)
, (3.51)

∆Xi +
1

3
DiDjX

j = 8πS∗i + O
(
1/c7

)
. (3.52)
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From the comparison of Eqs. (3.51) and (3.52) we obtain that

c3 βi
CFC

2
= c3 Xi + O

(
1/c2

)
. (3.53)

Thus Âij can be computed in terms of Xi as

c4Âij =
ψ6

CFC

2NCFC
c4(LβCFC)ij = c4(LX)ij + O

(
1/c2

)
, (3.54)

where we make use of ψ6
CFC/NCFC = 1 + O(1/c2). The effect of using (LX)ij instead of Âij in the

calculation of the CFC metric can be seen in the expressions

ψCFC = ∆−1
s S(ψ)(NCFC, ψCFC, Âij)

= ∆−1
s S(ψ)(NCFC, ψCFC, (LX)ij) + O

(
1/c8

)
, (3.55)

NCFC = ψ−1
CFC∆−1

s S(Nψ)(NCFC, ψCFC, Âij)

= ψ−1
CFC∆−1

s S(Nψ)(NCFC, ψCFC, (LX)ij) + O
(
1/c8

)
, (3.56)

c βi
CFC = c ∆−1

v S(β)(NCFC, ψCFC, Âij)

= c ∆−1
v S(β)(NCFC, ψCFC, (LX)ij) + O

(
1/c6

)
. (3.57)

where S(ψ), S(Nψ) and S(β) are the sources of Eqs. (3.31)–(3.33), and ∆−1
s and ∆−1

v are just the inverse
operators appearing in the right-hand-side of these equations (for the scalars ψ and Nψ, and for the
vector βi, respectively). When comparing Eqs. (3.56)–(3.50) with Eqs. (3.48)–(3.50), it becomes
obvious that in all cases the error introduced by making the approximation (LX)ij ≈ Âij is smaller
than the error of the CFC approximation itself.

As an illustration of the above properties, we study the influence of the Âij
TT term in Eq. (3.29)

when computing rotating neutron star models with a polytropic Γ = 2 equation of state. This model
setup contains the initial models used in Sec. 3.4. They assume axial symmetry and stationarity, in
combination with rigid rotation. We build a sequence of rotating polytropes with increasing rotation
frequencies, while keeping the central enthalpy fixed, which produces models of increasing masses
from M = 1.33 M⊙ (no rotation), to M = 1.57M⊙ (the Kepler limit; see below). For all these
models, we use three gravitational field schemes: the exact Einstein equations using the stationary
ansatz in FCF, and the two approximate ones, regular CFC and CFC neglecting the term Âij

TT in
Eq. (3.29). The results are displayed on a logarithmic scale in Fig. 3.5. In the top panel we show
the maximal amplitudes of Âij

TT (relatively to Âij) in both FCF and regular CFC, as functions of the
ellipticity e defined in Eq. (3.47). This quantity is physically and numerically limited by the minimal
rotational period at the so-called mass-shedding limit (or Kepler limit), when centrifugal forces exactly
balance gravitational and pressure forces at the star’s equator. In the FCF case we plot the maximal
amplitude of hij . This quantity is dimensionless and represents the deviation of the 3-metric from
conformal flatness, which can be interpreted as the relative error one makes in the metric when using
CFC instead of FCF. Note that this error on computing Âij by discarding the Âij

TT term in the CFC
approximation is roughly of the same magnitude as the error on the metric in the CFC case. All
these quantities decrease like O(e2) as expected, except for stars rotating close to the Kepler limit.
Indeed, the development in powers e is equivalent to a slow-rotation approximation (see, e.g., [240])



92 Improved constrained scheme. . .(Cordero-Carrión et al. 2009)

0.1 110
-5

10
-4

10
-3

10
-2

m
ax

|q
|

max
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Figure 3.5: Consistency of the approximation for rotating neutron star models. In the left panel
max |Âij

TT/Âij| for FCF (solid line) and CFC (dashed line) as well as the maximum deviation
from conformal flatness max |hij| for FCF (dash-dotted line) are plotted against the ellipticity
e. The right panel shows the absolute difference |Nc,CFC − Nc| in the central value of the
lapse between CFC and FCF (solid line) and the absolute difference |Nc,CFC −Nc,CFC′| between

regular CFC and CFC neglecting Âij
TT in Eq. (3.29) (dashed line). The Kepler limit is marked

by vertical dotted lines, while the slanted dotted lines represent the order of accuracy with
respect to powers of e.

by perturbing spherically symmetric configurations and, when comparing these slow-rotation results
to numerical “exact” ones for rigidly rotating stars (see, e.g., [379] in the two-fluids case), one sees
that they usually agree extremely well, excepted very close to the Kepler limit, where this “perturbed
spherical symmetry” approach is no longer valid. Finally, because Âij appears as a quadratic source
term in the Poisson-like equations (3.15, 3.16), the overall errors on the lapse N or the conformal
factor ψ are even smaller, as shown in the bottom panel of Fig. 3.5. In the case of the central value Nc

of the lapse, the error due to the CFC approximation is maximal at the Kepler limit and . 10−4 for
the studied sequence. The error which is then due to neglecting Âij

TT within the CFC scheme amounts
to . 10−6 and decreases faster than the error due to the CFC approximation, namely as O(e4), again
except near the Kepler limit. Our tests thus show that for stationary rotating neutron star models
this additional approximation induces an error which falls within the overall CFC approximation.
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Méthodes spectrales pour la relativité
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Les équations d’Einstein se présentent comme un système d’équations aux dérivées partielles
(EDP) couplées et non-linéaires, dépendant des quatre coordonnées de temps et d’espace. Ainsi,
le formalisme contraint présenté dans la partie I se traduit par un système couplant cinq EDP
elliptiques du second ordre, deux EDP hyperboliques du second ordre et le système d’EDP pour
la jauge de Dirac (5 équations du premier ordre, qui seront explicitées dans le chapitre 6). Cette
complexité, même avec une jauge « plus simple », fait qu’il n’existe que très peu de solutions
exactes des équations d’Einstein qui soient pertinentes pour l’astrophysique. Une première
méthode pour obtenir des solutions approchées est de faire des développements perturbatifs
de type “post-Newtonien” [62], qui se sont révélés très puissants pour le problème des ondes
gravitationnelles provenant de la phase spirallante des binaires d’astres compacts. Cependant,
ce type de techniques est limité par l’hypothèse que les astres sont bien représentés par des
points matériels. Si l’on cherche à modéliser la fin de l’événement de fusion de la binaire ou
résoudre les équations pour la matière venant de la conservation du tenseur impulsion-énergie
(équation de l’hydrodynamique, équations de Maxwell, . . .), il est clair qu’il faut alors utiliser
des méthodes numériques de résolution d’EDP. Il s’agit du champ de recherche de la relativité
numérique, dont le but est de développer les techniques numériques les plus performantes afin de
pouvoir simuler les systèmes physiques possédant un champ gravitationnel intense (nécessitant
la relativité générale pour une bonne description). Plusieurs techniques numériques peuvent être
mises à contribution pour résoudre les EDP de ces modèles, qui incluent souvent les équations
de l’hydrodynamique, magnéto-hydrodynamique, . . .

Alors que la plupart des groupes de relativité numérique utilisaient les méthodes aux
différences finies, ce sont Silvano Bonazzola et Jean-Alain Marck qui ont introduit les méthodes
spectrales en relativité numérique dans les années 1980 [66, 78]. Ces méthodes avaient été
développées et présentées à la fin des années 1970 [210], avec l’idée de base qui est de représenter
une fonction, non pas par un ensemble de ses valeurs en un nombre fini de points de grille, mais
par un ensemble de coefficients dans une base fonctionnelle donnée. La définition d’une grille
reste nécessaire pour le calcul de ces coefficients et pour l’évaluation d’opérateurs non-linéaires.
L’exemple le plus simple est l’utilisation de séries tronquées de Fourier pour la représentation
de fonctions périodiques. Dans les cas non-périodiques, on utilise une base de polynômes or-
thogonaux, comme les polynômes de Tchebychev, de Legendre ou, plus généralement, des fonc-
tions solutions d’un problème de Sturm-Liouville singulier. Le grand avantage est qu’il faut, en
général, beaucoup moins de coefficients que de valeurs sur des points de grilles pour bien décrire
une fonction sur un intervalle, calculer sa dérivée, etc. . .Cela permet de réduire la mémoire uti-
lisée par les programmes et de pouvoir facilement aborder des problèmes à trois dimensions. Le
principal inconvénient est la non-convergence de ces méthodes dans les cas où la fonction que
l’on veut représenter est discontinue (phénomène de Gibbs).

Depuis le début des années 2000, d’autres groupes de relativité numérique ont commencé
à adopter les méthodes spectrales ; en particulier le groupe de Caltech-Cornell qui a réussi
récemment à effectuer les simulations les plus précises de binaires de trous noirs [405]. Par
ailleurs, des approches « multi-méthodes » combinant les méthodes spectrales avec d’autres ont
été utilisées : méthodes spectrales pour le champ gravitationnel et, dans le cadre du projet
CoCoNuT [150], méthodes de Godunov (ou capture de choc) pour l’hydrodynamique relati-
viste [342, 151, 150], ou des méthodes Lagrangiennes (smoothed particle hydrodynamics) pour
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les coalescences de binaires d’étoiles à neutrons [170]. Ainsi, il est apparu intéressant de rédiger
un article de revue sur les méthodes spectrales en relativité numérique, et nous avons eu la
chance, Philippe Grandclément et moi-même, d’être invité pour le réaliser [230]. Cet article tente
de faire le point sur les travaux de relativité numérique qui utilisent les méthodes spectrales,
ainsi que de donner quelques informations et démonstrations sur ces méthodes numériques
elles-mêmes (voir chapitre 4).

De manière plus pratique, en collaboration avec Éric Gourgoulhon, Philippe Grandclément
et Jean-Alain Marck, nous avons développé la bibliothèque numérique lorene [216] pour
la résolution numérique des équations d’Einstein (mais aussi d’autres équations de physique
théorique), en utilisant les méthodes spectrales. Cette bibliothèque est aujourd’hui sous licence
publique de type GNU, c’est-à-dire qu’elle est librement téléchargeable depuis sa page web [216] ;
elle est écrite en C++, qui est un langage de programmation orienté objet. Nous avons mis en
place une liste de diffusion et organisé une école internationale de formation à son utilisation
en novembre 2005.

Fig. II.1 – Scalaire de courbure dans le plan équatorial d’une onde gravitationnelle se propa-
geant dans le vide. Le code d’évolution utilise le formalisme contraint et les méthodes spectrales,
de la bibliothèque lorene.

En revanche, le travail qui est présenté dans les chapitres 5–7 et qui a été publié correspond
à deux autres aspects liés à l’utilisation des méthodes spectrales en relativité numériques : le
développement d’algorithmes d’analyse numérique nécessaires à la relativité générale et celui
d’outils spécifiques, en particulier pour le diagnostique des résultats. En ce qui concerne le pre-
mier point, avec Silvano Bonazzola, nous nous sommes penchés sur les problèmes de conditions
aux bords absorbantes pour l’équation de propagation des ondes gravitationnelles [341]. En
effet, contrairement aux équations elliptiques, il n’est pas possible d’effectuer simplement un
changement de coordonnée spatiale de type u = 1/r, afin de ramener le domaine d’intégration
infini dans un intervalle fini. Il faut donc, en général, imposer des conditions aux bords « trans-
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parentes » pour que les ondes puissent quitter le domaine de calcul numérique sans être
réfléchies par le bord artificiel. Nous avons donc présenté de telles conditions aux bords, en
les implémentant et testant sur des exemples simples. Ces conditions sont maintenant utilisées
comme standard dans les simulations utilisant lorene. Cependant, plusieurs études ont de-
puis montré des conditions aux bords plus sophistiquées [96, 388, 95, 390, 391], et il serait
sans doute judicieux de considérer l’implémentation de ces nouvelles prescriptions, bien qu’elles
soient relativement compliquées à mettre en œuvre.

Toujours en analyse numérique, un algorithme adapté à la résolution de l’équation des
ondes pour un tenseur symétrique, avec la contrainte de divergence nulle a été développé [340].
Ce problème, qui est la généralisation aux tenseurs d’ordres 2 des équations pour le champ
vectoriel magnétique, est central dans le formalisme contraint décrit dans les chapitres 1–3,
où le tenseur hij représentant la déviation de la 3-métrique par rapport à la métrique plate
vérifie une équation d’évolution de type « onde » avec, en plus la condition de jauge qui est
la divergence nulle. Il s’agit, bien évidemment d’un système sur-déterminé, pour lequel il faut
choisir les bonnes équations à résoudre pour que toutes soient néanmoins vérifiées. Une première
approche relativement simple avait été présentée dans l’article de Bonazzola et al. de 2004 [73],
mais dans de nombreuses applications, les résultats étaient entachés d’un trop grand bruit
numérique. Il était donc nécessaire de revoir complètement l’algorithme en cherchant les degrés
de libertés scalaires associés au tenseur hij. Cela permet d’effectuer une intégration relativement
aisée de l’équation des ondes en termes de ces scalaires, puis de reconstruire à chaque pas de
temps le tenseur complet par les conditions de divergence nulle et les définition des scalaires.
Cette approche a été implémentée dans la bibliothèque lorene [216].

Enfin, outil numérique important a été développé avec M. Lap-Ming Lin, post-doctorant
dans notre groupe, concernant la recherche d’horizons apparents dans les espaces-temps prove-
nant de simulations numériques [294], voir chapitre 7. Les horizons apparents sont des objets
très intéressants pour les simulations numériques, à plus d’un titre. D’abord, en supposant vraie
la conjecture de censure cosmique, la présence d’un horizon apparent implique nécessairement
la présence d’un horizon des événements autour de celui-ci. Cela est donc une preuve de la
présence de trou noir dans les données numériques, avant l’apparition éventuelle de la singula-
rité centrale, qui de toute manière ne peut être décrite correctement sur ordinateur. Ensuite,
le fait de connâıtre avec précision la position d’un horizon apparent et la métrique induite sur
sa surface permet de déduire de nombreuses propriétés sur le trou noir qu’il représente : masse,
moment cinétique ou écart à la situation stationnaire. Nous avons ainsi présenté un nouvel
algorithme permettant de trouver, dans un espace-temps numérique, la position d’un horizon
apparent en coordonnées sphériques. Cet algorithme itératif utilise les méthodes spectrales et
une décomposition de la partie angulaire des fonctions sur la base des harmoniques sphériques.
Nous avons montré que cet algorithme était très robuste et plus rapide que ceux précédemment
publiés et utilisés dans la communauté en lui faisant passer des tests sur les solutions analy-
tiques. Il a été implémenté dans la bibliothèque numérique lorene [216], ainsi que dans le
programme CoCoNuT [150].
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Spectral methods for numerical
relativity
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4.1 Introduction

Einstein’s equations represent a complicated set of nonlinear partial differential equations for which
some exact [61] or approximate [62] analytical solutions are known. But these solutions are not always
suitable for physically or astrophysically interesting systems, which require an accurate description of
their relativistic gravitational field without any assumption on the symmetry or with the presence of
matter fields, for instance. Therefore, many efforts have been undertaken to solve Einstein’s equations
with the help of computers in order to model relativistic astrophysical objects. Within this field of
numerical relativity , several numerical methods have been experimented with and a large variety are
currently being used. Among them, spectral methods are now increasingly popular and the goal of this
review is to give an overview (at the moment it is written or updated) of the methods themselves, the
groups using them and the results obtained. Although some of the theoretical framework of spectral
methods is given in Sections 4.2 to 4.4, more details can be found in the books by Gottlieb and
Orszag [210], Canuto et al. [102, 103, 104], Fornberg [182], Boyd [85] and Hesthaven et al. [250]. While
these references have, of course, been used for writing this review, they may also help the interested
reader to get a deeper understanding of the subject. This review is organized as follows: hereafter
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in the introduction, we briefly introduce spectral methods, their usage in computational physics and
give a simple example. Section 4.2 gives important notions concerning polynomial interpolation and
the solution of ordinary differential equations (ODE) with spectral methods. Multidomain approach
is also introduced there, whereas some multidimensional techniques are described in Section 4.3. The
cases of time-dependent partial differential equations (PDE) are treated in Section 4.4. The last two
sections then review results obtained using spectral methods: for stationary configurations and initial
data (Section 4.5), and for the time evolution (Section 4.6) of stars, gravitational waves and black
holes.

4.1.1 About spectral methods

When doing simulations and solving PDEs, one faces the problem of representing and deriving func-
tions on a computer, which deals only with (finite) integers. Let us take a simple example of a
function f : [−1, 1] → R. The most straightforward way to approximate its derivative is through
finite-difference methods: first one must setup a grid

{xi}i=0...N ⊂ [−1, 1]

of N + 1 points in the interval, and represent f by its N + 1 values on these grid points

{fi = f(xi)}i=0...N .

Then, the (approximate) representation of the derivative f ′ shall be, for instance,

∀i < N, f ′
i = f ′(xi) ≃

fi+1 − fi

xi+1 − xi
. (4.1)

If we suppose an equidistant grid, so that ∀i < N, xi+1 − xi = ∆x = 1/N , the error in the approxi-
mation (4.1) will decay as ∆x (first-order scheme). One can imagine higher-order schemes, with more
points involved for the computation of each derivative and, for a scheme of order n, the accuracy can
vary as (∆x)n = 1/Nn.

Spectral methods represent an alternate way: the function f is no longer represented through its
values on a finite number of grid points, but using its coefficients (coordinates) {ci}i=0...N in a finite
basis of known functions {Φi}i=0...N

f(x) ≃
N∑

i=0

ciΦi(x). (4.2)

A relatively simple case is, for instance, when f(x) is a periodic function of period two, and the
Φ2i(x) = cos(πix), Φ2i+1(x) = sin(πix) are trigonometric functions. Equation (4.2) is then nothing
but the truncated Fourier decomposition of f . In general, derivatives can be computed from the
ci’s, with the knowledge of the expression for each derivative Φ′

i(x) as a function of {Φi}i=0...N . The
decomposition (4.2) is approximate in the sense that {Φi}i=0...N represent a complete basis of some
finite-dimensional functional space, whereas f usually belongs to some other infinite-dimensional space.
Moreover, the coefficients ci are computed with finite accuracy. Among the major advantages of using
spectral methods is the rapid decay of the error (faster than any power of 1/N , and in practice often
exponential e−N ), for well-behaved functions (see Section 4.2.4); one, therefore, has an infinite-order
scheme.
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In a more formal and mathematical way, it is useful to work within the methods of weighted
residuals (MWR, see also Section 4.2.5). Let us consider the PDE

Lu(x) = s(x) x ∈ U ⊂ R
d, (4.3)

Bu(x) = 0 x ∈ ∂U, (4.4)

where L is a linear operator, B the operator defining the boundary conditions and s is a source term.
A function ū is said to be a numerical solution of this PDE if it satisfies the boundary conditions (4.4)
and makes “small” the residual

R = Lū − s. (4.5)

If the solution is searched for in a finite-dimensional subspace of some given Hilbert space (any relevant
L2

U space) in terms of the expansion (4.2), then the functions {Φi(x)}i=0...N are called trial functions
and, in addition, the choice of a set of test functions {ξi(x)}i=0...N defines the notion of smallness for
the residual by means of the Hilbert space scalar product

∀i = 0...N, (ξi, R) = 0. (4.6)

Within this framework, various numerical methods can be classified according to the choice of the
trial functions:

• Finite differences: the trial functions are overlapping local polynomials of fixed order (lower
than N).

• Finite elements: the trial functions are local smooth functions, which are nonzero, only on
subdomains of U .

• Spectral methods: the trial functions are global smooth functions on U .

Various choices of the test functions define different types of spectral methods, as detailed in
Section 4.2.5. Usual choices for the trial functions are (truncated) Fourier series, spherical harmonics
or orthogonal families of polynomials.

4.1.2 Spectral methods in physics

We do not give here all the fields of physics in which spectral methods are employed, but sketching
the variety of equations and physical models that have been simulated with such techniques. Spectral
methods originally appeared in numerical fluid dynamics, where large spectral hydrodynamic codes
have been regularly used to study turbulence and transition to the turbulence since the seventies. For
fully resolved, direct numerical calculations of Navier–Stokes equations, spectral methods were often
preferred for their high accuracy. Historically, they also allowed for two or three-dimensional simula-
tions of fluid flows, because of their reasonable computer memory requirements. Many applications of
spectral methods in fluid dynamics have been discussed by Canuto et al. [102, 104], and the techniques
developed in that field are of some interest to numerical relativity.

From pure fluid-dynamics simulations, spectral methods have rapidly been used in connected fields
of research: geophysics [412], meteorology and climate modeling [459]. In this last research category,
global circulation models are used as boundary conditions to more specific (lower-scale) models, with
improved micro-physics. In this way, spectral methods are only a part of the global numerical model,
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combined with other techniques to bring the highest accuracy, for a given computational power. A
solution to the Maxwell equations can, of course, also be obtained with spectral methods and therefore,
magneto-hydrodynamics (MHD) have been studied with these techniques (see, e.g., Hollerbach [253]).
This has been the case in astrophysics too, where, for example, spectral three-dimensional numerical
models of solar magnetic dynamo action realized by turbulent convection have been computed [93].
And Kompaneet’s equation, describing the evolution of photon distribution function in a plasma
bath at thermal equilibrium within the Fokker-Planck approximation, has been solved using spectral
methods to model the X-ray emission of Her X-1 [66, 72]. In simulations of cosmological structure
formation or galaxy evolution, many N-body codes rely on a spectral solver for the computation of
the gravitational force by the particle-mesh algorithm. The mass corresponding to each particle is
decomposed onto neighboring grid points, thus defining a density field. The Poisson equation giving
the Newtonian gravitational potential is then usually solved in Fourier space for both fields [252].

To our knowledge, the first published result of the numerical solution of Einstein’s equations, using
spectral methods, is the spherically-symmetric collapse of a neutron star to a black hole by Gourgoul-
hon in 1991 [211]. He used spectral methods as they were developed in the Meudon group by Bonazzola
and Marck [79]. Later studies of quickly-rotating neutron stars [67] (stationary axisymmetric models),
the collapse of a neutron star in tensor-scalar theory of gravity [337] (spherically-symmetric dynamic
spacetime), and quasiequilibrium configurations of neutron star binaries [71] and of black holes [229]
(three-dimensional and stationary spacetimes) have grown in complexity, up to the three-dimensional
time-dependent numerical solution of Einstein’s equations [73]. On the other hand, the first fully three-
dimensional evolution of the whole Einstein system was achieved in 2001 by Kidder et al. [277], where
a single black hole was evolved to t ≃ 600 M – 1300 M using excision techniques. They used spectral
methods as developed in the Cornell/Caltech group by Kidder et al. [279] and Pfeiffer et al. [361]. Since
then, they have focused on the evolution of black-hole–binary systems, which has recently been simu-
lated up to merger and ring down by Scheel et al. [405]. Other groups (for instance Ansorg et al. [30],
Bartnik and Norton [49], Frauendiener [185] and Tichy [466]) have also used spectral methods to solve
Einstein’s equations; Sections 4.5 and 4.6 are devoted to a more detailed review of these works.

4.1.3 A simple example

Before entering the details of spectral methods in Sections 4.2, 4.3 and 4.4, let us give here their spirit
with the simple example of the Poisson equation in a spherical shell:

∆φ = σ, (4.7)

where ∆ is the Laplace operator (4.93) expressed in spherical coordinates (r, θ, ϕ) (see also Sec-
tion 4.3.2). We want to solve Equation (4.7) in the domain where 0 < Rmin ≤ r ≤ Rmax, θ ∈
[0, π], ϕ ∈ [0, 2π). This Poisson equation naturally arises in numerical relativity when, for example,
solving for initial conditions or the Hamiltonian constraint in the 3+1 formalism [214]: the linear part
of these equations can be cast in form (4.7), and the nonlinearities put into the source σ, with an
iterative scheme on φ.

First, the angular parts of both fields are decomposed into a (finite) set of spherical harmonics
{Y m

ℓ } (see Section 4.3.2):

σ(r, θ, ϕ) ≃
ℓmax∑

ℓ=0

m=ℓ∑

m=−ℓ

sℓm(r)Y m
ℓ (θ, ϕ), (4.8)
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with a similar formula relating φ to the radial functions fℓm(r). Because spherical harmonics are
eigenfunctions of the angular part of the Laplace operator, the Poisson equation can be equivalently
solved as a set of ordinary differential equations for each couple (ℓ, m), in terms of the coordinate r:

∀(ℓ, m),
d2fℓm

dr2
+

2

r

dfℓm

dr
− ℓ(ℓ + 1)fℓm

r2
= sℓm(r). (4.9)

We then map

[Rmin, Rmax] → [−1, 1]

r 7→ ξ =
2r − Rmax − Rmin

Rmax − Rmin
, (4.10)

and decompose each field in a (finite) basis of Chebyshev polynomials {Ti}i=0...N (see Section 4.2.4):

sℓm(ξ) =
N∑

i=0

ciℓmTi(ξ),

fℓm(ξ) =
N∑

i=0

aiℓmTi(ξ). (4.11)

Each function fℓm(r) can be regarded as a column-vector Aℓm of its N + 1 coefficients aiℓm in this
basis; the linear differential operator on the left-hand side of Equation (4.9) being, thus, a matrix Lℓm

acting on the vector:

LℓmAℓm = Sℓm, (4.12)

with Sℓm being the vector of the N + 1 coefficients ciℓm of sℓm(r). This matrix can be computed from
the recurrence relations fulfilled by the Chebyshev polynomials and their derivatives (see Section 4.2.4
for details).

The matrix L is singular because problem (4.7) is ill posed. One must indeed specify boundary
conditions at r = Rmin and r = Rmax. For simplicity, let us suppose

∀(θ, ϕ), φ(r = Rmin, θ, ϕ) = φ(r = Rmax, θ, ϕ) = 0. (4.13)

To impose these boundary conditions, we adopt the tau methods (see Section 4.2.5): we build the
matrix L̄, taking L and replacing the last two lines by the boundary conditions, expressed in terms of
the coefficients from the properties of Chebyshev polynomials:

∀(ℓ, m),

N∑

i=0

(−1)iaiℓm =

N∑

i=0

aiℓm = 0. (4.14)

Equations (4.14) are equivalent to boundary conditions (4.13), within the considered spectral approx-
imation, and they represent the last two lines of L̄, which can now be inverted and give the coefficients
of the solution φ.

If one summarizes the steps:

1. Setup an adapted grid for the computation of spectral coefficients (e.g., equidistant in the
angular directions and Chebyshev–Gauss–Lobatto collocation points; see Section 4.2.4).
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2. Get the values of the source σ on these grid points.

3. Perform a spherical-harmonics transform (for example, using some available library [322]), fol-
lowed by the Chebyshev transform (using a Fast Fourier Transform (FFT), or a Gauss–Lobatto
quadrature) of the source σ.

4. For each couple of values (ℓ, m), build the corresponding matrix L̄ with the boundary conditions,
and invert the system (using any available linear-algebra package) with the coefficients of σ as
the right-hand side.

5. Perform the inverse spectral transform to get the values of φ on the grid points from its coeffi-
cients.

A numerical implementation of this algorithm has been reported by Grandclément et al. [228],
who have observed that the error decayed as e−ℓmax · e−N , provided that the source σ was smooth.
Machine round-off accuracy can be reached with ℓmax ∼ N ∼ 30, which makes the matrix inversions
of step 4 very cheap in terms of CPU and the whole method affordable in terms of memory usage.
These are the main advantages of using spectral methods, as shall be shown in the following sections.
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4.2 Concepts in One Dimension

In this section the basic concept of spectral methods in one spatial dimension is presented. Some
general properties of the approximation of functions by polynomials are introduced. The main formulae
of the spectral expansion are then given and two sets of polynomials are discussed (Legendre and
Chebyshev polynomials). A particular emphasis is put on convergence properties (i.e., the way the
spectral approximation converges to the real function).

In Section 4.2.5, three different methods of solving an ordinary differential equation (ODE) are
exhibited and applied to a simple problem. Section 4.2.6 is concerned with multidomain techniques.
After giving some motivations for the use of multidomain decomposition, four different implementa-
tions are discussed, as well as their respective merits. One simple example is given, which uses only
two domains.

For problems in more than one dimension see Section 4.3.

4.2.1 Best polynomial approximation

Polynomials are the only functions that a computer can exactly evaluate and so it is natural to try
to approximate any function by a polynomial. When considering spectral methods, we use global
polynomials on a few domains. This is to be contrasted with finite difference schemes, for instance,
where only local polynomials are considered.

In this particular section, real functions of [−1, 1] are considered. A theorem due to Weierstrass
(see for instance [137]) states that the set P of all polynomials is a dense subspace of all the continuous
functions on [−1, 1], with the norm ‖·‖∞. This maximum norm is defined as

‖f‖∞ = max
x∈[−1,1]

|f (x)| . (4.15)

This means that, for any continuous function f of [−1, 1], there exists a sequence of polynomials
(pi) , i ∈ N that converges uniformly towards f :

lim
i→∞

‖f − pi‖∞ = 0. (4.16)

This theorem shows that it is probably a good idea to approximate continuous functions by polyno-
mials.

Given a continuous function f , the best polynomial approximation of degree N , is the polynomial
p⋆

N that minimizes the norm of the difference between f and itself:

‖f − p⋆
N‖∞ = min {‖f − p‖∞ , p ∈ PN} . (4.17)

Chebyshev alternate theorem states that for any continuous function f , p⋆
N is unique (theorem 9.1

of [382] and theorem 23 of [316]). There exist N + 2 points xi ∈ [−1, 1] such that the error is exactly
attained at those points in an alternate manner:

f (xi) − p⋆
N (xi) = (−1)i+δ ‖f − p⋆

N‖∞ , (4.18)

where δ = 0 or δ = 1. An example of a function and its best polynomial approximation is shown in
Figure 4.1.
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Figure 4.1: Function f = cos3 (πx/2) + (x + 1)3 /8 (black curve) and its best approximation
of degree 2 (red curve). The blue arrows denote the four points where the maximum error is
attained.

4.2.2 Interpolation on a grid

A grid X on the interval [−1, 1] is a set of N + 1 points xi ∈ [−1, 1], 0 ≤ i ≤ N . These points are
called the nodes of the grid X.

Let us consider a continuous function f and a family of grids X with N + 1 nodes xi. Then, there
exists a unique polynomial of degree N , IX

N f , that coincides with f at each node:

IX
N f (xi) = f (xi) 0 ≤ i ≤ N. (4.19)

IX
N f is called the interpolant of f through the grid X. IX

N f can be expressed in terms of the
Lagrange cardinal polynomials:

IX
N f =

N∑

i=0

f (xi) ℓX
i (x) , (4.20)

where ℓX
i are the Lagrange cardinal polynomials. By definition, ℓX

i is the unique polynomial of degree
N that vanishes at all nodes of the grid X, except at xi, where it is equal to one. It is easy to show
that the Lagrange cardinal polynomials can be written as

ℓX
i (x) =

N∏

j=0,j 6=i

x − xj

xi − xj
. (4.21)

Figure 4.2 shows some examples of Lagrange cardinal polynomials. An example of a function and its
interpolant on a uniform grid can be seen in Figure 4.3.

Thanks to Chebyshev alternate theorem, one can see that the best approximation of degree N is
an interpolant of the function at N + 1 nodes. However, in general, the associated grid is not known.
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Figure 4.2: Lagrange cardinal polynomials ℓX
3 (red curve) and ℓX

7 on an uniform grid with
N = 8. The black circles denote the nodes of the grid.
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Figure 4.3: Function f = cos3 (πx/2) + (x + 1)3 /8 (black curve) and its interpolant (red
curve)on a uniform grid of five nodes. The blue circles show the position of the nodes.
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Figure 4.4: Function f =
1

1 + 16x2
(black curve) and its interpolant (red curve) on a uniform

grid of five nodes (left panel) and 14 nodes (right panel). The blue circles show the position of
the nodes.

The difference between the error made by interpolating on a given grid X can be compared to the
smallest possible error for the best approximation. One can show that (see Prop. 7.1 of [382]):

∥∥f − IX
N f

∥∥
∞

≤ (1 + ΛN (X)) ‖f − p⋆
N‖∞ , (4.22)

where Λ is the Lebesgue constant of the grid X and is defined as:

ΛN (X) = maxx∈[−1,1]

N∑

i=0

∣∣ℓX
i (x)

∣∣ . (4.23)

A theorem by Erdös [163] states that, for any choice of grid X, there exists a constant C > 0 such
that:

ΛN (X) >
2

π
ln (N + 1) − C. (4.24)

It immediately follows that ΛN → ∞ when N → ∞. This is related to a result from 1914 by Faber [168]
that states that for any grid, there always exists at least one continuous function f , whose interpolant
does not converge uniformly to f . An example of such failure of convergence is show in Figure 4.4,

where the convergence of the interpolant to the function f =
1

1 + 16x2
is clearly nonuniform (see the

behavior near the boundaries of the interval). This is known as the Runge phenomenon.
Moreover, a theorem by Cauchy (theorem 7.2 of [382]) states that, for all functions f ∈ C(N+1),

the interpolation error on a grid X of N + 1 nodes is given by

f (x) − IX
N f (x) =

fN+1 (ǫ)

(N + 1)!
wX

N+1 (x) , (4.25)

where ǫ ∈ [−1, 1]. wX
N+1 is the nodal polynomial of X, being the only polynomial of degree N + 1,

with a leading coefficient of 1, and that vanishes on the nodes of X. It is then easy to show that

wX
N+1 (x) =

N∏

i=0

(x − xi) . (4.26)
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Figure 4.5: Same as Figure 4.4 but using a grid based on the zeros of Chebyshev polynomials.
The Runge phenomenon is no longer present.

In Equation (4.25), one has a priori no control on the term involving fN+1. For a given function,
it can be rather large and this is indeed the case for the function f shown in Figure 4.4 (one can
check, for instance, that

∣∣fN+1 (1)
∣∣ becomes larger and larger). However, one can hope to minimize

the interpolation error by choosing a grid such that the nodal polynomial is as small as possible. A
theorem by Chebyshev states that this choice is unique and is given by a grid, whose nodes are the zeros
of the Chebyshev polynomial TN+1 (see Section 4.2.3 for more details on Chebyshev polynomials).
With such a grid, one can achieve

∥∥wX
N+1

∥∥
∞

=
1

2N
, (4.27)

which is the smallest possible value (see Equation (18), Section 4.2, Chapter 5 of [259]). So, a grid
based on nodes of Chebyshev polynomials can be expected to perform better that a standard uniform
one. This is what can be seen in Figure 4.5, which shows the same function and its interpolants
as in Figure 4.4, but with a Chebyshev grid. Clearly, the Runge phenomenon is no longer present.
One can check that, for this choice of function f , the uniform convergence of the interpolant to the
function is recovered. This is because

∥∥wX
N+1

∥∥
∞

decreases faster than fN+1/ (N + 1)! increases. Of
course, Faber’s result implies that this cannot be true for all the functions. There still must exist some
functions for which the interpolant does not converge uniformly to the function itself (it is actually
the class of functions that are not absolutely continuous, like the Cantor function).

4.2.3 Polynomial interpolation

Orthogonal polynomials

Spectral methods are often based on the notion of orthogonal polynomials. In order to define orthog-
onality, one must define the scalar product of two functions on an interval [−1, 1]. Let us consider a
positive function w of [−1, 1] called the measure. The scalar product of f and g with respect to this
measure is defined as:

(f, g)w =

∫

x∈[−1,1]
f (x) g (x)w (x) dx. (4.28)
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Figure 4.6: Function f = cos3 (πx/2)+(x + 1)3 /8 (black curve) and its projection on Chebyshev
polynomials (red curve), for N = 4 (left panel) and N = 8 (right panel).

A basis of PN is then a set of N + 1 polynomials {pn}n=0...N . pn is of degree n and the polynomials
are orthogonal: (pi, pj)w = 0 for i 6= j.

The projection PNf of a function f on this basis is then

PNf =
N∑

n=0

f̂npn, (4.29)

where the coefficients of the projection are given by

f̂n =
(f, pn)

(pn, pn)
. (4.30)

The difference between f and its projection goes to zero when N increases:

‖f − PNf‖∞ → 0 when N → ∞. (4.31)

Figure 4.6 shows the function f = cos3 (πx/2) + (x + 1)3 /8 and its projection on Chebyshev polyno-
mials (see Section 4.2.4) for N = 4 and N = 8, illustrating the rapid convergence of PNf to f .

At first sight, the projection seems to be an interesting means of numerically representing a func-
tion. However, in practice this is not the case. Indeed, to determine the projection of a function, one
needs to compute the integrals (4.30), which requires the evaluation of f at a great number of points,
making the whole numerical scheme impractical.

Gaussian quadratures

The main theorem of Gaussian quadratures (see for instance [103]) states that, given a measure w,
there exist N + 1 positive real numbers wn and N + 1 real numbers xn ∈ [−1, 1] such that:

∀f ∈ P2N+δ,

∫

[−1,1]
f (x)w (x) dx =

N∑

n=0

f (xn)wn. (4.32)

The wn are called the weights and the xn are the collocation points. The integer δ can take several
values depending on the exact quadrature considered:
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• Gauss quadrature: δ = 1.

• Gauss–Radau: δ = 0 and x0 = −1.

• Gauss–Lobatto: δ = −1 and x0 = −1, xN = 1.

Gauss quadrature is the best choice because it applies to polynomials of higher degree but Gauss–
Lobatto quadrature is often more useful for numerical purposes because the outermost collocation
points coincide with the boundaries of the interval, making it easier to impose matching or boundary
conditions. More detailed results and demonstrations about those quadratures can be found for
instance in [103].

Spectral interpolation

As already stated in 4.2.3, the main drawback of projecting a function in terms of orthogonal poly-
nomials comes from the difficulty to compute the integrals (4.30). The idea of spectral methods is to
approximate the coefficients of the projection by making use of Gaussian quadratures. By doing so,
one can define the interpolant of a function f by

INf =
N∑

n=0

f̃npn (x) , (4.33)

where

f̃n =
1

γn

N∑

i=0

f (xi) pn (xi) wi and γn =
N∑

i=0

p2
n (xi)wi. (4.34)

The f̃n exactly coincides with the coefficients f̂n, if the Gaussian quadrature is applicable for computing
Equation (4.30), that is, for all f ∈ PN+δ. So, in general, INf 6= PNf and the difference between the
two is called the aliasing error. The advantage of using f̃n is that they are computed by estimating f
at the N + 1 collocation points only.

One can show that INf and f coincide at the collocation points: INf (xi) = f (xi) so that IN

interpolates f on the grid, whose nodes are the collocation points. Figure 4.7 shows the function
f = cos3 (π/2) + (x + 1)3 /8 and its spectral interpolation using Chebyshev polynomials, for N = 4
and N = 6.

Two equivalent descriptions

The description of a function f in terms of its spectral interpolation can be given in two different, but
equivalent spaces:

• in the configuration space, if the function is described by its value at the N + 1 collocation
points f (xi);

• in the coefficient space, if one works with the N + 1 coefficients f̃i.

There is a bijection between both spaces and the following relations enable us to go from one to
the other:

• the coefficients can be computed from the values of f (xi) using Equation (4.34);
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Figure 4.7: Function f = cos3 (πx/2) + (x + 1)3 /8 (black curve) and its interpolant INf on
Chebyshev polynomials (red curve), for N = 4 (left panel) and N = 6 (right panel). The
collocation points are denoted by the blue circles and correspond to Gauss–Lobatto quadrature.

• the values at the collocation points are expressed in terms of the coefficients by making use of
the definition of the interpolant (4.33):

f (xi) =
N∑

n=0

f̃npn (xi) . (4.35)

Depending on the operation one has to perform on a given function, it may be more clever to
work in one space or the other. For instance, the square root of a function is very easily given in the
collocation space by

√
f (xi), whereas the derivative can be computed in the coefficient space if, and

this is generally the case, the derivatives of the basis polynomials are known, by f ′ (x) =

N∑

n=0

f̃np′n (x).

4.2.4 Usual polynomials

Sturm–Liouville problems and convergence

The Sturm–Liouville problems are eigenvalue problems of the form:

−
(
pu′

)′
+ qu = λwu, (4.36)

on the interval [−1, 1]. p, q and w are real-valued functions such that:

• p (x) is continuously differentiable, strictly positive and continuous at x = ±1.

• q (x) is continuous, non-negative and bounded.

• w (x) is continuous, non-negative and integrable.
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The solutions are then the eigenvalues λi and the eigenfunctions ui (x). The eigenfunctions are
orthogonal with respect to the measure w:

∫ 1

−1
um (x)un (x)w (x) dx = 0 for m 6= n. (4.37)

Singular Sturm–Liouville problems are particularly important for spectral methods. A Sturm–
Liouville problem is singular if and only if the function p vanishes at the boundaries x = ±1. One can
show, that if the functions of the spectral basis are chosen to be the solutions of a singular Sturm–
Liouville problem, then the convergence of the function to its interpolant is faster than any power
law of N , N being the order of the expansion (see Section 5.2 of [103]). One talks about spectral
convergence. Let us be precise in saying that this does not necessarily imply that the convergence
is exponential. Convergence properties are discussed in more detail for Legendre and Chebyshev
polynomials in Section 4.2.4.

Conversely, it can be shown that spectral convergence is not ensured when considering solutions
of regular Sturm–Liouville problems [103].

In what follows, two usual types of solutions of singular Sturm–Liouville problems are considered:
Legendre and Chebyshev polynomials.

Legendre polynomials

Legendre polynomials Pn are eigenfunctions of the following singular Sturm–Liouville problem:

((
1 − x2

)
P ′

n

)′
+ n (n + 1)Pn = 0. (4.38)

In the notations of Equation (4.36), p = 1 − x2, q = 0, w = 1 and λn = −n (n + 1).
It follows that Legendre polynomials are orthogonal on [−1, 1] with respect to the measure w (x) =

1. Moreover, the scalar product of two polynomials is given by:

(Pn, Pm) =

∫ 1

−1
PnPmdx =

2

2n + 1
δmn. (4.39)

Starting from P0 = 1 and P1 = x, the successive polynomials can be computed by the following
recurrence expression:

(n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) . (4.40)

Among the various properties of Legendre polynomials, one can note that i) Pn has the same
parity as n. ii) Pn is of degree n. iii) Pn (±1) = (±1)n. iv) Pn has exactly n zeros on [−1, 1]. The
first polynomials are shown in Figure 4.8.

The weights and locations of the collocation points associated with Legendre polynomials depend
on the choice of quadrature.

• Legendre–Gauss: xi are the nodes of PN+1 and wi =
2

(
1 − x2

i

) [
P ′

N+1 (xi)
]2 .

• Legendre–Gauss–Radau: x0 = −1 and xi are the nodes of PN + PN+1. The weights are given

by w0 =
2

(N + 1)2
and wi =

1

(N + 1)2
.
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Figure 4.8: First Legendre polynomials, from P0 to P5.

• Legendre–Gauss–Lobatto: x0 = −1, xN = 1 and xi are the nodes of P ′
N . The weights are

wi =
2

N (N + 1)

1

[PN (xi)]
2 .

These values have no analytic expression, but they can be computed numerically in an efficient
way.

Some elementary operations can easily be performed on the coefficient space. Let us assume

that a function f is given by its coefficients an so that f =
N∑

n=0

anPn. Then, the coefficients bn of

Hf =

N∑

n=0

bnPn can be found as a function of an, for various operators H. For instance,

• if H is multiplication by x then:

bn =
n

2n − 1
an−1 +

n + 1

2n + 3
an+1 (n ≥ 1) ; (4.41)

• if H is the derivative:

bn = (2n + 1)
N∑

p=n+1,p+n odd

ap; (4.42)

• if H is the second derivative:

bn = (n + 1/2)
N∑

p=n+2,p+n even

[p (p + 1) − n (n + 1)] ap. (4.43)

These kind of relations enable one to represent the action of H as a matrix acting on the vector
of an, the product being the coefficients of Hf , i.e. the bn.
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Chebyshev polynomials

Chebyshev polynomials Tn are eigenfunctions of the following singular Sturm-Liouville problem:

(√
1 − x2T ′

n

)′
+

n√
1 − x2

Tn = 0. (4.44)

In the notation of Equation (4.36), p =
√

1 − x2, q = 0, w = 1/
√

1 − x2 and λn = −n.

It follows that Chebyshev polynomials are orthogonal on [−1, 1] with respect to the measure
w = 1/

√
1 − x2 and the scalar product of two polynomials is

(Tn, Tm) =

∫ 1

−1

TnTm√
1 − x2

dx =
π

2
(1 + δ0n) δmn. (4.45)

Given that T0 = 1 and T1 = x, the higher-order polynomials can be obtained by making use of the
recurrence

Tn+1 (x) = 2xTn (x) − Tn−1 (x) . (4.46)

This implies the following simple properties: i) Tn has the same parity as n; ii) Tn is of degree n; iii)
Tn (±1) = (±1)n; iv) Tn has exactly n zeros on [−1, 1]. The first polynomials are shown in Figure 4.9.

Contrary to the Legendre case, both the weights and positions of the collocation points are given
by analytic formulae:

• Chebyshev–Gauss: xi = cos
(2i + 1)π

2N + 2
and wi =

π

N + 1
.

• Chebyshev–Gauss–Radau: xi = cos
2πi

2N + 1
. The weights are w0 =

π

2N + 1
and wi =

2π

2N + 1
.
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• Chebyshev–Gauss–Lobatto: xi = cos
πi

N
. The weights are w0 = wN =

π

2N
and wi =

π

N
.

As for the Legendre case, the action of various linear operators H can be expressed in the coefficient
space. This means that the coefficients bn of Hf are given as functions of the coefficients an of f . For
instance,

• if H is multiplication by x:

bn =
1

2
[(1 + δ0 n−1) an−1 + an+1] (n ≥ 1) ; (4.47)

• if H is the derivative:

bn =
2

(1 + δ0 n)

N∑

p=n+1,p+n odd

pap; (4.48)

• if H is the second derivative:

bn =
1

(1 + δ0 n)

N∑

p=n+2,p+n even

p
(
p2 − n2

)
ap. (4.49)

Convergence properties

One of the main advantages of spectral methods is the very fast convergence of the interpolant INf to
the function f , at least for smooth enough functions. Let us consider a Cm function f ; one can place
the following upper bounds on the difference between f and its interpolant INf :

• For Legendre:

‖INf − f‖L2 ≤ C1

Nm−1/2

m∑

k=0

∥∥∥f (k)
∥∥∥

L2
. (4.50)

• For Chebyshev:

‖INf − f‖L2
w
≤ C2

Nm

m∑

k=0

∥∥∥f (k)
∥∥∥

L2
w

. (4.51)

‖INf − f‖∞ ≤ C3

Nm−1/2

m∑

k=0

∥∥∥f (k)
∥∥∥

L2
w

. (4.52)

The Ci are positive constants. An interesting limit of the above estimates concerns a C∞ function.
One can then see that the difference between f and INf decays faster than any power of N . This is
spectral convergence. Let us be precise in saying that this does not necessarily imply that the error

decays exponentially (think about exp
(
−
√

N
)
, for instance). Exponential convergence is achieved

only for analytic functions, i.e. functions that are locally given by a convergent power series.
An example of this very fast convergence is shown in Figure 4.10. The error clearly decays ex-

ponentially, the function being analytic, until it reaches the level of machine precision, 10−14 (one is
working in double precision in this particular case). Figure 4.10 illustrates the fact that, with spectral
methods, very good accuracy can be reached with only a moderate number of coefficients.
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Figure 4.10: Maximum difference between f = cos3 (πx/2) + (x + 1)3 /8 and its interpolant
INf , as a function of N .

If the function is less regular (i.e. not C∞), the error only decays as a power law, thus making
the use of spectral method less appealing. It can easily be seen in the worst possible case: that
of a discontinuous function. In this case, the estimates (4.50-4.52) do not even ensure convergence.
Figure 4.11 shows a step function and its interpolant for various values of N . One can see that the
maximum difference between the function and its interpolant does not go to zero even when N is
increasing. This is known as the Gibbs phenomenon.

Finally, Equation (4.52) shows that, if m > 0, the interpolant converges uniformly to the function.
Continuous functions that do not converge uniformly to their interpolant, whose existence has been
shown by Faber [168] (see Section 4.2.2), must belong to the C0 functions. Indeed, for the case m = 0,
Equation (4.52) does not prove convergence (neither do Equations (4.50) or (4.51)).

Trigonometric functions

A detailed presentation of the theory of Fourier transforms is beyond the scope of this work. However,
there is a close link between discrete Fourier transforms and their spectral interpolation, which is
briefly outlined here. More detail can be found, for instance, in [103].

The Fourier transform Pf of a function f of [0, 2π] is given by:

Pf (x) = a0 +
∞∑

n=1

an cos (nx) +
∞∑

n=1

bn sin (nx) . (4.53)

The Fourier transform is known to converge rather rapidly to the function itself, if f is periodic.

However, the coefficients an and bn are given by integrals of the form

∫ 2π

0
f (x) cos (nx) dx, that

cannot easily be computed (as was the case for the projection of a function on orthogonal polynomials
in Section 4.2.3).
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Figure 4.11: Step function (black curve) and its interpolant, for various values of N .

The solution to this problem is also very similar to the use of the Gaussian quadratures. Let us
introduce N + 1 collocation points xi = 2πi/(N + 1). Then the discrete Fourier coefficients with
respect to those points are:

ã0 =
1

N

N∑

k=1

f (xk) , (4.54)

ãn =
2

N

N∑

k=1

f (xk) cos (nxk) , (4.55)

b̃n =
2

N

N∑

k=1

f (xk) sin (nxk) (4.56)

and the interpolant INf is then given by:

INf (x) = ã0 +
N∑

n=1

ãn cos (nx) +
N∑

n=1

b̃n sin (nx) . (4.57)

The approximation made by using discrete coefficients in place of real ones is of the same nature as
the one made when computing coefficients of projection (4.30) by means of the Gaussian quadratures.
Let us mention that, in the case of a discrete Fourier transform, the first and last collocation points
lie on the boundaries of the interval, as for a Gauss-Lobatto quadrature. As for the polynomial
interpolation, the convergence of INf to f is spectral for all periodic and C∞ functions.

Choice of basis

For periodic functions of [0, 2π[, the discrete Fourier transform is the natural choice of basis. If the
considered function has also some symmetries, one can use a subset of the trigonometric polynomials.
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For instance, if the function is i) periodic on [0, 2π[ and is also odd with respect to x = π, then it
can be expanded in terms of sines only. If the function is not periodic, then it is natural to expand it
either in Chebyshev or Legendre polynomials. Using Legendre polynomials can be motivated by the
fact that the associated measure is very simple: w (x) = 1. The multidomain technique presented in
Section 4.2.6 is one particular example in which such a property is required. In practice, Legendre
and Chebyshev polynomials usually give very similar results.

4.2.5 Spectral methods for ODEs

The weighted residual method

Let us consider a differential equation of the form

Lu (x) = S (x) , x ∈ [−1, 1] , (4.58)

where L is a linear second-order differential operator. The problem admits a unique solution once
appropriate boundary conditions are prescribed at x = 1 and x = −1. Typically, one can specify i) the
value of u (Dirichlet-type) ii) the value of its derivative ∂xu (Neumann-type) iii) a linear combination
of both (Robin-type).

As for the elementary operations presented in Section 4.2.4 and 4.2.4, the action of L on u can be
expressed by a matrix Lij . If the coefficients of u with respect to a given basis are the ũi, then the
coefficients of Lu are

N∑

j=0

Lij ũj . (4.59)

Usually, Lij can easily be computed by combining the action of elementary operations like the second
derivative, the first derivative, multiplication or division by x (see Sections 4.2.4 and 4.2.4 for some
examples).

A function u is an admissible solution to the problem if and only if i) it fulfills the boundary
conditions exactly (up to machine accuracy) ii) it makes the residual R = Lu − S small. In the
weighted residual method, one considers a set of N + 1 test functions {ξn}n=0...N on [−1, 1]. The
smallness of R is enforced by demanding that

(R, ξk) = 0,∀k ≤ N. (4.60)

As N increases, the obtained solution gets closer and closer to the real one. Depending on the choice
of the test functions and the way the boundary conditions are enforced, one gets various solvers. Three
classical examples are presented below.

The tau method

In this particular method, the test functions coincide with the basis used for the spectral expansion,
for instance the Chebyshev polynomials. Let us denote ũi and s̃i the coefficients of the solution u and
of the source S, respectively.

Given the expression of Lu in the coefficient space (4.59) and the fact that the basis polynomials
are orthogonal, the residual equations (4.60) are expressed as

N∑

i=0

Lniũi = s̃n, ∀n ≤ N, (4.61)
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Figure 4.12: Exact solution (4.64) of Equation (4.62) (blue curve) and the numerical solution
(red curve) computed by means of a tau method, for N = 4 (left panel) and N = 8 (right
panel).

the unknowns being the ũi. However, as such, this system does not admit a unique solution, due to
the homogeneous solutions of L (i.e. the matrix associated with L is not invertible) and one has to
impose boundary conditions. In the tau method, this is done by relaxing the last two equations (4.61)
(i.e. for n = N − 1 and n = N) and replacing them by the boundary conditions at x = −1 and x = 1.

The tau method thus ensures that Lu and S have the same coefficients, excepting the last ones.
If the functions are smooth, then their coefficients should decrease in a spectral manner and so the
“forgotten” conditions are less and less stringent as N increases, ensuring that the computed solution
converges rapidly to the real one.

As an illustration, let us consider the following equation:

d2u

dx2
− 4

du

dx
+ 4u = exp (x) − 4e

(1 + x2)
(4.62)

with the following boundary conditions:

u (x = −1) = 0 and u (x = 1) = 0. (4.63)

The exact solution is analytic and is given by

u (x) = exp (x) − sinh (1)

sinh (2)
exp (2x) − e

(1 + x2)
. (4.64)

Figure 4.12 shows the exact solution and the numerical one, for two different values of N . One
can note that the numerical solution converges rapidly to the exact one, the two being almost indis-
tinguishable for N as small as N = 8. The numerical solution exactly fulfills the boundary conditions,
no matter the value of N .

The collocation method

The collocation method is very similar to the tau method. They only differ in the choice of test
functions. Indeed, in the collocation method one uses continuous functions that are zero at all but one
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Figure 4.13: Exact solution (4.64) of Equation (4.62) (blue curve) and the numerical solution
(red curve) computed by means of a collocation method, for N = 4 (left panel) and N = 8
(right panel).

collocation point. They are indeed the Lagrange cardinal polynomials already seen in Section 4.2.2
and can be written as ξi (xj) = δij . With such test functions, the residual equations (4.60) are

Lu (xn) = S (xn) , ∀n ≤ N. (4.65)

The value of Lu at each collocation point is easily expressed in terms of ũ by making use of (4.59)
and one gets

N∑

i=0

N∑

j=0

Lij ũjTi (xn) = S (xn) , ∀n ≤ N. (4.66)

Let us note that, even if the collocation method imposes that Lu and S coincide at each collocation
point, the unknowns of the system written in the form (4.66) are the coefficients ũn and not u (xn).
As for the tau method, system (4.66) is not invertible and boundary conditions must be enforced by
additional equations. In this case, the relaxed conditions are the two associated with the outermost
points, i.e. n = 0 and n = N , which are replaced by appropriate boundary conditions to get an
invertible system.

Figure 4.13 shows both the exact and numerical solutions for Equation (4.62).

Galerkin method

The basic idea of the Galerkin method is to seek the solution u as a sum of polynomials Gi that
individually verify the boundary conditions. Doing so, u automatically fulfills those conditions and
they do not have to be imposed by additional equations. Such polynomials constitute a Galerkin
basis of the problem. For practical reasons, it is better to choose a Galerkin basis that can easily be
expressed in terms of the original orthogonal polynomials.

For instance, with boundary conditions (4.63), one can choose:

G2k (x) = T2k+2 (x) − T0 (x) (4.67)

G2k+1 (x) = T2k+3 (x) − T1 (x) . (4.68)
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More generally, the Galerkin basis relates to the usual ones by means of a transformation matrix

Gi =
N∑

j=0

MjiTj , ∀i ≤ N − 2. (4.69)

Let us mention that the matrix M is not square. Indeed, to maintain the same degree of approximation,
one can consider only N − 1 Galerkin polynomials, due to the two additional conditions they have
to fulfill (see, for instance, Equations (4.67-4.68)). One can also note that, in general, the Gi are not
orthogonal polynomials.

The solution u is sought in terms of the coefficients ũG
i on the Galerkin basis:

u (x) =
N−2∑

k=0

ũG
k Gk (x) . (4.70)

By making use of Equations (4.59) and (4.69) one can express Lu in terms of ũG
i :

Lu (x) =
N−2∑

k=0

ũG
k

N∑

i=0

N∑

j=0

MjkLijTi (x) . (4.71)

The test functions used in the Galerkin method are the Gi themselves, so that the residual system
reads:

(Lu, Gn) = (S, Gn) , ∀n ≤ N − 2, (4.72)

where the left-hand side is computed by means of Equation (4.71) and by expressing the Gi in terms
of the Ti with Equation (4.69). Concerning the right-hand side, the source itself is not expanded in
terms of the Galerkin basis, given that it does not fulfill the boundary conditions. Putting all the
pieces together, the Galerkin system reads:

N−2∑

k=0

ũG
k

N∑

i=0

N∑

j=0

MinMjkLij (Ti|Ti) =
N∑

i=0

Mins̃i (Ti|Ti) , ∀n ≤ N − 2. (4.73)

This is a system of N − 1 equations for the N − 1 unknowns ũG
i and it can be directly solved, because

it is well posed. Once the ũG
i are known, one can obtain the solution in terms of the usual basis by

making, once again, use of the transformation matrix:

u (x) =
N∑

i=0

(
N−2∑

n=0

MinũG
n

)
Ti. (4.74)

The solution obtained by the application of this method to Equation (4.62) is shown in Figure 4.14.

Optimal methods

A spectral method is said to be optimal if it does not introduce an additional error to the error that
would be introduced by interpolating the exact solution of a given equation.

Let us call uexact such an exact solution, unknown in general. Its interpolant is INuexact and the
numerical solution of the equation is unum. The numerical method is then optimal if and only if
‖INuexact − uexact‖∞ and ‖unum − uexact‖∞ behave in the same manner when N → ∞.
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Figure 4.14: Exact solution (4.64) of Equation (4.62) (blue curve) and the numerical solution
(red curve) computed by means of the Galerkin method, for N = 4 (left panel) and N = 8
(right panel).

In general, optimality is difficult to check because both uexact and its interpolant are unknown.
However, for the test problem proposed in Section 4.2.5 this can be done. Figure 4.15 shows the
maximum relative difference between the exact solution (4.64) and its interpolant and the various
numerical solutions. All the curves behave in the same manner as N increases, indicating that the
three methods previously presented are optimal (at least for this particular case).

4.2.6 Multidomain techniques for ODEs

Motivations and setting

As seen in Section 4.2.4, spectral methods are very efficient when dealing with C∞ functions. However,
they lose some of their appeal when dealing with less regular functions, the convergence to the exact
functions being substantially slower. Nevertheless, the physicist has sometimes to deal with such
functions. This is the case for the density jump at the surface of strange stars or the formation of
shocks, to mention only two examples. In order to maintain spectral convergence, one then needs
to introduce several computational domains such that the various discontinuities of the functions lie
at the interface between the domains. Doing so in each domain means that one only deals with C∞

functions.

Multidomain techniques can also be valuable when dealing with a physical space either too com-
plicated or too large to be described by a single domain. Related to that, one can also use several
domains to increase the resolution in some parts of the space where more precision is required. This
can easily be done by using a different number of basis functions in different domains. One then talks
about fixed-mesh refinement.

Efficient parallel processing may also require that several domains be used. Indeed, one could set a
solver, dealing with each domain on a given processor, and interprocessor communication would then
only be used for matching the solution across the various domains. The algorithm of Section 4.2.6 is
well adapted to such purposes.

In the following, four different multidomain methods are presented to solve an equation of the type
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Lu = S on [−1, 1]. L is a second-order linear operator and S is a given source function. Appropriate
boundary conditions are given at the boundaries x = −1 and x = 1.

For simplicity the physical space is split into two domains:

• first domain: x ≤ 0 described by x1 = 2x + 1, x1 ∈ [−1, 1],

• second domain: x ≥ 0 described by x2 = 2x − 1, x2 ∈ [−1, 1].

If x ≤ 0, a function u is described by its interpolant in terms of x1: INu (x) =
N∑

i=0

ũ1
i Ti (x1 (x)).

The same is true for x ≥ 0 with respect to the variable x2. Such a set-up is obviously appropriate to
deal with problems where discontinuities occur at x = 0, that is x1 = 1 and x2 = −1.

The multidomain tau method

As for the standard tau method (see Section 4.2.5) and in each domain, the test functions are the
basis polynomials and one writes the associated residual equations. For instance, in the domain x ≤ 0
one gets:

(Tn, R) = 0 =⇒
N∑

i=0

Lniũ
1
i = s̃1

n ∀n ≤ N, (4.75)

s̃1 being the coefficients of the source and Lij the matrix representation of the operator. As for the
one-domain case, one relaxes the last two equations, keeping only N − 1 equations. The same is done
in the second domain.
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Two supplementary equations are enforced to ensure that the boundary conditions are fulfilled.
Finally, the operator L being of second order, one needs to ensure that the solution and its first
derivative are continuous at the interface x = 0. This translates to a set of two additional equations
involving both domains.

So, one considers

• N − 1 residual equations in the first domain,

• N − 1 residual equations in the second domain,

• 2 boundary conditions,

• 2 matching conditions,

for a total of 2N + 2 equations. The unknowns are the coefficients of u in both domains (i.e. the ũ1
i

and the ũ2
i ), that is 2N + 2 unknowns. The system is well posed and admits a unique solution.

Multidomain collocation method

As for the standard collocation method (see Section 4.2.5) and in each domain, the test functions are
the Lagrange cardinal polynomials. For instance, in the domain x ≤ 0 one gets:

N∑

i=0

N∑

j=0

Lij ũ
1
jTi (x1n) = S (x1n) ∀n ≤ N, (4.76)

Lij being the matrix representation of the operator and x1n the nth collocation point in the first
domain. As for the one-domain case, one relaxes the two equations corresponding to the boundaries
of the domain, keeping only N − 1 equations. The same is done in the second domain.

Two supplementary equations are enforced to ensure that the boundary conditions are fulfilled.
Finally, the operator L being second order, one needs to ensure that the solution and its first derivative
are continuous at the interface x = 0. This translates to a set of two additional equations involving
the coefficients in both domains.

So, one considers

• N − 1 residual equations in the first domain,

• N − 1 residual equations in the second domain,

• 2 boundary conditions,

• 2 matching conditions,

for a total of 2N + 2 equations. The unknowns are the coefficients of u in both domains (i.e. the ũ1
i

and the ũ2
i ), that is 2N + 2 unknowns. The system is well posed and admits a unique solution.
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Method based on homogeneous solutions

The method described here proceeds in two steps. First, particular solutions are computed in each
domain. Then, appropriate linear combinations with the homogeneous solutions of the operator L are
performed to ensure continuity and impose boundary conditions.

In order to compute particular solutions, one can rely on any of the methods described in Sec-
tion 4.2.5. The boundary conditions at the boundary of each domain can be chosen (almost) arbitrarily.
For instance, one can use in each domain a collocation method to solve Lu = S, demanding that the
particular solution upart is zero at both ends of each interval.

Then, in order to have a solution over the whole space, one needs to add homogeneous solutions
to the particular ones. In general, the operator L is second order and admits two independent ho-
mogeneous solutions g and h in each domain. Let us note that, in some cases, additional regularity
conditions can reduce the number of available homogeneous solutions. The homogeneous solutions
can either be computed analytically if the operator L is simple enough or numerically, but one must
then have a method for solving Lu = 0.

In each domain, the physical solution is a combination of the particular solution and homogeneous
ones of the type:

u = upart + αg + βh, (4.77)

where α and β are constants that must be determined. In the two domains case, we are left with four
unknowns. The system of equations they must satisfy is composed of i) two equations for the boundary
conditions ii) two equations for the matching of u and its first derivative across the boundary between
the two domains. The obtained system is called the matching system and generally admits a unique
solution.

Variational method

Contrary to previously presented methods, the variational one is only applicable with Legendre poly-
nomials. Indeed, the method requires that the measure be w (x) = 1. It is also useful to extract the
second-order term of the operator L and to rewrite it as Lu = u′′ + H, H being first order only.

In each domain, one writes the residual equation explicitly:

(ξ, R) = 0 =⇒
∫

ξu′′dx +

∫
ξ (Hu) dx =

∫
ξSdx. (4.78)

The term involving the second derivative of u is then integrated by parts:

[
ξu′

]
−

∫
ξ′u′dx +

∫
ξ (Hu) dx =

∫
ξSdx. (4.79)

The test functions are the same as the ones used for the collocation method, i.e. functions being
zero at all but one collocation point, in both domains (d = 1, 2): ξi (xdj) = δij . By making use of the
Gauss quadratures, the various parts of Equation (4.79) can be expressed as (d = 1, 2 indicates the
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domain):

∫
ξ′nu′dx =

N∑

i=0

ξ′n (xdi)u′ (xdi)wi =
N∑

i=0

N∑

j=0

DijDinwiu (xdj) , (4.80)

∫
ξn (Hu) dx =

N∑

i=0

ξn (xdi) (Hu) (xdi)wi = wn

N∑

i=0

Hniu (xdi) , (4.81)

∫
ξnSdx =

N∑

i=0

ξn (xdi)S (xdi) wi = S (xdn)wn, (4.82)

where Dij (or Hij , respectively) represents the action of the derivative (or of H, respectively) in the
configuration space

g′ (xdk) =
N∑

j=0

Dkjg (xdj) , (4.83)

(Hg) (xdk) =
N∑

j=0

Hkjg (xdj) . (4.84)

For points strictly inside each domain, the integrated term [ξu′] of Equation (4.79) vanishes and
one gets equations of the form:

−
N∑

i=0

N∑

j=0

DijDinwiu (xdj) + wn

N∑

i=0

Hniu (xdi) = S (xdn)wn. (4.85)

This is a set of N − 1 equations for each domains (d = 1, 2). In the above form, the unknowns are the
u (xdi), i.e. the solution is sought in the configuration space.

As usual, two additional equations are provided by appropriate boundary conditions at both ends
of the global domain. One also gets an additional condition by matching the solution across the
boundary between the two domains.

The last equation of the system is the matching of the first derivative of the solution. However,
instead of writing it “explicitly”, this is done by making use of the integrated term in Equation (4.79)
and this is actually the crucial step of the whole method. Applying Equation (4.79) to the last point
x1N of the first domain, one gets:

u′ (x1 = 1) =
N∑

i=0

N∑

j=0

DijDiNwiu (x1j) − wN

N∑

i=0

HNiu (x1i) + S (x1N ) wN . (4.86)

The same can be done with the first point of the second domain to get u′ (x2 = −1), and the last
equation of the system is obtained by demanding that u′ (x1 = 1) = u′ (x2 = −1) and relates the
values of u in both domains.

Before finishing with the variational method, it may be worthwhile to explain why Legendre
polynomials are used. Suppose one wants to work with Chebyshev polynomials instead. The measure

is then w (x) =
1√

1 − x2
. When one integrates the term containing u′′ by parts, one gets

∫
−u′′fwdx =

[
−u′fw

]
+

∫
u′f ′w′dx. (4.87)
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Because the measure is divergent at the boundaries, it is difficult, if not impossible, to isolate the term
in u′. On the other hand, this is precisely the term that is needed to impose the appropriate matching
of the solution.

Merits of the various methods

From a numerical point of view, the method based on an explicit matching using the homogeneous
solutions is somewhat different from the two others. Indeed, one must solve several systems in a row
and each one is of the same size as the number of points in one domain. This splitting of the different
domains can also be useful for designing parallel codes. On the contrary, for both the variational and
the tau method one must solve only one system, but its size is the same as the number of points in
a whole space, which can be quite large for many domains settings. However, those two methods do
not require one to compute the homogeneous solutions, computation that could be tricky depending
on the operators involved and the number of dimensions.

The variational method may seem more difficult to implement and is only applicable with Legendre
polynomials. However, on mathematical grounds, it is the only method that is demonstrated to be
optimal. Moreover, some examples have been found in which the others methods are not optimal. It
remains true that the variational method is very dependent on both the shape of the domains and the
type of equation that needs to be solved.

The choice of one method or another thus depends on the particular situation. As for the mono-
domain space, for simple test problems the results are very similar. Figure 4.16 shows the maximum
error between the analytic solution and the numeric one for the four different methods. All errors
decay exponentially and reach machine accuracy within roughly the same number of points.
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Figure 4.16: Difference between the exact and numerical solutions of the following test problem.
d2u

dx2
+4u = S, with S (x < 0) = 1 and S (x > 0) = 0. The boundary conditions are u (x = −1) =

0 and u (x = 1) = 0. The black curve and circles denote results from the multidomain tau
method, the red curve and squares from the method based on the homogeneous solutions, the
blue curve and diamonds from the variational one, and the green curve and triangles from the
collocation method.
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4.3 Multidimensional Cases

In principle, the generalization to more than one dimension is rather straightforward if one uses the
tensor product. Let us first take an example, with the spectral representation of a scalar function
f(x, y) defined on the square (x, y) ∈ [−1, 1]× [−1, 1] in terms of Chebyshev polynomials. One simply
writes

f(x, y) =
M∑

i=0

N∑

j=0

aijTi(x)Tj(y), (4.88)

with Ti being the Chebyshev polynomial of degree i. The partial differential operators can also be
generalized as being linear operators acting on the space PM ⊗ PN . Simple linear partial differential
equations (PDE) can be solved by one of the methods presented in Section 4.2.5 (Galerkin, tau or
collocation), on this MN -dimensional space. The development (4.88) can of course be generalized
to any dimension. Some special PDE and spectral basis examples, where the differential equation
decouples for some of the coordinates, will be given in Section 4.3.2.

4.3.1 Spatial coordinate systems

Most of the interesting problems in numerical relativity involve asymmetries that require the use of
a full set of three-dimensional coordinates. We briefly review several coordinate sets (all orthogonal)
that have been used in numerical relativity with spectral methods. They are described through the
line element ds2 of the flat metric in the coordinates we discuss.

• Cartesian (rectangular) coordinates are of course the simplest and most straightforward
to implement; the line element reads ds2 = dx2 +dy2 +dz2. These coordinates are regular in all
space, with vanishing connection, which makes them easy to use, since all differential operators
have simple expressions and the associated triad is also perfectly regular. They are particularly
well adapted to cube-like domains, see for instance [357, 361] and [185] in the case of toroidal
topology.

• Circular cylindrical coordinates have a line element ds2 = dρ2 + ρ2 dφ2 + dz2 and exhibit
a coordinate singularity on the z-axis (ρ = 0). The associated triad being also singular for
ρ = 0, regular vector or tensor fields have components that are multivalued (depending on φ) at
any point of the z-axis. As for the spherical coordinates, this can be handled quite easily with
spectral methods. This coordinate system can be useful for axisymmetric or rotating systems,
see [30].

• Spherical (polar) coordinates will be discussed in more detail in Section 4.3.2. Their line
element reads ds2 = dr2 + r2 dθ2 + r2 sin2 θ dϕ2, showing a coordinate singularity at the origin
(r = 0) and on the axis for which θ = 0, π. They are very useful in numerical relativity for
the numerous sphere-like objects under study (stars, black hole horizons) and have mostly been
implemented for shell-like domains [72, 228, 357, 466] and for spheres including the origin [79,
228].

• Prolate spheroidal coordinates consist of a system of confocal ellipses and hyperbolae,
describing an (x, z)-plane, and an angle ϕ giving the position as a rotation with respect to the
focal axis [284]. The line element is ds2 = a2

(
sinh2 µ + sin2 ν

) (
dµ2 + dν2

)
+a2 sinh2 µ sin2 ν dϕ2.
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The foci are situated at z = ±a and represent coordinate singularities for µ = 0 and ν = 0, π.
These coordinates have been used in [33] with black-hole–puncture data at the foci.

• Bispherical coordinates are obtained by the rotation of bipolar coordinates around the focal
axis, with a line element ds2 = a2 (cosh η − cos χ)−2 (

dη2 + dχ2 + sin2 χdϕ2
)
. As with prolate

spheroidal coordinates, the foci situated at z = ±a (η → ±∞, χ = 0, π) and more generally, the
focal axis, exhibit coordinate singularities. Still, the surfaces of constant η are spheres situated
in the z > 0(< 0) region for η > 0(< 0), respectively. Thus, these coordinates are very well
adapted for the study of binary systems and in particular for excision treatment of black hole
binaries [27].

Mappings

Choosing a smart set of coordinates is not the end of the story. As for finite elements, one would
like to be able to cover some complicated geometries, like distorted stars, tori, etc. . . or even to be
able to cover the whole space. The reason for this last point is that, in numerical relativity, one often
deals with isolated systems for which boundary conditions are only known at spatial infinity. A quite
simple choice is to perform a mapping from numerical coordinates to physical coordinates, generalizing
the change of coordinates to [−1, 1], when using families of orthonormal polynomials or to [0, 2π] for
Fourier series.

Π
ΩΩ

Figure 4.17: Regular deformation of the [−1, 1] × [−1, 1] square.

An example of how to map the [−1, 1] × [−1, 1] domain can be taken from Canuto et al. [102],
and is illustrated in Figure 4.17: once the mappings from the four sides (boundaries) of Ω̂ to the
four sides of Ω are known, one can construct a two-dimensional regular mapping Π, which preserves
orthogonality and simple operators (see Chapter 3.5 of [102]).

The case where the boundaries of the considered domain are not known at the beginning of the
computation can also be treated in a spectral way. In the case where this surface corresponds to
the surface of a neutron star, two approaches have been used. First, in Bonazzola et al. [69], the
star (and therefore the domain) is supposed to be “star-like”, meaning that there exists a point from
which it is possible to reach any point on the surface by straight lines that are all contained inside
the star. To such a point is associated the origin of a spherical system of coordinates, so that it
is a spherical domain, which is regularly deformed to coincide with the shape of the star. This is
done within an iterative scheme, at every step, once the position of the surface has been determined.
Then, another approach has been developed by Ansorg et al. [30] using cylindrical coordinates. It is a
square in the plane (ρ, z), which is mapped onto the domain describing the interior of the star. This
mapping involves an unknown function, which is itself decomposed in terms of a basis of Chebyshev
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polynomials, so that its coefficients are part of the global vector of unknowns (as the density and
gravitational field coefficients).

In the case of black-hole–binary systems, Scheel et al. [404] have developed horizon-tracking co-
ordinates using results from control theory. They define a control parameter as the relative drift of
the black hole position, and they design a feedback control system with the requirement that the
adjustment they make on the coordinates be sufficiently smooth that they do not spoil the overall
Einstein solver. In addition, they use a dual-coordinate approach, so that they can construct a co-
moving coordinate map, which tracks both orbital and radial motion of the black holes and allows
them to successfully evolve the binary. The evolutions simulated in [404] are found to be unstable,
when using a single rotating-coordinate frame. We note here as well the work of Bonazzola et al. [74],
where another option is explored: the stroboscopic technique of matching between an inner rotating
domain and an outer inertial one.

Spatial compactification

As stated above, the mappings can also be used to include spatial infinity into the computational
domain. Such a compactification technique is not tied to spectral methods and has already been
used with finite-difference methods in numerical relativity by, e.g., Pretorius [374]. However, due
to the relatively low number of degrees of freedom necessary to describe a spatial domain within
spectral methods, it is easier within this framework to use some resources to describe spatial infinity
and its neighborhood. Many choices are possible to do so, either directly choosing a family of well-
behaved functions on an unbounded interval, for example the Hermite functions (see, e.g., Section 17.4
in Boyd [85]), or making use of standard polynomial families, but with an adapted mapping. A first
example within numerical relativity was given by Bonazzola et al. [67] with the simple inverse mapping
in spherical coordinates.

r =
1

α(x − 1)
, x ∈ [−1, 1] . (4.89)

This inverse mapping for spherical “shells” has also been used by Kidder and Finn [279], Pfeif-
fer et al. [361, 357], and Ansorg et al. in cylindrical [30] and spheroidal [33] coordinates. Many
more elaborated techniques are discussed in Chapter 17 of Boyd [85], but to our knowledge, none
have been used in numerical relativity yet. Finally, it is important to point out that, in general, the
simple compactification of spatial infinity is not well adapted to solving hyperbolic PDEs and the
above mentioned examples were solving only for elliptic equations (initial data, see Section 4.5). For
instance, the simple wave equation (4.126) is not invariant under the mapping (4.89), as has been
shown, e.g., by Sommerfeld (see [436], Section 23.E). Intuitively, it is easy to see that when compact-
ifying only spatial coordinates for a wave-like equation, the distance between two neighboring grid
points becomes larger than the wavelength, which makes the wave poorly resolved after a finite time
of propagation on the numerical grid. For hyperbolic equations, is is therefore usually preferable to
impose physically and mathematically well-motivated boundary conditions at a finite radius (see, e.g.,
Friedrich and Nagy [189], Rinne [388] or Buchman and Sarbach [95]).

Patching in more than one dimension

The multidomain (or multipatch) technique has been presented in Section 4.2.6 for one spatial dimen-
sion. In Bonazzola et al. [72] and Grandclément et al. [228], the three-dimensional spatial domains
consist of spheres (or star-shaped regions) and spherical shells, across which the solution can be
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matched as in one-dimensional problems (only through the radial dependence). In general, when
performing a matching in two or three spatial dimensions, the reconstruction of the global solution
across all domains might need some more care to clearly write down the matching conditions (see, e.g.,
[357], where overlapping as well as nonoverlapping domains are used at the same time). For example
in two dimensions, one of the problems that might arise is the counting of matching conditions for
corners of rectangular domains, when such a corner is shared among more than three domains. In
the case of a PDE where matching conditions must be imposed on the value of the solution, as well
as on its normal derivative (Poisson or wave equation), it is sufficient to impose continuity of either
normal derivative at the corner, the jump in the other normal derivative being spectrally small (see
Chapter 13 of Canuto et al. [102]).

Figure 4.18: Two sets of spherical domains describing a neutron star or black hole binary
system. Each set is surrounded by a compactified domain of the type (4.89), which is not
displayed

A now typical problem in numerical relativity is the study of binary systems (see also Sections 4.5.5
and 4.6.3) for which two sets of spherical shells have been used by Gourgoulhon et al. [218], as
displayed in Figure 4.18. Different approaches have been proposed by Kidder et al. [276], and used
by Pfeiffer [357] and Scheel et al. [404] where spherical shells and rectangular boxes are combined
together to form a grid adapted to black hole binary study. Even more sophisticated setups to model
fluid flows in complicated tubes can be found in [306].

Multiple domains can thus be used to adapt the numerical grid to the interesting part (manifold)
of the coordinate space; they can be seen as a technique close to the spectral element method [355].
Moreover, it is also a way to increase spatial resolution in some parts of the computational domain
where one expects strong gradients to occur: adding a small domain with many degrees of freedom is
the analog of fixed-mesh refinement for finite-differences.

4.3.2 Spherical coordinates and harmonics

Spherical coordinates (see Figure 4.19) are well adapted for the study of many problems in numer-
ical relativity. Those include the numerical modeling of isolated astrophysical single objects, like a
neutron star or a black hole. Indeed, stars’ surfaces have sphere-like shapes and black hole horizons
have this topology as well, which is best described in spherical coordinates (eventually through a
mapping, see Section 4.3.1). As these are isolated systems in general relativity, the exact boundary
conditions are imposed at infinity, requiring a compactification of space, which is here achieved with
the compactification of the radial coordinate r only.
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Figure 4.19: Definition of spherical coordinates (r, θ, ϕ) of a point M and associated triad
(~er, ~eθ, ~eϕ), with respect to the Cartesian ones.

When the numerical grid does not extend to infinity, e.g., when solving for a hyperbolic PDE, the
boundary defined by r = const is a smooth surface, on which boundary conditions are much easier to
impose. Finally, spherical harmonics, which are strongly linked with these coordinates, can simplify
a lot the solution of Poisson-like or wave-like equations. On the other hand, there are some technical
problems linked with this set of coordinates, as detailed hereafter, but spectral methods can handle
them in a very efficient way.

Coordinate singularities

The transformation from spherical (r, θ, ϕ) to Cartesian coordinates (x, y, z) is obtained by

x = r sin θ cos ϕ, (4.90)

y = r sin θ sinϕ, (4.91)

z = r cos θ. (4.92)

One immediately sees that the origin r = 0 ⇐⇒ x = y = z = 0 is singular in spherical coordinates
because neither θ nor ϕ can be uniquely defined. The same happens for the z−axis, where θ = 0
or π, and ϕ cannot be defined. Among the consequences is the singularity of some usual differential
operators, like, for instance, the Laplace operator

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
. (4.93)

Here, the divisions by r at the center, or by sin θ on the z-axis look singular. On the other hand, the
Laplace operator, expressed in Cartesian coordinates, is a perfectly regular one and, if it is applied
to a regular function, should give a well-defined result. The same should be true if one uses spherical
coordinates: the operator (4.93) applied to a regular function should yield a regular result. This means
that a regular function of spherical coordinates must have a particular behavior at the origin and on
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the axis, so that the divisions by r or sin θ appearing in regular operators are always well defined. If
one considers an analytic function in (regular) Cartesian coordinates f(x, y, z), it can be expanded as
a series of powers of x, y and z, near the origin

f(x, y, z) =
∑

n,p,q

anpqx
nypzq. (4.94)

Placing the coordinate definitions (4.90)-(4.92) into this expression gives

f(r, θ, ϕ) =
∑

n,p,q

anpqr
n+p+q cosq θ sinn+p θ cosn ϕ sinp ϕ; (4.95)

and rearranging the terms in ϕ:

f(r, θ, ϕ) =
∑

m,p,q

bmpqr
|m|+2p+q sin|m|+2p θ cosq θeimϕ. (4.96)

With some transformations of trigonometric functions in θ, one can express the angular part in terms
of spherical harmonics Y m

ℓ (θ, ϕ), see Section 4.3.2, with ℓ = |m|+ 2p + q and obtain the two following
regularity conditions, for a given couple (ℓ, m):

• near θ = 0, a regular scalar field is equivalent to f(θ) ∼ sin|m| θ,

• near r = 0, a regular scalar field is equivalent to f(r) ∼ rℓ.

In addition, the r-dependence translates into a Taylor series near the origin, with the same parity
as ℓ . More details in the case of polar (2D) coordinates are given in Chapter 18 of Boyd [85].

If we go back to the evaluation of the Laplace operator (4.93), it is now clear that the result
is always regular, at least for ℓ ≥ 2 and m ≥ 2. We detail the cases of ℓ = 0 and ℓ = 1, using
the fact that spherical harmonics are eigenfunctions of the angular part of the Laplace operator (see
Equation (4.103)). For ℓ = 0 the scalar field f is reduced to a Taylor series of only even powers
of r, therefore the first derivative contains only odd powers and can be safely divided by r. Once
decomposed on spherical harmonics, the angular part of the Laplace operator (4.93) acting on the
ℓ = 1 component reads −2/r2, which is a problem only for the first term of the Taylor expansion.
On the other hand, this term cancels with the 2

r
∂
∂r , providing a regular result. This is the general

behavior of many differential operators in spherical coordinates: when applied to a regular field, the
full operator gives a regular result, but single terms of this operator may give singular results when
computed separately, the singularities canceling between two different terms.

As this may seem an argument against the use of spherical coordinates, let us stress that spectral
methods are very powerful in evaluating such operators, keeping everything finite. As an example, we
use Chebyshev polynomials in ξ for the expansion of the field f(r = αξ), α being a positive constant.
From the Chebyshev polynomial recurrence relation (4.46), one has

∀n > 0,
Tn+1(ξ)

ξ
= 2Tn(ξ) − Tn−1(ξ)

ξ
, (4.97)

which recursively gives the coefficients of

g(ξ) =
f(ξ) − f(0)

ξ
, (4.98)
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from those of f(ξ). The computation of this finite part g(ξ) is always a regular and linear operation
on the vector of coefficients. Thus, the singular terms of a regular operator are never computed,
but the result is a good one, as if the cancellation of such terms had occurred. Moreover, from the
parity conditions it is possible to use only even or odd Chebyshev polynomials, which simplifies the
expressions and saves computer time and memory. Of course, relations similar to Equation (4.97)
exist for other families of orthonormal polynomials, as well as relations that divide by sin θ a function
developed on a Fourier basis. The combination of spectral methods and spherical coordinates is thus
a powerful tool for accurately describing regular fields and differential operators inside a sphere [79].
To our knowledge, this is the first reference showing that it is possible to solve PDEs with spectral
methods inside a sphere, including the three-dimensional coordinate singularity at the origin.

Spherical harmonics

Spherical harmonics are the pure angular functions

Y m
ℓ (θ, ϕ) =

√
2ℓ + 1

4π

(ℓ − m)!

(ℓ + m)!
Pm

ℓ (cos θ) eimϕ, (4.99)

where ℓ ≥ 0 and |m| ≤ ℓ. Pm
ℓ (cos θ) are the associated Legendre functions defined by

Pm
ℓ (x) =

(ℓ + m)!

(ℓ − m)!

1

2ℓℓ!
√

(1 − x2)m

dℓ−m

dxℓ−m

(
1 − x2

)ℓ
, (4.100)

for m ≥ 0. The relation

P−m
ℓ (x) =

(ℓ − m)!

(ℓ + m)!
Pm

ℓ (x) (4.101)

gives the associated Legendre functions for negative m; note that the normalization factors can vary
in the literature. This family of functions have two very important properties. First, they represent an
orthogonal set of regular functions defined on the sphere; thus, any regular scalar field f(θ, ϕ) defined
on the sphere can be decomposed into spherical harmonics

f(θ, ϕ) =
+∞∑

ℓ=0

m=ℓ∑

m=−ℓ

fℓmY m
ℓ (θ, ϕ). (4.102)

Since the harmonics are regular, they automatically take care of the coordinate singularity on the
z-axis. Then, they are eigenfunctions of the angular part of the Laplace operator (noted here as ∆θϕ):

∀(ℓ, m) ∆θϕY m
ℓ (θ, ϕ) :=

∂2Y m
ℓ

∂θ2
+

1

tan θ

∂Y m
ℓ

∂θ
+

1

sin2 θ

∂2Y m
ℓ

∂ϕ2
= −ℓ(ℓ + 1)Y m

ℓ (θ, ϕ), (4.103)

the associated eigenvalues being −ℓ(ℓ + 1).
The first property makes the description of scalar fields on spheres very easy: spherical harmonics

are used as a decomposition basis within spectral methods, for instance in geophysics or meteorology,
and by some groups in numerical relativity [49, 228, 466]. However, they could be more broadly used
in numerical relativity, for example for Cauchy-characteristic evolution or matching [483, 40], where a
single coordinate chart on the sphere might help in matching quantities. They can also help to describe
star-like surfaces being defined by r = h(θ, ϕ) as event or apparent horizons [330, 51, 9]. The search
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for apparent horizons is also made easier: since the function h verifies a two-dimensional Poisson-like
equation, the linear part can be solved directly, just by dividing by −ℓ(ℓ + 1) in the coefficient space.

The second property makes the Poisson equation,

∆φ(r, θ, ϕ) = σ(r, θ, ϕ), (4.104)

very easy to solve (see Section 4.1.3). If the source σ and the unknown φ are decomposed into spherical
harmonics, the equation transforms into a set of ordinary differential equations for the coefficients (see
also [228]):

∀(ℓ, m)
d2φℓm

dr2
+

2

r

dφℓm

dr
− ℓ(ℓ + 1)φℓm

r2
= σℓm. (4.105)

Then, any ODE solver can be used for the radial coordinate: spectral methods, of course, (see Sec-
tion 4.2.5), but others have been used as well (see e,g, Bartnik et al. [48, 49]). The same technique
can be used to advance in time the wave equation with an implicit scheme and Chebyshev-tau method
for the radial coordinate [79, 341].

The use of spherical-harmonics decomposition can be regarded as a basic spectral method, like
Fourier decomposition. There are, therefore, publicly available “spherical harmonics transforms”,
which consist of a Fourier transform in the ϕ-direction and a successive Fourier and Legendre transform
in the θ-direction. A rather efficient one is the SpharmonicsKit/S2Kit [322], but writing one’s own
functions is also possible [216].

Tensor components

All the discussion in Sections 4.3.2 – 4.3.2 has been restricted to scalar fields. For vector, or more
generally tensor fields in three spatial dimensions, a vector basis (triad) must be specified to express
the components. At this point, it is very important to stress that the choice of the basis is independent
of the choice of coordinates. Therefore, the most straightforward and simple choice, even if one is

using spherical coordinates, is the Cartesian triad
(
ex = ∂

∂x , ey = ∂
∂y , ez = ∂

∂z

)
. With this basis, from

a numerical point of view, all tensor components can be regarded as scalars and therefore, a regular
tensor can be defined as a tensor field, whose components with respect to this Cartesian frame are
expandable in powers of x, y and z (as in Bardeen and Piran [47]). Manipulations and solutions of
PDEs for such tensor fields in spherical coordinates are generalizations of the techniques for scalar
fields. In particular, when using the multidomain approach with domains having different shapes and
coordinates, it is much easier to match Cartesian components of tensor fields. Examples of use of
Cartesian components of tensor fields in numerical relativity include the vector Poisson equation [228]
or, more generally, the solution of elliptic systems arising in numerical relativity [361]. In the case
of the evolution of the unconstrained Einstein system, the use of Cartesian tensor components is the
general option, as it is done by the Caltech/Cornell group [277, 404].

The use of an orthonormal spherical basis
(
er = ∂

∂r , eθ = 1
r

∂
∂θ , eϕ = 1

r sin θ
∂

∂ϕ

)
(see. Figure 4.19)

requires more care. The interested reader can find more details in the work of Bonazzola et al. [79, 73].
Nevertheless, there are systems in general relativity in which spherical components of tensors can be
useful:

• When doing excision for the simulation of black holes, the boundary conditions on the excised
sphere for elliptic equations (initial data) may be better formulated in terms of spherical com-
ponents for the shift or the three-metric [129, 222, 265]. In particular, the component that is
normal to the excised surface is easily identified with the radial component.
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• Still, in the 3+1 approach, the extraction of gravitational radiation in the wave zone is made eas-
ier if the perturbation to the metric is expressed in spherical components, because the transverse
part is then straightforward to obtain [464].

Problems arise because of the singular nature of the basis itself, in addition to the spherical
coordinate singularities. The consequences are first that each component is a multivalued function at
the origin r = 0 or on the z-axis, and then that components of a given tensor are not independent
from one another, meaning that one cannot, in general, specify each component independently or set
it to zero, keeping the tensor field regular. As an example, we consider the gradient V i = ∇iφ of the
scalar field φ = x, where x is the usual first Cartesian coordinate field. This gradient expressed in
Cartesian components is a regular vector field V x = 1, V y = 0, V z = 0. The spherical components
of V read

V r = sin θ cos ϕ,

V θ = cos θ cos ϕ,

V ϕ = − sinϕ, , (4.106)

which are all multidefined at the origin, and the last two on the z-axis. In addition, if V θ is set
to zero, one sees that the resulting vector field is no longer regular: for example the square of its
norm is multidefined, which is not a good property for a scalar field. As for the singularities of
spherical coordinates, these difficulties can be properly handled with spectral methods, provided that
the decomposition bases are carefully chosen.

The other drawback of spherical coordinates is that the usual partial differential operators mix
the components. This is due to the nonvanishing connection coefficients associated with the spherical
flat metric [73]. For example, the vector Laplace operator (∇j∇jV i) reads

∂2V r

∂r2
+

2

r

∂V r

∂r
+

1

r2

(
∆θϕV r − 2V r − 2

∂V θ

∂θ
− 2

V θ

tan θ
− 2

sin θ

∂V ϕ

∂ϕ

)
(4.107)

∂2V θ

∂r2
+

2

r

∂V θ

∂r
+

1

r2

(
∆θϕV θ + 2

∂V r

∂θ
− V θ

sin2 θ
− 2

cos θ

sin2 θ

∂V ϕ

∂ϕ

)
(4.108)

∂2V ϕ

∂r2
+

2

r

∂V ϕ

∂r
+

1

r2

(
∆θϕV ϕ +

2

sin θ

∂V r

∂ϕ
+ 2

cos θ

sin2 θ

∂V θ

∂ϕ
− V ϕ

sin2 θ

)
, (4.109)

with ∆θϕ defined in Equation (4.103). In particular, the r-component (4.107) of the operator involves
the other two components. This can make the resolution of a vector Poisson equation, which naturally
arises in the initial data problem [127] of numerical relativity, technically more complicated, and the
technique using scalar spherical harmonics (Section 4.3.2) is no longer valid. One possibility can be
to use vector, and more generally tensor [313, 498, 464, 92], spherical harmonics as the decomposition
basis. Another technique might be to build from the spherical components regular scalar fields, which
can have a similar physical relevance to the problem. In the vector case, one can think of the following
expressions

Θ = ∇iV
i, χ = riV

i, µ = riǫijk∇jV k, (4.110)

where r = rer denotes the position vector and ǫijk the third-rank fully-antisymmetric tensor. These
scalars are the divergence, r-component and curl of the vector field. The reader can verify that a
Poisson equation for V i transforms into three equations for these scalars, expandable in terms of
scalar spherical harmonics. The reason that these fields may be more interesting than Cartesian
components is that they can have more physical or geometric meaning.
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4.3.3 Going further

The development of spectral methods linked with the problems arising in the field of numerical rela-
tivity has always been active and continues to be. Among the various directions of research one can
foresee, quite interesting ones might be the beginning of higher-dimensional studies and the develop-
ment of better-adapted mappings and domains, within the spirit of going from pure spectral methods
to spectral elements [355, 60].

More than three spatial dimensions

There has been some interest in the numerical study of black holes in higher dimensions, as well as with
compactified extra dimensions [437], as in brane world models [429, 286]; recently, some simulations
of the head-on collision of two black holes have already been undertaken [489]. With the relatively
low number of degrees of freedom per dimension needed, spectral methods should be very efficient in
simulations involving four spatial dimensions or more. Here we give starting points to implement four-
dimensional (as needed by, e.g., brane world models) spatial representation with spectral methods.
The simplest approach is to take Cartesian coordinates (x, y, z, w), but a generalization of spherical
coordinates (r, θ, ϕ, ξ) is also possible and necessitates less computational resources. The additional
angle ξ is defined in [0, π] with the following relations with Cartesian coordinates

x = r sin θ cos ϕ sin ξ,

y = r sin θ sinϕ sin ξ,

z = r cos θ sin ξ,

w = r cos ξ.

The four-dimensional flat Laplace operator appearing in constraint equations [429] reads

∆4φ =
∂2φ

∂r2
+

3

r

∂φ

∂r
+

1

r2

(
∂2φ

∂ξ2
+

2

tan ξ

∂φ

∂ξ
+

1

sin2 ξ
∆θϕφ

)
, (4.111)

where ∆θϕ is the two-dimensional angular Laplace operator (4.103). As in the three-dimensional case,
it is convenient to use the eigenfunctions of the angular part, which are here

Gℓ
k(cos ξ)Pm

ℓ (cos θ)eimϕ, (4.112)

with k, ℓ, m integers such that |m| ≤ ℓ ≤ k. Pm
ℓ (x) are the associated Legendre functions defined by

Equation (4.100). Gℓ
k(x) are the associated Gegenbauer functions

Gℓ
k(cos ξ) = (sinℓ ξ)G

(ℓ)
k (cos ξ)withG

(ℓ)
k (x) =

dℓGk(x)

dxℓ
, (4.113)

where Gk(x) is the k-th Gegenbauer polynomial C
(λ)
k with λ = 1, as the Gk are also a particular case of

Jacobi polynomials with α = β = 1/2 (see, for example, [284]). Jacobi polynomials are also solutions of
a singular Sturm-Liouville problem, which ensures fast convergence properties (see Section 4.2.4). The
Gk(x) fulfill recurrence relations that make them easy to implement as a spectral decomposition basis,
like the Legendre polynomials. These eigenfunctions are associated with the eigenvalues −k(k + 2):

∆4

(
Gℓ

k(cos ξ)Pm
ℓ (cos θ)eimϕ

)
= −k(k + 2)Gℓ

k(cos ξ)Pm
ℓ (cos θ)eimϕ. (4.114)
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So, as in 3+1 dimensions, after decomposing in such a basis, the Poisson equation turns into a
collection of ODEs in the coordinate r. This type of construction might be generalized to even higher
dimensions, with a choice of the appropriate type of Jacobi polynomials for every new introduced
angular coordinate.
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4.4 Time-Dependent Problems

From a relativistic point of view, the time coordinate could be treated in the same way as spatial
coordinates and one should be able to achieve spectral accuracy for the time representation of a
spacetime function f(t, x, y, z) and its derivatives. Unfortunately, this does not seem to be the case
and we are neither aware of any efficient algorithm dealing with the time coordinate, nor of any
published successful code solving any of the PDEs coming from Einstein’s equations, with the recent
exception of the 1+1 dimensional study by Hennig and Ansorg [246]. Why is time playing such a
special role? It is not easy to find in the literature on spectral methods a complete and comprehensive
study. A first standard explanation is the difficulty, in general, of predicting the exact time interval
on which one wants to study the time evolution. In addition, time discretization errors in both finite
difference techniques and spectral methods are typically much smaller than spatial ones. Finally, one
must keep in mind that, contrary to finite difference techniques, spectral methods store all global
information about a function over the whole time interval. Therefore, one reason may be that there
are strong memory and CPU limitations to fully three-dimensional simulations; it is already very CPU
and memory consuming to describe a complete field depending on 3+1 coordinates, even with fewer
degrees of freedom, as is the case for spectral methods. But the strongest limitation is the fact that,
in the full 3+1 dimensional case, the matrix representing a differential operator would be very big; it
would therefore be very time consuming to invert it in a general case, even with iterative methods.

More details on the standard, finite-difference techniques for time discretization are given in Sec-
tion 4.4.1. Due to the technical complexity of a general stability analysis, we restrict the discussion of
this section to the eigenvalue stability (Section 4.4.1) with the following approach: the eigenvalues of
spatial operator matrices must fall within the stability region of the time-marching scheme. Although
this condition is only a necessary one and, in general, is not sufficient, it provides very useful guide-
lines for selecting time-integration schemes. A discussion of the imposition of boundary conditions in
time-dependent problems is given in Section 4.4.2. Section 4.4.3 then details the stability analysis of
spatial discretization schemes, with the examples of heat and advection equations, before the details
of a fully-discrete analysis are given for a simple case (Section 4.4.4).

4.4.1 Time discretization

There have been very few theoretical developments in spectral time discretization, with the exception
of Ierley et al. [257], where the authors have applied spectral methods in time to the study of the
Korteweg de Vries and Burger equations, using Fourier series in space and Chebyshev polynomials
for the time coordinates. Ierley et al. [257] observe a timestepping restriction: they have to employ
multidomain and patching techniques (see Section 4.2.6) for the time interval, with the size of each
subdomain being roughly given by the Courant–Friedrichs–Lewy (CFL) condition. Therefore, the most
common approach for time representation are finite-difference techniques, which allow for the use of
many well-established time-marching schemes, and the method of lines (for other methods, including
fractional stepping, see Fornberg [182]). Let us write the general form of a first-order-in-time linear
PDE:

∀t ≥ 0, ∀x ∈ [−1, 1],
∂u(x, t)

∂t
= Lu(x, t), (4.115)

where L is a linear operator containing only derivatives with respect to the spatial coordinate x. For
every value of time t, the spectral approximation uN (x, t) is a function of only one spatial dimension
belonging to some finite-dimensional subspace of the suitable Hilbert space H, with the given L2

w spatial
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norm, associated for example with the scalar product and the weight w introduced in Section 4.2.3.
Formally, the solution of Equation (4.115) can be written as:

∀x ∈ [−1, 1], u(x, t) = eLtu(x, 0). (4.116)

In practice, to integrate time-dependent problems one can use spectral methods to calculate spatial
derivatives and standard finite-difference schemes to advance in time.

Method of lines

At every instant t, one can represent the function uN (x, t) by a finite set UN (t), composed of its
time-dependent spectral coefficients or its values at the collocation points. We denote LN the spectral
approximation to the operator L, together with the boundary conditions, if the tau or collocation
method is used. LN is, therefore, represented as an N × N matrix. This is the method of lines,
which allows one to reduce a PDE to an ODE, after discretization in all but one dimensions. The
advantage is that many ODE integration schemes are known (Runge-Kutta, symplectic integrators,
...) and can be used here. We shall suppose an equally-spaced grid in time, with the timestep noted
∆t and UJ

N = UN (J × ∆t).

In order to step from UJ
N to UJ+1

N , one has essentially two possibilities: explicit and implicit
schemes. In an explicit scheme, the action of the spatial operator LN on UK

N

∣∣
K≤J

must be computed

to explicitly get the new values of the field (either spatial spectral coefficients or values at collocation
points). A simple example is the forward Euler method :

UJ+1
N = UJ

N + ∆tLNUJ
N , (4.117)

which is first order and for which, as for any explicit schemes, the timestep is limited by the CFL
condition. The imposition of boundary conditions is discussed in Section 4.4.2. With an implicit
scheme one must solve for a boundary value problem in term of UJ+1

N at each timestep: it can be
performed in the same way as for the solution of the elliptic equation (4.62) presented in Section 4.2.5.
The simplest example is the backward Euler method :

UJ+1
N = UJ

N + ∆tLNUJ+1
N , (4.118)

which can be re-written as an equation for the unknown UJ+1
N :

(I + ∆tLN )UJ+1
N = UJ

N ,

where I is the identity operator. Both schemes have different stability properties, which can be
analyzed as follows. Assuming that LN can be diagonalized in the sense of the definition given in
(4.4.1), the stability study can be reduced to the study of the collection of scalar ODE problems

∂UN

∂t
= λiUN , (4.119)

where λi is any of the eigenvalues of LN in the sense of Equation (4.123).
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Stability

The basic definition of stability for an ODE integration scheme is that, if the timestep is lower than
some threshold, then ‖UJ

N‖ ≤ AeKJ∆t, with constants A and K independent of the timestep. This is
perhaps not the most appropriate definition, since in practice one often deals with bounded functions
and an exponential growth in time would not be acceptable. Therefore, an integration scheme is said
to be absolutely stable (or asymptotically stable), if ‖UJ

N‖ remains bounded, ∀J ≥ 0. This property
depends on a particular value of the product λi × ∆t. For each time integration scheme, the region
of absolute stability is the set of the complex plane containing all the λi∆t for which the scheme is
absolutely stable.
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Figure 4.20: Regions of absolute stability for the Adams–Bashforth integration schemes of order
one to four.

Finally, a scheme is said to be A-stable if its region of absolute stability contains the half complex
plane of numbers with negative real part. It is clear that no explicit scheme can be A-stable due to the
CFL condition. It has been shown by Dahlquist [138] that there is no linear multistep method of order
higher than two, which is A-stable. Thus implicit methods are also limited in timestep size, if more
than second-order accurate. In addition, Dahlquist [138] shows that the most accurate second-order
A-stable scheme is the trapezoidal one (also called Crank–Nicolson, or second-order Adams–Moulton
scheme)

UJ+1
N = UJ

N +
∆t

2

(
LNUJ+1

N + LNUJ
N

)
. (4.120)

Figures 4.20 and 4.21 display the absolute stability regions for the Adams–Bashforth and Runge–
Kutta families of explicit schemes (see, for instance, [102]). For a given type of spatial linear operator,
the requirement on the timestep usually comes from the largest (in modulus) eigenvalue of the operator.
For example, in the case of the advection equation on [−1, 1], with a Dirichlet boundary condition,

Lu =
∂u

∂x
,

∀t, u(1, t) = 0, (4.121)
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Figure 4.21: Regions of absolute stability for the Runge–Kutta integration schemes of order
two to five. Note that the size of the region increases with order.

and using a Chebyshev-tau method, one can see that the largest eigenvalue of LN grows in modulus
as N2. Therefore, for any of the schemes considered in Figures 4.20 and 4.21, the timestep has a
restriction of the type

∆t . O(N−2), (4.122)

which can be related to the usual CFL condition by the fact that the minimal distance between two
points of a (N -point) Chebyshev grid decreases like O(N−2). Due to the above mentioned Second
Dahlquist barrier [138], implicit time marching schemes of order higher than two also have such a
limitation.

Spectrum of simple spatial operators

An important issue in determining the absolute stability of a time-marching scheme for the solution
of a given PDE is the computation of the spectrum (λi) of the discretized spatial operator LN (4.119).
As a matter of fact, these eigenvalues are those of the matrix representation of LN , together with the
necessary boundary conditions for the problem to be well posed (e.g., BNu = 0). If one denotes b
the number of such boundary conditions, each eigenvalue λi (here, in the case of the tau method) is
defined by the existence of a non-null set of coefficients {cj}1≤j≤N such that

(∀j) 1 ≤ j ≤ N − b, (LNu)j = λicj ,

BNu = 0. (4.123)

As an example, let us consider the case of the advection equation (first-order spatial derivative)
with a Dirichlet boundary condition, solved with the Chebyshev-tau method (4.121). Because of the
definition of the problem (4.123), there are N −1 “eigenvalues”, which can be computed, after a small
transformation, using any standard linear algebra package. For instance, it is possible, making use of
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Figure 4.22: Eigenvalues of the first derivative-tau operator (4.123) for Chebyshev polynomials.
The largest (in modulus) eigenvalue is not displayed; this one is real, negative and goes as
O(N2).

the boundary condition, to express the last coefficient as a combination of the other ones

cN = −
N−1∑

j=1

cj . (4.124)

One is thus left with the usual eigenvalue problem for an (N − 1) × (N − 1) matrix. Results are
displayed in Figure 4.22 for three values of N . Real parts are all negative: the eigenvalue that is not
displayed lies on the negative part of the real axis and is much larger in modulus (it is growing as
O(N2)) than the N − 1 others.

This way of determining the spectrum can be, of course, generalized to any linear spatial operator,
for any spectral basis, as well as to the collocation and Galerkin methods. Intuitively from CFL-type
limitations, one can see that in the case of the heat equation (Lu = ∂2u/∂x2), explicit time-integration
schemes (or any scheme that is not A-stable) will have a severe timestep limitation of the type

∆t . O(N−4), (4.125)

for both a Chebyshev or Legendre decomposition basis. Finally, one can decompose a higher-order-in-
time PDE into a first-order system and then use one of the above proposed schemes. In the particular
case of the wave equation,

∂2u

∂t2
=

∂2u

∂x2
, (4.126)

it is possible to write a second-order Crank-Nicolson scheme directly [341]:

UJ+1
N = 2UJ

N − UJ−1
N +

∆t2

2

(
∂2UJ+1

N

∂x2
+

∂2UJ−1
N

∂x2

)
. (4.127)
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Since this scheme is A-stable, there is no limitation on the timestep ∆t, but for explicit or higher-order
schemes this limitation would be ∆t . O(N−2), as for the advection equation. The solution of such
an implicit scheme is obtained as that of a boundary value problem at each timestep.

Semi-implicit schemes

It is sometimes possible to use a combination of implicit and explicit schemes to loosen a timestep
restriction of the type (4.122). Let us consider, as an example, the advection equation with nonconstant
velocity on [−1, 1],

∂u

∂t
= v(x)

∂u

∂x
, (4.128)

with the relevant boundary conditions, which shall in general depend on the sign of v(x). If, on the
one hand, the stability condition for explicit time schemes (4.122) is too strong, and on the other hand
an implicit scheme is too lengthy to implement or to use (because of the nonconstant coefficient v(x)),
then it is interesting to consider the semi-implicit two-step method (see also [210])

U
J+1/2
N − ∆t

2
L−

NU
J+1/2
N = UJ

N +
∆t

2

(
LN − L−

N

)
UJ

N ,

UJ+1
N − ∆t

2
L+

NUJ+1
N = U

J+1/2
N +

∆t

2

(
LN − L+

N

)
U

J+1/2
N , (4.129)

where L+
N and L−

N are respectively the spectral approximations to the constant operators −v(1)∂/∂x
and −v(−1)∂/∂x, together with the relevant boundary conditions (if any). This scheme is absolutely
stable if

∆t .
1

N max |v(x)| . (4.130)

With this type of scheme, the propagation of the wave at the boundary of the interval is treated
implicitly, whereas the scheme is still explicit in the interior. The implementation of the implicit
part, for which one needs to solve a boundary-value problem, is much easier than for the initial
operator (4.128) because of the presence of only constant-coefficient operators. This technique is quite
helpful in the case of more severe timestep restrictions (4.125), for example for a variable coefficient
heat equation.

4.4.2 Imposition of boundary conditions

The time-dependent PDE (4.115) can be written as a system of ODEs in time either for the time-
dependent spectral coefficients {ci(t)}i=0...N of the unknown function u(x, t) (Galerkin or tau meth-
ods), or for the time-dependent values at collocation points {u(xi, t)}i=0...N (collocation method).
Implicit time-marching schemes (like the backward Euler scheme (4.118)) are technically very similar
to a succession of boundary-value problems, as for elliptic equations or Equation (4.62) described
in Section 4.2.5. The coefficients (or the values at collocation points) are determined at each new
timestep by inversion of the matrix of type I + ∆tL or its higher-order generalization. To represent a
well-posed problem, this matrix needs, in general, the incorporation of boundary conditions, for tau
and collocation methods. Galerkin methods are not so useful if the boundary conditions are time
dependent: this would require the construction of a new Galerkin basis at each new timestep, which
is too complicated and/or time consuming. We shall therefore discuss in the following sections the
imposition of boundary conditions for explicit time schemes, with the tau or collocation methods.
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Strong enforcement

The standard technique is to enforce the boundary conditions exactly, i.e. up to machine precision.
Let us suppose here that the time-dependent PDE (4.115), which we want to solve, is well posed with
boundary condition

∀t ≥ 0, u(x = 1, t) = b(t), (4.131)

where b(t) is a given function. We give here some examples, with the forward Euler scheme (4.117)
for time discretization.

In the collocation method, the values of the approximate solution at (Gauss–Lobatto type)
collocation points {xi}i=0...N are determined by a system of equations:

∀i = 0 . . . N − 1, UJ+1
N (xi) = UJ

N (xi) + ∆t
(
LNUJ

N

)
(x = xi), (4.132)

UJ+1
N (x = xN = 1) = b ((J + 1)∆t) ,

where the value at the boundary (x = 1) is directly set to be the boundary condition.

In the tau method, the vector UJ
N is composed of the N + 1 coefficients {ci(J × ∆t)}i=0...N at

the J-th timestep. If we denote by
(
LNUJ

N

)
i
the i-th coefficient of LN applied to UJ

N , then the vector
of coefficients {ci}i=0...N is advanced in time through the system:

∀i = 0 . . . N − 1, ci ((J + 1) × ∆t) = ci(J × ∆t) + ∆t
(
LNUJ

N

)
i

(4.133)

cN ((J + 1) × ∆t) = b ((J + 1)∆t) −
N−1∑

k=0

ck,

the last equality ensures the boundary condition in the coefficient space.

Penalty approach

As shown in the previous examples, the standard technique consists of neglecting the solution to the
PDE for one degree of freedom, in configuration or coefficient space, and using this degree of freedom
in order to impose the boundary condition. However, it is interesting to try and impose a linear
combination of both the PDE and the boundary condition on this last degree of freedom, as is shown
by the next simple example. We consider the simple (time-independent) integration over the interval
x ∈ [−1, 1]:

du

dx
= sin(x − 1), and u(1) = 0, (4.134)

where u(x) is the unknown function. Using a standard Chebyshev relation (4.160)collocation method
(see Section 4.2.5), we look for an approximate solution uN as a polynomial of degree N verifying

∀i = 0 . . . N − 1,
duN

dx
(xi) = sin(xi − 1),

duN

dx
(xN = 1) = 0,

where {xi}i=0...N are the Chebyshev–Gauss–Lobatto collocation points.
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Figure 4.23: Behavior of the error in the solution of the differential equation (4.134), as a
function of the parameter τ entering the numerical scheme (4.135).

We now adopt another procedure that takes into account the differential equation at the boundary
as well as the boundary condition, with uN verifying (remember that xN = 1):

∀i = 0 . . . N − 1,
duN

dx
(xi) = sin(xi − 1), (4.135)

duN

dx
(xN ) − τuN (xN ) = sin(xN − 1),

where τ > 0 is a constant; one notices when taking the limit τ → +∞, that both systems become
equivalent. The discrepancy between the numerical and analytical solutions is displayed in Figure 4.23,
as a function of that parameter τ , when using N = 8. It is clear from that figure that there exists
a finite value of τ (τmin ≃ 70) for which the error is minimal and, in particular, lower than the error
obtained by the standard technique. Numerical evidence indicates that τmin ∼ N2. This is a simple
example of weakly imposed boundary conditions, with a penalty term added to the system. The
idea of imposing boundary conditions up to the order of the numerical scheme was first proposed by
Funaro and Gottlieb [195] and can be efficiently used for time-dependent problems, as illustrated by
the following example. For a more detailed description, we refer the interested reader to the review
article by Hesthaven [249].

Let us consider the linear advection equation

∀x ∈ [−1, 1], ∀t ≥ 0,
∂u

∂t
=

∂u

∂x
(4.136)

∀t ≥ 0, u(1, t) = f(t), (4.137)

where f(t) is a given function. We look for a Legendre collocation method to obtain a solution, and
define the polynomial Q−(x), which vanishes on the Legendre–Gauss–Lobatto grid points, except at
the boundary x = 1:

Q−(x) =
(1 + x)P ′

N (x)

2P ′
N (1)

.
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Thus, the Legendre collocation penalty method uniquely defines a polynomial uN (x, t) through its
values at Legendre–Gauss–Lobatto collocation points {xi}i=0...N

∀i = 0 . . . N,
∂uN

∂t

∣∣∣∣
x=xi

=
∂uN

∂x

∣∣∣∣
x=xi

− τQ−(xi) (uN (1, t) − f(t)) , (4.138)

where τ is a free parameter as in Equation (4.135). For all the grid points, except the boundary one,
this is the same as the standard Legendre collocation method (∀i = 0 . . . N − 1, Q−(xi) = 0). At the
boundary point x = xN = 1, one has a linear combination of the advection equation and the boundary
condition. Contrary to the case of the simple integration (4.135), the parameter τ here cannot be too
small: in the limit τ → 0, the problem is ill posed and the numerical solution diverges. On the
other hand, we still recover the standard (strong) imposition of boundary conditions when τ → +∞.
With the requirement that the approximation be asymptotically stable, we get for the discrete energy
estimate (see the details of this technique in Section 4.4.3) the requirement

1

2

d

dt
‖uN (t)‖2 =

N∑

i=0

uN (xi, t)
∂uN

∂x

∣∣∣∣
x=xi

wi − τu2
N (t, xN )wN ≤ 0.

Using the property of Gauss–Lobatto quadrature rule (with the Legendre–Gauss–Lobatto weights wi),
and after an integration by parts, the stability is obtained if

τ ≥ 1

2wN
≥ N(N + 1)

4
. (4.139)

It is also possible to treat more complex boundary conditions, as described in Hesthaven and Got-
tlieb [251] in the case of Robin-type boundary conditions (see Section 4.2.5 for a definition). Specific
conditions for the penalty coefficient τ are derived, but the technique is the same: for each boundary,
a penalty term is added, which is proportional to the error on the boundary condition at the consid-
ered time. Thus, nonlinear boundary operators can also be incorporated easily (see, e.g., the case of
the Burgers equation in [249]). The generalization to multidomain solutions is straightforward: each
domain is considered as an isolated one, which requires boundary conditions at every timestep. The
condition is imposed through the penalty term containing the difference between the junction condi-
tions. This approach has very strong links with the variational method presented in Section 4.2.6 in
the case of time-independent problems. A more detailed discussion of the weak imposition of bound-
ary conditions is given in Canuto et al. (Section 3.7 of [103] and Section 5.3 of [104] for multidomain
methods).

4.4.3 Discretization in space: stability and convergence

After dealing with temporal discretization, we now turn to another fundamental question of numerical
analysis of initial value problems, which is to find conditions under which the discrete (spatial) approx-
imation uN (x, t) converges to the right solution u(x, t) of the PDE (4.115) as N → ∞ and t ∈ [0, T ].
The time derivative term is treated formally, as one would treat a source term on the right-hand side,
that we do not consider here, for better clarity.

A given spatial scheme of solving the PDE is said to be convergent if any numerical approximation
uN (x, t), obtained through this scheme, to the solution u(x, t)

‖PNu − uN‖L2
w
→ 0asN → ∞. (4.140)

Two more concepts are helpful in the convergence analysis of numerical schemes:
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• consistency : an approximation to the PDE (4.115) is consistent if ∀v ∈ H both

‖PN (Lv − LNv)‖L2
w
→ 0

‖PNv − vN‖L2
w
→ 0

}
asN → ∞; (4.141)

• stability : with the formal notations of Equation (4.116), an approximation to the PDE (4.115)
is stable if

∀N, ‖eLN t‖ = sup
v

‖eLN tv‖L2
w

‖v‖L2
w

≤ C(t), (4.142)

where C(t) is independent of N and bounded for t ∈ [0, T ].

Lax–Richtmyer theorem

The direct proof of convergence of a given scheme is usually very difficult to obtain. Therefore, a
natural approach is to use the Lax–Richtmyer equivalence theorem: “a consistent approximation to a
well-posed linear problem is stable if and only if it is convergent”. Thus, the study of convergence of
discrete approximations can be reduced to the study of their stability, assuming they are consistent.
Hereafter, we sketch out the proof of this equivalence theorem.

The time-evolution PDE (4.115) is approximated by

∂uN

∂t
= LNuN . (4.143)

To show that stability implies convergence, we subtract it from the exact solution (4.115)

∂ (u − uN )

∂t
= LN (u − uN ) + Lu − LNu,

and obtain, after integration, (the dependence on the space coordinate x is skipped)

u(t) − uN (t) = eLN t [u(0) − uN (0)] +

∫ t

0
eLN (t−s) [Lu(s) − LNu(s)] ds. (4.144)

Using the stability property (4.142), the norm (L2
w) of this equation implies

‖u(t) − uN (t)‖ ≤ C(t)‖u(0) − uN (0)‖ +

∫ t

0
C(t − s)‖Lu(s) − LNu(s)‖ds. (4.145)

Since the spatial approximation scheme is consistent and C(t) is a bounded function independent of
N , for a given t ∈ [0, T ] the left-hand side goes to zero as N → ∞, which proves the convergence.

Conversely, to show that convergence implies stability, we use the triangle inequality to get

0 ≤
∣∣∥∥eLN tu

∥∥ −
∥∥eLtu

∥∥∣∣ ≤
∥∥eLN tu − eLtu

∥∥ → 0.

From the well-posedness ‖eLtu‖ is bounded and therefore ‖eLN tu‖ is bounded as well, independent of
N .

The simplest stability criterion is the von Neumann stability condition: if we define the adjoint L∗

of the operator L, using the inner product, with weight w of the Hilbert space

∀(u, v) ∈ H, (u, Lv)w = (L∗u, v)w ,
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then the matrix representation L∗
N of L∗ is also the adjoint of the matrix representation of LN . The

operator LN is said to be normal if it commutes with its adjoint L∗
N . The von Neumann stability

condition states that, for normal operators, if there exists a constant K independent of N , such that

∀i, 1 ≤ i ≤ N, Re(λi) < K, (4.146)

with (λi) being the eigenvalues of the matrix LN , then the scheme is stable. This condition provides
an operational technique for checking the stability of normal approximations. Unfortunately, spectral
approximations using orthogonal polynomials have, in general, strongly non-normal matrices LN and
therefore, the von Neumann condition cannot be applied. Some exceptions include Fourier-based
spectral approximations for periodic problems.

Energy estimates for stability

The most straightforward technique for establishing the stability of spectral schemes is the energy
method : it is based on choosing the approximate solution itself as a test function in the evaluation
of residual (4.60). However, this technique only provides a sufficient condition and, in particular,
crude energy estimates indicating that a spectral scheme might be unstable can be very misleading
for non-normal evolution operators (see the example in Section 8 of Gottlieb and Orszag [210]).

Some sufficient conditions on the spatial operator L and its approximation LN are used in the
literature to obtain energy estimates and stability criteria, including:

• If the operator L is semibounded :

∃γ, L + L∗ ≤ γI, (4.147)

where I is the identity operator.

• In the parabolic case, if L satisfies the coercivity condition (see also Chapter 6.5 of Canuto
et al. [103]1):

∃A > 0,∀(u, v), |(Lu, v)| ≤ A‖u‖‖v‖, (4.148)

and the continuity condition:

∃α > 0,∀u, (Lu, u) ≤ −α‖u‖2. (4.149)

• In the hyperbolic case, if there exists a constant C > 0 such that

∀u, ‖Lu‖ ≤ C‖u‖, (4.150)

and if the operator verifies the negativity condition:

∀u, (Lu, u) ≤ 0. (4.151)

As an illustration, we now consider a Galerkin method applied to the solution of Equation (4.115),
in which the operator L is semibounded, following the definition (4.147). The discrete solution uN is
such that the residual (4.60) estimated on the approximate solution uN itself verifies

(
∂uN

∂t
− LuN , uN

)

w

= 0. (4.152)

1Note the difference in sign convention between [103] and here.
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Separating the time derivative and the spatial operator:

1

2

d

dt
‖uN (t)‖2

w =
1

2
((L + L∗)uN (t), uN (t))w ,

which shows that the “energy”

‖uN (t)‖2 ≤ eγt‖uN (0)‖2 (4.153)

grows at most exponentially with time. Since uN (t) = eLN tuN (0) for any uN (0), we obtain

∥∥eLN t
∥∥ ≤ e

1
2
γt, (4.154)

which gives stability and therefore convergence, provided that the approximation is consistent (thanks
to the Lax–Richtmyer theorem).

Examples: heat equation and advection equation

Heat equation

We first study the linear heat equation

∂u

∂t
− ∂2u

∂x2
= 0, with − 1 < x < 1, t > 0, (4.155)

with homogeneous Dirichlet boundary conditions

∀t ≥ 0, u(−1, t) = u(1, t) = 0, (4.156)

and initial condition

∀ − 1 ≤ x ≤ 1, u(x, 0) = u0(x). (4.157)

In the semidiscrete approach, the Chebyshev collocation method for this problem (see Section 4.2.5)
can de devised as follows: the spectral solution uN (t > 0) is a polynomial of degree N on the inter-
val [−1, 1], vanishing at the endpoints. On the other Chebyshev–Gauss–Lobatto collocation points
{xk}k=1...N−1 (see Section 4.2.4), uN (t) is defined through the collocation equations

∀k = 1 . . . N − 1,
∂u

∂t
(xk, t) −

∂2u

∂x2
(xk, t) = 0, (4.158)

which are time ODEs (discussed in Section 4.4.1) with the initial conditions

∀k = 0 . . . N, uN (xk, 0) = u0(xk). (4.159)

We will now discuss the stability of such a scheme, with the computation of the energy bound to
the solution. Multiplying the k-th equation of the system (4.158) by uN (xk, t)wk, where {wk}k=0...N

are the discrete weights of the Chebyshev–Gauss–Lobatto quadrature (Section 4.2.4), and summing
over k, one gets:

1

2

d

dt

N∑

k=0

(uN (xk, t))
2 wk −

N∑

k=0

∂2uN

∂x2
(xk, t)uN (xk, t)wk = 0. (4.160)
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Boundary points (k = 0, N) have been included in the sum since uN is zero there due to boundary
conditions. The product uN × ∂2uN/∂x2 is a polynomial of degree 2N − 2, so the quadrature formula
is exact

N∑

k=0

∂2uN

∂x2
(xk, t)uN (xk, t)wk =

∫ 1

−1

∂2uN

∂x2
(xk, t)uN (xk, t)w(x)dx, (4.161)

and integrating by parts twice, one gets the relation

∫ 1

−1

∂2uN

∂x2
(xk, t)uN (xk, t)w(x)dx =

∫ 1

−1

(
∂uN

∂x

)2

w(x)dx − 1

2

∫ 1

−1
u2

N

∂2w

∂x2
dx. (4.162)

By the properties of the Chebyshev weight

∂2w

∂x2
− 2

w

(
∂w

∂x

)2

= 0 and
∂2w

∂x2
=

(
1 + 2x2

)
w5, (4.163)

it is possible to show that

∫ 1

−1
u2

N

∂2w

∂x2
dx ≤ 3

∫ 1

−1
u2

Nw5dx ≤ 6

∫ 1

−1

∂2uN

∂x2
(xk, t)uN (xk, t)w(x)dx, (4.164)

and thus that
∫ 1

−1

∂2uN

∂x2
(xk, t)uN (xk, t)w(x)dx ≥ 1

4

∫ 1

−1

(
∂uN

∂x

)2

w(x)dx ≥ 0. (4.165)

Therefore, integrating relation (4.160) over the time interval [0, t], one obtains

N∑

k=0

(uN (xk, t))
2 wk ≤

N∑

k=0

(
u0(xk)

)2
wk ≤ 2 max

x∈[0,1]
|u0(x)|2. (4.166)

The left-hand side represents the discrete norm of uN (t)2, but since this is a polynomial of degree 2N ,
one cannot apply the Gauss–Lobatto rule. Nevertheless, it has been shown (see, e.g., Section 5.3 of
Canuto et al. [103]) that discrete and L2

w-norms are uniformly equivalent, therefore:

∫ 1

−1
(uN (x, t))2 w(x) ≤ 2 max

x∈[0,1]
|u0(x)|2, (4.167)

which proves the stability of the Chebyshev collocation method for the heat equation. Convergence
can again be deduced from the Lax–Richtmyer theorem, but a detailed analysis cf. Section 6.5.1
of Canuto et al. [103]) shows that the numerical solution obtained by the method described here
converges to the true solution and one can obtain the convergence rate. If the solution u(x, t) is
m-times differentiable with respect to the spatial coordinate x (see Section 4.2.4) the energy norm of
the error decays as N1−m. In particular, if the solution is C∞, the error decays faster than any power
of N .
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Advection equation

We now study the Legendre-tau approximation to the simple advection equation

∂u

∂t
+

∂u

∂x
= 0, with − 1 < x < 1, t > 0, (4.168)

with homogeneous Dirichlet boundary condition

∀t ≥ 0, u(−1, t) = 0, (4.169)

and initial condition
∀ − 1 ≤ x ≤ 1, u(x, 0) = u0(x). (4.170)

If we seek the solution as the truncated Legendre series:

uN (x, t) =
N∑

i=0

ai(t)Pi(x)

by the tau method, then uN satisfies the equation:

∂uN

∂t
+

∂uN

∂x
= τN (t)PN (x). (4.171)

Equating coefficients of PN on both sides of (4.171), we get

τN =
daN

dt
.

Applying the L2
w scalar product with uN to both sides of Equation (4.171), we obtain

1

2

∂

∂t

(
‖uN‖2 − a2

N

)
= −

∫ 1

−1
u

∂uN

∂x
dx = −1

2
u2

N (1) ≤ 0,

which implies the following inequality:

d

dt

N−1∑

i=0

a2
i ≤ 0. (4.172)

Finally, aN (t) is bounded because it is determined in terms of {ai}i=0...N−1 from the boundary con-
dition (4.169), and thus, stability is proved. In the same way as before, for the heat equation, it is
possible to derive a bound for the error ‖u(x, t) − uN (x, t)‖, if the solution u(x, t) is m-times differ-
entiable with respect to the spatial coordinate x; the energy norm of the error decays like N1−m (see
also Section 6.5.2 of Canuto et al. [103]). In particular, if the solution is C∞, the error decays faster
than any power of N .

4.4.4 Fully-discrete analysis

Stability issues have been discussed separately for time (Section 4.4.1) and space (Section 4.4.3)
discretizations. The global picture (fully discrete analysis), taking into account both discretizations
is, in general, very difficult to study. However, it is possible in some particular cases to address
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the problem and in the following lines, we shall perform a fully discrete analysis of the advection
equation (4.168), using a Legendre collocation method in space and a forward Euler scheme in time.
Using the notation of Section 4.4.1

∀x ∈ [−1, 1], UJ+1
N (x) = UJ

N (x) − ∆t
∂UJ

N

∂x
+ ∆t

∂UJ
N

∂x

∣∣∣∣
x=−1

PN+1(x)

PN+1(−1)
, (4.173)

where the last term imposes the boundary condition ∀J, UJ
N (x = −1) = 0. We consider this relation

at the Legendre–Gauss collocation points ({xi}i=0...N ), which are zeros of PN+1(x); the square of this
expression taken at these collocation points gives

∀i ∈ [0, N ],
(
UJ+1

N (xi)
)2

=
(
UJ

N (xi)
)2

+ ∆t2

(
∂UJ
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∣∣∣∣
x=xi

)2

− 2∆t UJ
N (xi)

∂UJ
N

∂x
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x=xi

.

We multiply by (1 − xi)wi, where {wi}i=0...N are the Legendre–Gauss weights, and sum over i to
obtain

N∑

i=0

(1 − xi)
(
UJ+1

N (xi)
)2

wi =
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For stability we require that a certain discrete energy of UJ
N be bounded in time:

N∑
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(
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N (xi)
)2

wi ≤
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wi, (4.174)

which means that
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With the exactness of the Legendre–Gauss quadrature rule for polynomials of degree lower than 2N+1,
we have
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and, with an additional integration by parts,
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The stability condition obtained from energy analysis translates into an upper bound for the timestep,
which can be seen as an accurate estimate of the CFL restriction on the timestep:

∆t ≤
∫ 1
−1

(
UJ

N (x)
)2

dx

∫ 1
−1

(
∂UJ

N
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)2
(1 − x) dx

≃ O
(

1

N2

)
. (4.175)
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Strong stability-preserving methods

The above fully-discrete analysis must, in principle, be performed for every time-marching scheme.
Therefore, it is very convenient to have a way of extending the results from the first-order Euler
method to higher-order methods. Strong stability-preserving Runge–Kutta and multistep methods
preserve these kinds of stability properties, including those following from nonlinear stability analysis.
A general review of the subject has been done by Shu [431], and we list some results here.

If we consider the general time ODE:

dUN

dt
= LNUN , (4.176)

arising from the spatial discretization of the PDE (4.115), we suppose that, after discretization in time
using the first-order forward Euler scheme, the strong stability requirement ‖UJ+1

N ‖ ≤ ‖UJ
N‖ gives a

CFL restriction of the type (4.175)

∆t ≤ ∆tFE . (4.177)

We can then write an s-stage Runge–Kutta method in the form

U
(0)
N = UJ

N ,

U
(i)
N =

i−1∑

k=0

(
αi,k + ∆t βi,kLNU

(k)
N

)
, i = 1, . . . s,

UJ+1
N = U

(s)
N ,

and see that, as long as αi,k ≥ 0 and βi,k ≥ 0, all of the intermediate stages are simply convex combina-
tions of forward Euler operators. If this method is strongly stable for LN , under the condition (4.177),
then the intermediate stages can be bounded and the Runge–Kutta scheme is stable under the CFL
condition

∆t ≤ c∆tFE , c = min
i,k

αi,k

βi,k
. (4.178)

In the same manner, one can devise strong stability-preserving explicit multistep methods of the
form

UJ+1
N =

s∑

i=1

(
αiU

J+1−i
N + ∆t βiLNUJ+1−i

N

)
,

which can also be cast into convex combinations of forward Euler steps and, therefore, these multistep
methods are also stable, provided that

∆t ≤ c∆tFE , c = min
i

αi

βi
. (4.179)

Examples of useful coefficients for Runge–Kutta and multistep strong stability-preserving methods
can be found in [431, 250]. The best of these methods are those for which the CFL coefficient c is as
large as possible.
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4.4.5 Going further: High-order time schemes

When using spectral methods in time-dependent problems, it is sometimes frustrating to have such
accurate numerical techniques for the evaluation of spatial derivatives and the integration of elliptic
PDEs, while the time derivatives and hyperbolic PDEs do not benefit from spectral convergence. Some
tentative studies are being undertaken in order to represent the time interval by spectral methods as
well [246]. In their spherically-symmetric study of the wave equation in Minkowski spacetime, Hennig
and Ansorg have applied spectral methods to both spatial and time coordinates. Moreover, they have
used a conformal compactification of Minkowski spacetime, making the wave equation singular at null
infinity. They have obtained nicely accurate and spectrally convergent solutions, even to a nonlinear
wave equation. If these techniques can be applied in general three-dimensional simulations, it would
really be a great improvement.

Nevertheless, there are other, more sophisticated and accurate time-integration techniques that are
currently being investigated for several stiff PDEs [270], including Korteweg–de Vries and nonlinear
Schrödinger equations [280]. Many such PDEs share the properties of being stiff (very different time
scales/characteristic frequencies) and combining low-order nonlinear terms with higher-order linear
terms. Einstein’s evolution equations can also be written in such a way [73]. Let us consider a PDE

∂u

∂t
= Lu + Nu, (4.180)

using the notation of Section 4.4.1 and N as a nonlinear spatial operator. Following the same notation
and within spectral approximation, one recovers

∂UN

∂t
= LNUN + NNUN . (4.181)

We will now describe five methods of solving this type of ODE (see also [270]):

• Implicit-explicit techniques use an explicit multistep scheme to advance the nonlinear part
NN , and an implicit one for the linear part.

• Split-step techniques are effective when the equation splits into two equations, which can be
directly integrated (see [280] for examples with the nonlinear Schrödinger and Korteweg-de Vries
equations).

• Integrating factor is a change of variable that allows for the exact solution of the linear part

VN = e−LN tUN , (4.182)

and explicit multistep method for the integration of the new nonlinear part

∂VN

∂t
= e−LN tNNeLN tVN . (4.183)

• Sliders can be seen as an extension of the implicit-explicit method described above. In addition
to splitting the problem into a linear and nonlinear part, the linear part itself is split into two
or three regions (in Fourier space), depending on the wavenumber. Then, different numerical
schemes are used for different groups of wavenumbers: implicit schemes for high wavenumbers
and explicit high-order methods for low wavenumbers. This method is restricted to Fourier
spectral techniques in space.
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• Exponential time-differencing techniques have been known for some time in computational
electrodynamics. These methods are similar to the integrating factor technique, but one con-
siders the exact equation over one timestep

UJ+1
N = eLN∆tUJ

N + eLN∆t

∫ ∆t

0
e−LN τNN (UN (N∆t + τ), N∆t + τ)dτ. (4.184)

Various orders for these schemes come from the approximation order of the integral. For example
Kassam and Trefethen [270] consider a fourth-order Runge–Kutta type approximation to this
integral, where the difficulty comes from the accurate computation of functions, that suffer from
cancellation errors.
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4.5 Stationary Computations and Initial Data

4.5.1 Introduction

In this section, we restrict ourselves to problems in which time does not appear explicitly. This is
especially the case for systems, that are stationary, like neutron stars in rotation or binary systems
in circular orbits. The computation of initial data also falls into this class, given that it consists in
finding a particular solution of Einstein’s equations at a given time only. Indeed, when using the
standard 3+1 decomposition of spacetime, the initial data that are passed to the evolution equations
cannot be totally arbitrary and must satisfy a set of equations called Einstein’s constraint equations.
For more details of the initial data problem we refer to the review by Cook [127]. So, in treating the
problems considered here, one may forget about the issues specific to time presented in Section 4.4.

It must be said that spectral methods are not the only technique that has been successfully used
to generate stationary spacetimes. [52, 472, 128, 314] give some examples of this, especially in the
case of binary systems, for neutron stars or black holes. More references can be found in [127].

4.5.2 Single compact stars

The computation of the structure of stationary compact stars dates back to 1939 with the famous
solution of Tolman–Oppenheimer–Volkoff. During the last few years, the need for accurate models
has become more pressing, especially with the coming online of gravitational wave detectors, which
could help to probe the interior of such compact stars. Isolated stars in rotation are essentially
axisymmetric, but some physical effects can induce a symmetry breaking that could lead to the
emission of gravitational waves. In the following, we will review some computations that aim at
including some of these effects, such as spontaneous symmetry breaking, the inclusion of magnetic
fields, the effects of exotic dense matter (mainly with strange quarks) and the influence of an interior
composed of two different superfluids.

Formalisms

The first computation of models of relativistic rotating stars in general relativity, by means of spectral
methods, is presented in [67]. The equations are solved in spherical coordinates (see Section 4.3.2).
Doing so, the fields only depend on the azimuthal angle θ and on the radius r. The fields are expanded
in terms of spherical harmonics with respect to the angle and in Chebyshev polynomials with respect
to r. The use of spherical harmonics is a natural way of dealing with the coordinate singularity on
the z-axis. In [67] the whole space is divided into two spherical domains, the outer one extending up
to infinity by making use of the compactification in 1/r seen in Section 4.3.1. With such a setting,
Einstein’s equations reduce to a set of four elliptic equations with sources extending up to infinity
that are solved using a version of the algorithm based on matching with the homogeneous solutions
(presented in Section 4.2.6) for each spherical harmonic. The system is complete once a description of
the matter is given. The simplest choice is to consider a polytropic fluid, with or without a magnetic
field. The system is solved by iteration.

In [67], a particular emphasis is put on various methods to measure the accuracy of the code. For
nonrotating stars, the error is found to decrease exponentially, as the number of coefficients increases
(see Figures 5 and 6 of [67]). However, for fast-rotating configurations, the error only decays as a
power law (see Figure 7 of [67]). This comes from the fact that quantities like the energy density are
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no longer C∞ across the star’s surface. Nevertheless, the results are in good agreement (to 0.1%) with
those obtained by other numerical methods, as can be seen in [344].

Spectral convergence can be recovered by using surface-adapted coordinates as first done in [77].
A regular mapping of the numerical coordinates to the physical ones is introduced, so that the surface
of the star lies at the boundary between two domains (see Section 4.3.1). For polytropes with γ < 2,
this is sufficient to recover spectral convergence (see Figures 5 and 6 of [69]). However, for γ > 2,
some quantities are still diverging at the surface but the convergence can be made closer and closer to
the spectral one by analytically regularizing the density (see Section IV of [69]). Doing so, the error
decreases as a power law, but the decrease can be made arbitrary fast at the cost of increasing the
number of operations and so the computational time.

Up until 2006, neutron stars were computed using quasi-isotropic coordinates. However, in order
to use these configurations as initial data for evolutionary codes, it may be useful to allow for other
choices. Among the possible gauges, Dirac’s is one of the most promising [73]. In [293] models of
rotating neutron stars in the Dirac gauge are computed for both polytropic and realistic equations of
state. Contrary to the quasi-isotropic coordinates, the use of this new gauge implies that one must
solve one tensor-like Poisson equation. Configurations obtained with the two different formalisms are
shown to be in very good agreement.

Rotating neutron star models

Even before adapted mappings were available, interesting results could be obtained. In [399, 400],
models of rotating neutron stars with various equations of state have been computed. Among the
most surprising findings is the existence of supra-massive stars. These stars do not connect to the
nonrotating limit. Indeed, their high mass can only be supported by the presence of a centrifugal
force. One of the remarkable features of such stars is the fact that they actually spin up when they
lose angular momentum, contrary to what is observed for normal stars. This effect can also be seen for
neutron stars containing hyperons and, thus, a softer equation of state [493]. Let us mention that, in
this case, the stability analysis of the configurations required the great precision that spectral methods
with adapted coordinates could provide.

It is known that isolated pulsars spin down due to magnetic braking. As the rotational frequency
decreases, it is possible that the star will encounter a transition from one state of matter to another.
Stationary rotating models have been used to determine the properties of such transitions [494, 495,
496]. A puzzling result is that the amount of energy released in a first-order phase transition does not
depend on the orbital velocity of the star and is the same as for nonrotating ones. This is shown to
be the case for both weak [495] and strong [496] first-order transitions.

Spontaneous symmetry breaking

It is known that stars can undergo spontaneous symmetry breaking when rotating fast enough. When
such a phenomenon occurs, triaxial configurations are formed that are potential emitters of gravita-
tional waves. The departure from axisymmetry is studied in two papers by the Meudon group [68, 70].
The idea of the method is to start from an axisymmetric neutron star configuration and to follow the
growth or decay of triaxial instabilities. This work reaffirms well-established results from the Newto-
nian regime and presents the first results in general relativity for various equations of states. For a
few of them, the frequency at which symmetry breaking occurs lies in the frequency band of the LIGO
and Virgo detectors.
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In 2002, this work was extended [207] by making use of surface-fitting coordinates. This enabled
the authors to obtain results in the incompressible case by properly dealing with discontinuities lying
at the surface of the star. Classical results in the incompressible case are, thus, recovered and it is
found that the inclusion of relativity has only a moderate effect. Indeed, the critical ratio between the
kinetic energy and the absolute gravitational energy T/ |W | at which the triaxial instability occurs is
only 30% larger for relativistic stars, with respect to their classical counterparts.

If relativistic effects only slightly stabilize stars, the same is not true for differential rotation.
Indeed, in [398], the authors study various rotation profiles and equations of state using the same
technique as in [68, 70] to determine the onset of instability. It appears that the critical value of
T/ |W | can be almost twice as high as for uniformly rotating stars.

Configurations with magnetic fields

Even if magnetic fields are strong in neutron stars, the structure of the object is not affected until
it reaches huge values, on the order of at least 1010T. In [64], models of rapidly-rotating stars with
poloidal fields are constructed for various equations of state. The magnetic effects are taken into
account consistently by solving the appropriate Maxwell equations, as well as by means of spectral
methods. The maximum mass of highly-magnetized neutrons stars is found to be higher by 13-29 %
than for nonmagnetized stars. The magnetic field induces an additional pressure, which can help to
support more massive stars, thus explaining this increase.

The presence of a magnetic field can also lead to the deformation of a neutron star. Such defor-
mation could lead to the formation of a triaxial configuration, which would then emit gravitational
waves. In [77] the emitted signal is computed. Typically the system radiates at two frequencies: Ω
and 2Ω where Ω is the angular velocity of the star.

In more recent work by the Meudon group [343], magnetized configurations have been computed
using coordinates matched to the surface of the star, thus making the computation much more accu-
rate. Gyromagnetic ratios of rapidly-rotating neutron stars of various equations of state are obtained.
The limit of a ratio of g = 2 value for a charged black hole is never reached.

Strange stars

It is possible that the fundamental state of nuclear matter is not the ordinary matter but rather a
plasma of deconfined quarks u, d and s, called strange matter. If this is the case, neutron stars should
rather be called strange stars. The main difference between these two types of compact stars is that
strange ones are somewhat smaller and thus more compact. In particular, they support higher rotation
rates. There is a strong density jump at the surface of a strange star and surface-fitting coordinates
are required in order to deal with it.

Fast rotating models of strange stars are computed in [217, 203]. Due to higher compactness, it
is found that strange stars can rotate significantly faster than their neutron star counterparts. The
attained T/ |W | can be twice as large. As in the neutron star case, supermassive configurations that
spin up with angular momentum loss are found. The influence of strange matter on the emission of
gravitational waves is studied in [205] where viscosity effects and triaxial instabilities are carefully
taken into account.

It is believed that millisecond pulsars have been spun up by accreting matter from a companion.
However, the details of this mechanism depend on the nature of the compact object. In [492], the
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differences between accretion onto a neutron star and onto a strange star are investigated, using 2D
stationary models computed by spectral methods.

Quasiperiodic oscillations

Quasiperiodic oscillations (QPOs) are observed in the kHz regime and are believed to be the signature
of matter falling into a compact object. In the standard picture, the frequency of the QPOs is that
of the last stable orbit around the compact object. Let us mention that the presence of a last stable
orbit around an extended body is not an effect of relativity but can also be seen in the Newtonian
regime, as shown in [497].

The precise structure of the accreting object has a great influence on the QPO. In a series of
papers [490, 204, 16, 58], comparisons are made between observations and various compact star models
that could account for QPOs.

Using a multidomain approach, strange stars with a crust can also be computed [491], one domain
describing the interior of the star and another the crust. It is shown that the presence of the crust
could change the value of the QPO by up to 20%.

More complex configurations

In this section, objects in more exotic configurations are presented. This is an illustration of both
the complexity of neutron stars physics and the ability of spectral methods to deal with complicated
systems.

The observation of glitches in isolated pulsars is consistent with the presence of a superfluid in-
terior. The simplest model considers two fluids, one composed of neutrons and the other of protons
and electrons, both components being superfluids. However, these two components could have dif-
ferent velocities, in particular different rotation rates. Such configurations are computed in [379]. A
multidomain setting is crucial to be able to follow the two different fluids because the components do
not have the same shape. Among the various results obtained, let us mention the confirmation of the
existence of prolate-oblate configurations.

Neutron stars are usually assumed to be at zero temperature. However, this approximation is
known to no longer be true for newborn neutron stars just after the supernova. Models of newborn
neutron stars in uniform rotations are constructed in [224] using an extension of the code developed
in [67]. Various hypothesis about the interior (different lepton numbers, isothermal versus isentropic)
are considered. Sequences of fixed baryon mass and angular momentum are constructed. Such se-
quences approximate the evolution of the protoneutron star into a cold neutron star. The results have
been extended to differentially-rotating protoneutron stars in [225].

The effect of finite temperature is also investigated in [476]. The authors found that newborn
neutron stars are unlikely to undergo bar mode instability, but that the secular ones could take place
and result in a significant emission of gravitational waves. Another interesting result of [476] is the
existence of toroidal-like configurations, which appear for a broad range of parameters and before
the mass-shedding limit. In such cases, the surface of the star is highly deformed and surface-fitting
coordinates are required.

Axisymmetric rotating neutron stars have also been computed by a code developed by An-
sorg et al. [29, 30] . This code is based on Lewis–Papapetrou coordinates (ρ, ξ), which are closely
related to the usual cylindrical coordinates. Typically, space is decomposed into two domains: one



4.5 Stationary Computations and Initial Data 163

for the interior of the star and another for the exterior, which extends up to spatial infinity. Com-
pactification of space and surface-fitting mappings are used. Both variables are expanded in terms of
Chebyshev polynomials. Instead of solving the equations harmonic by harmonic and then iterating, as
is done by the Meudon group, the equations are written with a collocation method (see Section 4.2.5)
and solved as one single system. The price to pay is that the size of the system is somewhat larger (i.e.
in m2, m being the total number of coefficients for each coordinate). The system is solved by means
of the Newton–Raphson method. At each step, the linear system is solved using iterative techniques
with preconditioning. With this method, impressive accuracy is reached.

The coordinates used in [29, 30] are more general than the ones used by the Meudon group,
especially with respect to their surface-fitting capabilities. They can account for more complicated
configurations and, in particular, highly-distorted matter distribution can be obtained. This is shown
in [32, 31], where relativistic axisymmetric toroidal configurations of matter, known as the Dyson
rings, are computed. Such rings are obtained up to the mass-shedding limit. Transition to the limit
of an extreme Kerr black hole is also discussed.

4.5.3 Single black holes

Compared to the compact star case, single black holes have not been studied very much. This is
probably because the structure of a stationary black hole is somewhat simpler than the one of a
compact star. However, as will be seen, there are still properties that must be investigated.

Spacetimes containing a single black hole constitute a good benchmark for numerical methods, a
lot of results being known analytically. In [279], the authors have implemented a spectral solver and
applied it to various test problems. The solver itself is two dimensional and thus applicable only to
axisymmetric systems. There is a single domain that consists of the whole space outside a sphere of
given radius (i.e. the black hole). Space is compactified by using the standard variable 1/r. The two
physical variables (r, θ) are mapped onto squares in R2 and then expanded in terms of Chebyshev
polynomials. The equations are written using a 2D collocation method (see Section 4.2.5) and the
resulting system is solved by an iterative algorithm (here Richardson’s method with preconditioning).
This solver is applied to solve Einstein’s constraint equations for three different systems: i) a single
black hole ii) a single black hole with angular momentum iii) a black hole plus Brill waves. In all three
cases, spectral convergence is achieved and accuracy on the order of 10−10 is reached with 30 points
in each dimension.

A black hole is somewhat simpler than a neutron star, in the sense that there is no need for a
description of matter (no equation of state, for instance). However, in some formalisms, the presence
of a black hole is enforced by imposing a nontrivial solution on a surface (typically a sphere). The basic
idea is to demand that the surface be a trapped surface. Such surfaces are known to lie inside event
horizons and so are consistent with the presence of a black hole. Discussions about such boundary
conditions can be found in [129]. However, in nonstationary cases, the set of equations to be used is
not easy to derive. The authors of [265] implement various sets of boundary conditions to investigate
their properties. Two different and independent spectral codes are used. Both codes are very close to
those used in the case of neutron stars, one of them based on Lorene library [216] (see Section 4.5.2)
and the other one developed by Ansorg and sharing a lot a features with [29, 30]. Such numerical
tools have proved useful in clarifying the properties of some sets of boundary conditions that could be
imposed on black hole horizons.

The reverse problem is also important in the context of numerical relativity. In some cases one
needs to know if a given configuration contains a trapped surface and if it can be located at each
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timestep. Several algorithms have been proposed in the past to find the locus at which the expansion
of the outgoing light rays vanishes (thus defining the trapped surface). Even if the term is not used
explicitly, the first application of spectral expansions to this problem is detailed in [51]. The various
fields are expanded in a basis of symmetric trace-free tensors. The algorithm is applied to spacetimes
containing one or two black holes. However, results seem to indicate that high order expansions are
required to locate horizons with a sufficient precision.

More recently, another code [294] using spectral methods has been used to locate apparent horizons.
It is based on the Lorene library with its standard setting, i.e. a multidomain decomposition of
space and spherical coordinates (see Section 4.5.2 for more details). The horizon finder has been
successfully tested on known configurations, like Kerr–Schild black holes. The use of spectral methods
makes it both fast and accurate. Even if the code uses only one set of spherical coordinates (hence its
presentation in this section), it can be applied to situations with more than one black hole, like the
well-known Brill–Lindquist data [91].

4.5.4 Rings around black holes

The problem of uniformly rotating rings surrounding a black hole can be viewed as an intermediate
step between one-body axisymmetric configurations and the two body problem. Indeed, even if one
has to deal with two components, the problem is still axisymmetric. In [34], configurations of a black
hole surrounded by a uniformly rotating ring of matter are computed in general relativity. The matter
is assumed to be a perfect fluid. To solve the equations, space is divided into five computational
domains. One of them describes the ring itself, another one the region around the black hole and
another extends up to infinity. The two other domains are used to connect those regions. One of the
difficulties is that the surface of the ring is not know a priori and so the domains must be dynamically
adapted to its surface. Cylindrical-type coordinates are used and, in each domain, are mapped onto
squares of numerical coordinates. The actual mappings depend on the domain and can be found in
Section IV of [34].

Numerical coordinates are expanded in terms of Chebyshev polynomials. The system to be solved
is obtained by writing Einstein’s equations in collocation space including regularity conditions on the
axis and appropriate boundary conditions on both the horizon of the black hole and at spatial infinity.
As in [29, 30], the system is solved iteratively, using the Newton–Raphson method.

Both the Newtonian and relativistic configurations are computed. The ratio between the mass
of the black hole and the mass of the ring is varied from zero (no black hole) to 144. The inner
mass shedding of the ring can be obtained. One of the most interesting results is the existence of
configurations for which the ratio Jc/M

2
c of the black hole angular momentum and the square of its

mass exceeds one, contrary to what can be achieved for an isolated black hole.

4.5.5 Compact star binaries

Formalism

Systems consisting of two compact objects are known to emit gravitational waves. Due to this emission,
no closed orbits can exist and the objects follow a spiral-like trajectory. This implies that such systems
have no symmetries that can be taken into account and full time evolutions should be made. However,
when the objects are relatively far apart, the emission of gravitational waves is small and the inspiral
slow. In this regime, one can hope to approximate the real trajectory with a sequence of closed orbits.



4.5 Stationary Computations and Initial Data 165

Moreover, the emission of gravitational waves is known to efficiently circularize eccentric orbits so that
only circular orbits are usually considered.

So, a lot of effort has been devoted to the computation of circular orbits in general relativity.
This can be done by demanding that the system admit a helical Killing vector ∂t + Ω∂ϕ, Ω being
the orbital angular velocity of the system. Roughly speaking, this means that advancing in time is
equivalent to turning the system around its axis. Working in the corotating frame, one is left with a
time-independent problem.

Additional approximations must be made in order to avoid any diverging quantities. Indeed,
when using helical symmetry, the system has an infinite lifetime and can fill the whole space with
gravitational waves, thus causing quantities like the total mass to be infinite. To deal with that, various
techniques can be used, the simplest one consisting of preventing the appearance of any gravitational
waves. This is usually done by demanding that the spatial metric be conformally flat. This is not
a choice of coordinates but a true approximation that has a priori no reason to be verified. Indeed,
even for a single rotating black hole, one can not find coordinates in which the spatial three-metric is
conformally flat, so that we do not expect it to be the case for binary systems. However, comparisons
with post-Newtonian results or non–conformally-flat results tend to indicate that this approximation
is relatively good.

Under these assumptions, Einstein’s equations reduce to a set of five elliptic equations for the
lapse, the conformal factor and the shift vector. These equations encompass both the Hamiltonian
and momentum constraint equations and the trace of the evolution equations. To close the system,
one must provide a description of the matter. It is commonly admitted that the fluid is irrotational,
the viscosity in neutron stars being too small to synchronize the motion of the fluid with the orbital
motion. It follows that the motion of the fluid is described by an additional elliptic equation for the
potential of the flow. The matter terms entering the equations via the stress-energy tensor can then
be computed, once an equation of state is given. An evolutionary sequence can be obtained by varying
the separation between the stars.

Numerical procedure

Up to now, only the Meudon group has solved these equations by means of spectral methods in the
case of two neutron stars. Two sets of domains are used, one centered on each star. Each set consists
of sphere-like domains that match the surface of the star and extend up to infinity. Functions are
expanded in terms of spherical harmonics with respect to the angles (θ, ϕ) and Chebyshev polynomials
with respect to the radial coordinates. Each Poisson equation ∆N = SN is split into two parts
∆N1 = SN1

and ∆N2 = SN2
, such that SN = SN1

+SN2
and N = N1 +N2. The splitting is, of course,

not unique and only requires that SNi
be mainly centered around star i so that it is well described by

spherical coordinates around it. The equation labeled i is then solved using domains centered on the
appropriate star. The splittings used for the various equations can be found explicitly in Section IV-C
of [218].

The elliptic equations are solved using the standard approach by the Meudon group found in [228].
For each spherical harmonic, the equation is solved using the tau method and the matching between
the various domains is made using the homogeneous solutions method (see Section 4.2.6). The whole
system of equations is solved by iteration and most of the computational time is spent when quantities
are passed from one set of domains to the other by means of a spectral summation (this requires N6

operations, N being the number of collocation points in one dimension). A complete and precise
description of the overall procedure can be found in [218].
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Neutron star binaries

The first sequence of irrotational neutron star binaries computed by spectral means is shown in [72].
Both stars are assumed to be polytropes with an index γ = 2. The results are in good agreement with
those obtained simultaneously by other groups with other numerical techniques (see, for instance, [52,
472]). One of the important points that has been clarified by [72] concerns the evolution of the
central density of the stars. Indeed, at the end of the 1990s, there was a claim that both stars could
individually collapse to black holes before coalescence, due to the increase of central density as the two
objects spiral towards each other. Should that have been true, this would have had a great impact
on the emitted gravitational wave signal. However, it turned out that this came from a mistake in
the computation of one of the matter terms. The correct behavior, confirmed by various groups and
in particular by [72], is a decrease in central density as the stars get closer and closer (see Figure I
of [72]).

If the first sequence computed by spectral methods is shown in [72], the complete description and
validation of the method are given in [218]. Convergence of the results with respect to the number of
collocation points is exhibited. Global quantities like the total energy or angular momentum are plotted
as a function of the separation and show remarkable agreement with results coming from analytical
methods (see Figures 8 – 15 of [218]). Relativistic configurations are also shown to converge to their
Newtonian counterparts when the compactness of the stars is small (see Figures 16 – 20 of [218]).

Newtonian configurations of compact stars with various equations of state are computed for both
equal masses [449] and various mass ratios [454]. One of the main results of the computations concerns
the nature of the end point of the sequence. For equal masses, the sequence ends at contact for
synchronized binaries and at mass shedding for irrotational configurations. This is to be contrasted
with the non–equal-mass case, in which the sequence always ends at the mass shedding limit of the
smallest object.

Properties of the sequences in the relativistic regime are discussed in [455, 456]. In [455] sequences
with γ = 2 are computed for various compactness and mass ratios for both synchronized and irrota-
tional binaries. The nature of the end point of the sequences is discussed and similar behavior to the
Newtonian regime is observed. The existence of a configuration of maximum binding energy is also
discussed. Such existence could have observational implications because it could be an indication of
the onset of a dynamic instability. Sequences of polytropes with various indexes ranging from 1.8 to
2.2 are discussed in [456]. In particular, the authors are lead to conjecture that, if a configuration of
maximum binding energy is observed in the Newtonian regime, it will also be observed in conformal
relativity for the same set of parameters.

In [169] the authors derive from the sequences computed in [455] a method to constrain the
compactness of the stars from the observations. Indeed, from the results in [455] one can easily
determine the energy emitted in gravitational waves per interval of frequency (i.e. the power spectrum
of the signal). For large separation, that is, for small frequencies, the curves follow the Newtonian.
However, there is a break frequency at the higher end (see Figure 2 of [169]). The location of this
frequency depends mainly on the compactness of the stars. More precisely, the more compact the
stars are, the higher the break frequency is. Should such frequency be observed by the gravitational
wave detectors, this could help to put constraints on the compactness of the neutron stars and, thus,
on the equation of state of such objects.
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Extensions

The framework of [218] is applied to more realistic neutron stars in [57]. In this work, the equations
of state are more realistic than simple polytropes. Indeed, three different equations are considered
for the interior, all based on different microscopic models. The crust is also modeled. For all the
models, the end point of the evolution seems to be given by the mass shedding limit. However, the
frequency at which the shedding occurs depends rather strongly on the EOS. The results are in good
agreement with post-Newtonian ones, until hydrodynamic effects begin to be dominant. This occurs
at frequencies in the range of 500 – 1000 Hz, depending on the EOS.

Sequences of strange star binaries have also been computed [292]. Contrary to the neutron star
case, matter density does not vanish at the surface of the stars and one really needs to use surface-
fitting domains to avoid any Gibbs phenomenon that would spoil the convergence of the overall
procedure. Sequences are computed for both synchronized and irrotational binaries and a configuration
of maximum binding energy is attained in both cases. This is not surprising: strange stars are more
compact than neutron stars and are less likely to be tidally destroyed before reaching the extremum
of energy, making it easier to attain dynamic instability. More detailed results on both neutron star
and strange star binaries are discussed in [206, 208].

All the work presented above was done in the conformal flatness approximation. As already stated
in Section 4.5.5, this is only an approximation and one expects that the true conformal three-metric
will depart from flatness. However, in order to maintain asymptotic flatness of spacetime, one needs to
get rid of the gravitational wave content. One such waveless approximation is presented in [423] and
implemented in [471]. Two independent codes are used, one of them being an extension of the work
described in [218]. The number of equations to be solved is then greater than in conformal flatness
(one has to solve for the conformal metric), but the algorithms are essentially the same. It turns
out that the deviation from conformal flatness is rather small. The new configurations are slightly
further from post-Newtonian results than the conformally-flat ones, which is rather counter-intuitive
and might be linked to a difference in the definition of the waveless approximations.

4.5.6 Black-hole–binary systems

Digging the holes

Though the computation of black hole binaries in circular orbit has a lot of common features with the
neutron star case, there are also some differences that need to be addressed. In at least one aspect,
black holes are much simpler objects because they are a solution of Einstein’s equations without
matter. So the whole issue of investigating various equations of state is irrelevant and there is no need
to solve any equation for the matter. However, there is a price to pay and one must find a way to
impose the presence of black holes in the spacetime. Two ideas have been proposed.

In the puncture method, the full spacetime contains three asymptotically-flat regions. One is
located at r = ∞ and the other two at two points, M1 an M2, which are called the punctures.
The presence of flat regions near the punctures is enforced by demanding that some quantities, like
the conformal factor, diverge at those points (typically as 1/r). The discontinuities are taken out
analytically and the equations are solved numerically for the regular parts in the whole space. This
idea dates back to the work of Brill and Lindquist [91], at least in the case of black holes initially at
rest.The puncture approach has been successfully applied to the computation of quasicircular orbits
by means of spectral methods in [33].
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The apparent horizon method relies on initial works by Misner [319] and Lindquist [300]. In this
case, the space has only two asymptotically-flat regions. One can show that this is equivalent to
solving Einstein’s equations outside two spheres on which boundary conditions must be imposed. The
boundary conditions are based on the concept of trapped surfaces and apparent horizons. The physical
state of the black holes are precisely encoded in the boundary conditions.

First configurations

The first configurations of black hole binaries computed by means of spectral methods can be found
in [229]. The formalism and various hypotheses are given in the companion paper [219]. The assump-
tions are very similar to those used for neutron star binaries (see Section 4.5.5). Helical symmetry is
enforced and conformal flatness assumed. The holes are described by the apparent horizon technique.
However, the boundary conditions used have been shown to be only approximately valid, up to a
rather good accuracy. This effect is discussed in the original paper [229] and further explored by Cook
in [129]. The numerical techniques are very similar to the ones employed for neutron-star–binary
configurations (see Section 4.5.5). Two sets of spherical domains are used, one for each black hole.
Boundary conditions are imposed on the surface between the nucleus and the first shell. Both sets
extend up to infinity using a compactification in 1/r.

For the first time, good agreement was found between numerical results and post-Newtonian ones.
A detailed comparison can be found in [142]. In particular, the location of the energy minimum is
shown to coincide to within a few percent. This improvement with respect to previous numerical
work is mainly due to a difference in the physical hypothesis (i.e. the use of helical symmetry). One
important product of [229] is the use of a new criterion to determine the appropriate value of the
orbital angular velocity Ω. Indeed, for neutron stars, this is done by demanding that the fluid of both
stars be in equilibrium [218]. This, of course, is not applicable for black holes. Instead, in [219, 229]
it is proposed that one find Ω by demanding that the ADM mass and the Komar-like mass coincide.
Without going into too much detail, this amounts to demanding that, far from the binary and at first
order in 1/r, the metric behave like the Schwarzschild. It is shown in [219] that it can be linked to
a relativistic virial theorem. Since then it has been shown that this criterion can also be used for
neutron stars [456] and that it is equivalent to the use of a variational principle called the effective
potential method [128, 50, 359, 113], where the binding energy is minimized with respect to Ω.

Further investigation

More recently, two other spectral codes have been developed in the context of black hole binaries and
successfully applied to address some of the issues raised by the work of [219, 229].

One of these codes comes from the Caltech/Cornell group of Pfeiffer et al. and is described
extensively in [361, 357]. The code is multidomain and two main types of domains are used i) square
domains in which each Cartesian-like coordinate is expanded in terms of Chebyshev polynomials
and ii) spherical domains in which spherical harmonics are used for the angles (θ, ϕ) and Chebyshev
polynomials for the radial coordinate. Space can be compactified by standard use of the variable 1/r.
The two types of domains can be set up in various manners to accommodate the desired geometry.
When using both square and spherical domains, there are regions of space that belong to more than
one domain. This is to be contrasted with work by the Meudon group in which different domains
are only touching but not overlapping. The algorithm of [361] solves differential equations by using
a multidimensional collocation method. The size of the resulting system is roughly equal to the
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number of collocation points. It is then solved iteratively via a Newton–Raphson algorithm with a
line search. At each step of the Newton–Raphson method, the linear system is solved by means of
an iterative scheme (typically GMRES). This inner iterative solver requires careful preconditioning to
work properly. Various tests are passed by the code in [361], in which elliptic equations and systems are
solved in either spherical or bispherical topologies. In the cases presented, the error decays spectrally.

In [360] the code is used to investigate different ways of solving the constraint equations. Three
different decompositions are used: the conformal TT one, the physical TT one and the thin-sandwich
decomposition. When solving for the constraint equations only, one must also choose some freely
specifiable variables, which describe the physical state of the system. In [360], these specifiable variables
are fixed using a superposition of two Kerr–Schild black holes. The net result of [360] is that global
quantities, like the total energy, are very sensitive to the choice of decomposition. The variation of
total energy can be as large as 5%, which is the order of the energy released by gravitational waves.
It is also shown that the choice of extrinsic curvature tensor is more crucial than the one of conformal
metric, in accordance with an underlying result of [229]. Let us point that the equations derived form
the helical Killing vector approach in [219, 229] are equivalent to the ones obtained by making use
of the thin-sandwich decomposition of the constraints. The freely specifiable variables are obtained
by both the imposition of the helical Killing symmetry and by solving an additional equation for the
lapse function (resulting in the extended thin-sandwich formalism).

In [133] the boundary conditions based on the apparent horizon formalism [129] are implemented
and tested numerically in the case of one and two black holes. In the latter case, the main difference
from [229] lies in the use of more elaborate and better boundary conditions on the horizons of the black
holes. By allowing for a nonvanishing lapse on the horizons, the authors of [133] solve the constraint
equations exactly. This is to be contrasted with [229], where the momentum constraint equation is
only solved up to a small correction. Both results show rather good agreement. This is not surprising
as the correction used by the Meudon group was known to be small (see Figures 10 and 11 of [229]).
More results are presented in [113], for both corotating and irrotational black holes. An important
result of [113] is the comparison of the two criteria for determining the orbital angular velocity Ω.
They indeed show that the effective potential method first introduced in [128] and the method based
on the virial theorem proposed in [219] are in very good agreement.

By slightly extending the boundary conditions used in [113], the authors of [363] propose to reduce
the eccentricity of the black-hole–binary configurations. This is done by giving the black holes a small
radial velocity by modifying the boundary condition on the shift vector. The code and other equations
are the same as in [113]. Time evolution of the obtained initial data does show that this technique can
reduce the eccentricity of the binary. However, the effect on the emitted gravitational wave is small
and probably unimportant.

Another application of the Caltech/Cornell solver can be found in [305], where the emphasis is put
on nearly maximum spinning black holes. Initial data are constructed for both single black holes and
binaries. Three families of initial data are investigated. Using a formalism based on the Kerr–Schild
spacetime, the authors are able to reach spins as large as a = 0.9998. Such nearly-maximum spinning
black holes may be relevant from the astrophysical point of view. Evolutions of these data are also
discussed there.

The other spectral code used to compute configurations of black hole binaries comes from An-
sorg [27]. It shares a lot of features with the code developed by the same author in the context of
rotating stars [29, 30] already discussed in Section 4.5.2. Space is decomposed into two domains. One
of them lies just outside the horizons of the black holes and bispherical-like coordinates are used.
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The other domain extends up to infinity and an appropriate mapping is used in order to avoid the
singularity of the bispherical coordinates at spatial infinity (see Section IV of [27]). The angle of
the bispherical coordinates (i.e. the angle around the x-axis joining the two black holes) is expanded
in terms of a Fourier series and the two other coordinates in terms of Chebyshev polynomials. As
in [34, 361], the partial differential equations are solved using a collocation method and the result-
ing system is solved by the Newton–Raphson method. Once again the linear system coming from
the Jacobian is solved by an iterative scheme with preconditioning. The code is used to compute
essentially the same configuration as those shown in [113]. An interesting point of [27] is the detailed
investigation of the convergence of the results with increased resolution. As can be seen in Figure 4
of [27], the error initially decreases exponentially, but, for high number of points, it seems that the
error follows only a power law. This is an indication that some non-C∞ fields must be present. It is
conjectured in [27] that this comes from logarithm terms that cannot be dealt with properly with a
compactification in 1/r. The same kind of effect is investigated in some detail in [228], where some
criteria for the appearance of such terms are discussed.

A code very similar to the one used in [27] has also been used to compute spacetimes with black
holes using the puncture approach [33]. Given that the black holes are no longer described by their
horizons, one does not need to impose inner boundary conditions. The absence of this requirement
enables the author of [33] to use a single domain to describe the whole space, from the puncture up
to infinity. The other features of the spectral solver are the same as in [27]. This method has been
successfully applied to the computation of black-hole–binary configurations in the puncture framework.
The authors have, in particular, investigated high mass ratios between the bodies and compared their
results with the ones given in the test-mass limit around a Schwarzschild black hole. The discrepancy
is found to be on the order of 50% for the total energy. It is believed that this comes from the fact
that the mass of each puncture cannot be directly related to the local black hole mass (see discussion
in Section VII of [33]).

Finally, let us mention that the algorithms developed by Ansorg in [29, 30, 33, 27] have all been
unified in [28] to accommodate any type of binaries. Various domain decompositions are exhibited
that can be used to represent neutron stars, excised black holes or puncture black holes, with the
compactification of space. The algorithms are shown to be applicable to limiting cases such as large
mass ratios.

4.5.7 Black-hole–neutron-star binaries

Until recently binaries consisting of a neutron star and a black hole received fewer attention than other
types of systems. It was believed, and this was partially true, that this case could easily be handled
once the cases of neutron star and black hole binaries were understood. However, such binaries are
of evident observational interest and could be the most promising source of gravitational waves for
ground-based detectors [59].

The first application of spectral methods to black-hole–neutron-star binaries can be found in [450].
The main approximation is to consider that the black hole is not influenced by the neutron star.
Technically, this means that Einstein’s equations are split into two parts (i.e. as for neutron star
binaries 4.5.5). However, the part of the fields associated with the black hole is fixed to its analytical
value. As the fields are not solved for the black-hole part, the results should depend on the actual
splitting, the equations being nonlinear. The part of the fields associated with the neutron star are
solved using the standard setting for the Meudon group. Of course, this whole procedure is only valid
if the black hole is much more massive than the neutron star and this is why [450] is limited to mass
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ratios of 10. In this particular case, it is shown that the results depend, to the level of a few percent,
on the choice of splitting, which is a measure of the reached accuracy. It is also shown that the state
of rotation of the star (i.e. synchronized or irrotational) has little influence on the results.

In [451] the equations of the extended thin-sandwich formulation are solved consistently. As for
the neutron-star–binary case, two sets of spherical coordinates are used, one centered around each
object. The freely specifiable variables are derived from the Kerr–Schild approach. Configurations are
obtained with a moderate mass ratio of five. However, the agreement with post-Newtonian results is
not very good and the data seem to be rather noisy (especially the deformation of the star).

Quasiequilibrium configurations based on a helical Killing vector and conformal flatness have been
obtained independently by [226] and [452]. Both codes are based on the Lorene library [216] and use
two sets of spherical coordinates. They differ mainly in their choice of boundary conditions for the
black hole. However, it is shown in the erratum of [226] that the results match pretty well and are
in very good agreement with post-Newtonian results. Mass ratios ranging from 1 to 10 are obtained
in [452] and the emitted energy spectra are estimated. The work of [452] has been extended in [453],
where the parameter space of the binary is extensively explored. In particular, the authors determine
whether the end point of the sequences is due to an instability or to the mass-shedding limit. It turns
out that the star is more likely to reach the mass-shedding limit if it is less compact and if the mass
ratio between the black hole and the star is important, as expected.

More recently, the Caltech/Cornell group has applied the spectral solver of [361, 357] in order
to compute black-hole–neutron-star configurations [183]. Some extensions have been made to enable
the code to deal with matter by making use of surface-fitting coordinates. Thanks to the domain
decomposition used (analogous to the one of [361, 357]), the authors of [183] can reach an estimated
accuracy 5 × 10−5, which is better than the precision of previous works (by roughly an order of
magnitude). Configurations with one spinning black hole and configurations with reduced eccentricity
are also presented, along the lines of [363].

4.5.8 Spacetimes with waves

[362] presents a method to produce initial data configurations containing waves. Given a fixed back-
ground metric, it shows how to superimpose a given gravitational wave content. The equations are
solved numerically using a multidomain spectral code based on [361, 357]. Space is covered by various
sphere-like shells and is described up to infinity. When no black hole is present, the origin is covered by
a square domain because regularity conditions at the origin, in spherical coordinates, are not handled
by [361, 357]. Such a setting is used to generate spacetimes containing i) pure quadrupolar waves ii)
flat space with an ingoing pulse and iii) a single black hole superimposed with an ingoing quadrupolar
wave.

4.5.9 Hyperboloidal initial data

If the 3+1 decomposition is the most widely used for numerical relativity, some other possibilities have
been proposed, with possibly better features. In particular, one can vary the foliation of spacetime to
get hyperboloidal data. With such a setting, at infinity spacetime is foliated by light cones instead of
spatial hypersurfaces, which makes the extraction of gravitational waves, in principle, easier.

In [185], Frauendiener is interested in generating hyperboloidal initial-data sets from data in phys-
ical space. The technique proceeds in two steps. First a nonlinear partial differential equation (the
Yamabe equation) must be solved to determine the appropriate conformal factor ω. Then, the data
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are constructed by dividing some quantities by this ω. This second step involves an additional dif-
ficulty: ω vanishes at infinity but the ratios are finite and smooth. It is demonstrated in [185] that
spectral methods can deal with these two steps. Some symmetry is assumed so that the problem
reduces to a two-dimensional one. The first variable is periodic and expanded in terms of a Fourier
series, whereas Chebyshev polynomials are used for the other. The Yamabe equation is solved using an
iterative scheme based on Richardson’s iteration procedure. The construction of the fields, and hence
the division by a field vanishing at infinity, is then handled by making use of the nonlocal nature of
the spectral expansion (i.e. by working in the coefficient space; see Section 4 of [185] for more details).
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4.6 Dynamic Evolution of Relativistic Systems

The modeling of time-dependent physical systems is traditionally the ultimate goal in numerical
simulations. Within the field of numerical relativity, the need for studies of dynamic systems is even
more pronounced because of the search for gravitational wave patterns. Unfortunately, as presented
in Section 4.4.1, there is no efficient spectral time discretization yet and one normally uses finite-order
time-differentiation schemes. Therefore, in order to get high temporal accuracy, one must use high-
order explicit time-marching schemes (e.g., fourth or sixth-order Runge–Kutta [86]). This requires
quite a lot of computational power and might explain why, except for gravitational collapse [211, 337],
very few studies using spectral methods have dealt with dynamic situations until the Caltech/Cornell
group began to use spectral methods in numerical relativity in the early part of this century [276, 277].
This group now has a very well-developed pseudospectral collocation code, “Spectral Einstein Code”
(SpEC), for the solution of full three-dimensional dynamic Einstein equations.

In this section, we review the status of numerical simulations that use spectral methods in some
fields of general relativity and relativistic astrophysics. Although we may give at the beginning of
each section a very short introduction to the context of the relevant numerical simulations, our point
is not to give detailed descriptions of them, as dedicated reviews exist for most of the themes pre-
sented here and the interested reader should consult them for details of the physics and comparisons
with other numerical and analytic techniques. Among the systems that have been studied, one can
find gravitational collapse [194] (supernova core collapse or collapse of a neutron star to a black
hole), oscillations of relativistic stars [442, 282] and evolution of “vacuum” spacetimes. These include
the cases of pure gravitational waves or scalar fields, evolving in the vicinity of a black hole or as
(self-gravitating) perturbations of Minkowski flat spacetime. Finally, we will discuss the situation of
compact binary [370, 62] spectral numerical simulations.

4.6.1 Single Stars

The numerical study of the evolution of stars in general relativity involves two parts: first, one must
solve for the evolution of matter (relativistic hydrodynamics, see [176]), and second, one must compute
the new configuration of the gravitational field. Whereas spectral-methods based codes are now able
to study quite well the second part (see Section 4.6.2), the first has not benefited from the efforts of
groups using spectral methods in the past decade. Thus, one faces a paradox: spectral methods have
been primarily developed for the simulation of hydrodynamic systems (see Section 4.1.2), but they
are not often used for relativistic hydrodynamics. This might be understood as a consequence of the
general problem of spectral methods to deal with discontinuous fields and supersonic flows: the Gibbs
phenomenon (see Section 4.2.4). Relativistic flows in astrophysics are often supersonic and therefore
contain shocks. Although some techniques have been devised to deal with them in one-dimensional
studies (see, e.g., [80]), there has been no convincing multidimensional convincing work. Another
problem of multidimensional relativistic hydrodynamics that can spoil rapid convergence properties is
sharp density profiles near neutron star surfaces. These can imply a diverging or discontinuous radial
derivative of the density, thus slowing down the convergence of the spectral series.

Supernova core collapse

The physical scenario studied here is the formation of a neutron star from the gravitational collapse
of a degenerate stellar core. This core can be thought of as the iron core of a massive star at the end
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of its evolution (standard mechanism of type II supernova). The degeneracy pressure of the electrons
can no longer support the gravity and the collapse occurs. When the central density reaches nuclear
values, the strong interaction stiffens the equation of state, stopping the collapse in the central region
and generating a strong shock. This mechanism has long been thought to be a powerful source of
gravitational radiation, but recent simulations show that the efficiency is much lower than previously
estimated [153, 423]. The first numerical study of this problem was the spherically-symmetric ap-
proach by May and White [315] using artificial viscosity to damp the spurious numerical oscillations
caused by the presence of shock waves in the flow solution. Currently, state-of-the-art codes use more
sophisticated High-Resolution Shock-Capturing (HRSC) schemes or High-Resolution Central (HRC)
schemes (for details on these techniques, see the review by Font [176]). The first axisymmetric fully
(general) relativistic simulations of the core collapse scenario were done by Shibata [416] and Shibata
and Sekiguchi [423], which used HRSC schemes and a parametric equation of state. More recently,
magnetohydrodynamic effects have been taken into account in the axisymmetric core collapse by
Shibata et al. [420] using HRC schemes. Three-dimensional core collapse simulations, including a
more realistic equation of state and deleptonization scheme have been performed within the cactus-

carpet-whisky [15, 41] framework by Ott et al. [352, 351]. These simulations have been compared
with those of the CoCoNuT code (see [148, 151] and later in this section). A more detailed historical
presentation can be found in the Living Review by Fryer and New [194].

The appearance of a strong hydrodynamic shock is, in principle, a serious problem to numerical
models using spectral methods. Nevertheless, a first preliminary study in spherical symmetry and
the Newtonian theory of gravity was undertaken in 1986 by Bonazzola and Marck [78], with the use
of “natural” viscosity. The authors show a mass conservation to a level better than 10−4 using one
domain with only 33 Chebyshev polynomials. In 1993, the same authors performed the first three-
dimensional simulation (still in Newtonian theory) of the pre-bounce phase [81], giving a computation
of the gravitational wave amplitude, which was shown to be lower than standard estimates. Moreover,
they showed that for a given mass, the gravitational wave amplitude depends only on the deformation
of the core. These three-dimensional simulations were made possible thanks to the use of spectral
methods, particularly for the solution of the Poisson equation for the gravitational potential.

Thus, shock waves pose a problem to spectral codes and have either been smoothed with spectral
vanishing viscosity [235] or ignored by the code stopping before their appearance. Another idea
developed first between the Meudon and Valencia groups was to use more appropriate techniques for
the simulation of shock waves: namely the High-Resolution Shock-Capturing techniques, also known
as Godunov methods (see the Living Reviews by Mart́ı and Müller [311] and by Font [176]). On
the other hand, one wants to keep the fewest degrees of freedom required by spectral methods for
an accurate-enough description of functions, in particular for the solution of elliptic equations or for
the representation of more regular fields, such as gravitational ones. Indeed, even in the case where a
hydrodynamic shock is present, since it only appears as a source for the metric in Einstein’s equations,
the resulting gravitational field is at least C1 and the spectral series do converge, although slower than in
the smooth case. Moreover, in a multidomain approach, if the shock is contained within only one such
domain, it is then necessary to increase resolution in only this particular domain and it is still possible
to keep the overall number of coefficients lower than the number of points for the HRSC scheme. The
combination of both types of methods (HRSC and spectral) was first achieved in 2000 by Novak and
Ibáñez [342]. They studied a spherically-symmetric core collapse in tensor-scalar theory of gravity,
which is a more general theory than general relativity and allows a priori for monopolar gravitational
waves. The system of PDEs to be solved resembles that of general relativity, with the addition of a
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scalar nonlinear wave equation for the monopolar dynamic degree of freedom. It was solved by spectral
methods, whereas the relativistic hydrodynamics equations were solved by Godunov techniques. Two
grids were used, associated to each numerical technique, and interpolations between the two were done
at every timestep. Although strong shocks were present in this simulation, they were sharply resolved
with HRSC techniques and the gravitational field represented through spectral methods did not exhibit
any Gibbs-like oscillations. Monopolar gravitational waveforms could, thus, be given. In collaboration
with the Garching relativistic hydrodynamics group, this numerical technique was extended in 2005
to three dimensions, but in the conformally-flat approximation of general relativity (see Sections 4.5.5
and 4.5.6) by Dimmelmeier et al. [151]. This approach using spectral methods for the gravitational field
computation is now sometimes referred to as the “Marriage des Maillages” (French for “grid wedding”)
and is currently employed by the core-collapse code CoCoNuT of Dimmelmeier et al. [148, 151] to
study general relativistic simulations of protoneutron stars, with a microphysical equation of state as
well as an approximate description of deleptonization [153].

Collapse to a black hole

Stellar collapse to a black hole has been widely studied, starting with spherically-symmetric compu-
tations; in the case of dust (matter with no pressure), an analytical solution by Oppenheimer and
Snyder [349] was found in 1939. Pioneering numerical works by Nakamura and Sato [332, 333] studied
the axisymmetric general relativistic collapse to a black hole; Stark and Piran [440] gave the gravita-
tional wave emission from such a collapse in the formalism of Bardeen and Piran [47]. Fully general
relativistic collapse simulations in axisymmetry have also been performed by Shibata [415], and the
first three-dimensional calculations of gravitational-wave emission from the collapse of rotating stars
to black holes was done by Baiotti et al. [41]. Recently, Stephens et al. [441] developed an evolution
code for the coupled Einstein–Maxwell-MHD equations, with application to the collapse to a black
hole of a magnetized, differentially-rotating neutron star.

To our knowledge, all studies of the collapse to a black hole, which use spectral methods are
currently restricted to spherical symmetry. However, in this case and contrary to the core-collapse
scenario, there is a priori no shock wave appearing in the evolution of the system and spectral methods
are highly accurate at modeling the hydrodynamics as well. Thus, assuming spherical symmetry, the
equations giving the gravitational field are very simple, first because of Birkhoff’s theorem, which gives
the gravitational field outside the star, and then from the absence of any dynamic degree of freedom in
the gravitational field. For example, when choosing the radial (Schwarzschild) gauge and polar slicing,
Einstein’s equations, expressed within 3+1 formalism, turn into two first-order constraints, which are
simply solved by integrating with respect to the radial coordinate (see [211]).

In the work of Gourgoulhon [211] a Chebyshev-tau method is used. The evolution equations for
the relativistic fluid variables are integrated with a semi-implicit time scheme and a quasi-Lagrangian
grid: the boundary of the grid is comoving with the surface of the star, but the grid points remain the
usual Gauss–Lobatto collocation points (Section 4.2.3). Due to the singularity-avoiding gauge choice,
the collapsing star ends in the “frozen-star” state, with the collapse of the lapse. This induces strong
gradients on the metric potentials, but the code is able to follow the collapse down to very small values
of the lapse, at less than 10−6. The code is very accurate at determining whether a star at equilibrium
is unstable, by triggering the physical instability from numerical noise at very low level. This property
was later used by Gourgoulhon et al. [215] to study the stability of equilibrium configurations of
neutron stars near the maximal mass, taking into account the effect of weak interaction processes. The
addition of an inward velocity field to the initial equilibrium configurations enabled Gourgoulhon [212]
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to partially answer the question of the minimal mass of black holes: can the effective mass-energy
potential barrier associated with stable equilibrium states be penetrated by stars with substantial
inward radial kinetic energy? In [212], Gourgoulhon was able to form a black hole with a starting
neutron star that was 10% less massive than the usual maximal mass.

The spectral numerical code developed by Gourgoulhon [211] has been extended to also simulate
the propagation of neutrinos, coming from the thermal effect and nonequilibrium weak interaction
processes. With this tool, Gourgoulhon and Haensel [221] have simulated the neutrino bursts coming
from the collapse of neutron stars, with different equations of state. Another modification of this spec-
tral code has been done by Novak [337], extending the theory of gravity to tensor-scalar theories. This
allowed for the simulation of monopolar gravitational waves coming from the spherically-symmetric
collapse of a neutron star to a black hole [337]. From a technical point of view, the solution of a non-
linear wave equation on curved spacetime has been added to the numerical model. It uses an implicit
second-order Crank–Nicolson scheme for the linear terms and an explicit scheme for the nonlinear
part. In addition, as for the hydrodynamics, the wave equation is solved on a grid, partly comoving
with the fluid. The evolution of the scalar field shows that the collapsing neutron star has “expelled”
all of its scalar charge before the appearance of the black hole.

Relativistic stellar pulsations

Oscillations of relativistic stars are often studied as a time-independent, linear eigenvalue prob-
lem [282]. Nevertheless, numerical approaches via time evolutions have proved to bring interesting
results, as obtained by Font et al. [181] for the first quasiradial mode frequencies of rapidly-rotating
stars in full general relativity. Nonlinear evolution of the gravitational-radiation–driven instability in
the r-modes of neutron stars has been studied by many authors (for a presentation of the physical
problem, see Section 13 of [23]). In particular, the first study of nonlinear r-modes in rapidly-rotating
relativistic stars, via three-dimensional general-relativistic hydrodynamic evolutions has been done by
Stergioulas and Font [444]. Different approaches to numerical hydrodynamic simulations in Newtonian
gravity have been attempted by Lindblom et al. [295], with an additional braking term, as by Villain
and Bonazzola [478] (see the following).

Because of their very high accuracy, spectral methods are able to track dynamic instabilities in
the evolution of equilibrium neutron star configurations, as shown in section 4.6.1 by the work of
Gourgoulhon et al. [211, 215]. In this work, when the initial data represents a stable neutron star,
some oscillations appear, which corresponds to the first fundamental mode of the star. As another
illustration of the accuracy, let us mention the work of Novak [336], who followed the dynamic evolution
of unstable neutron stars in the tensor-scalar theory of gravity. The instability is linked with the
possibility for these stars of undergoing some “spontaneous scalarization”, meaning that they could
gain a very high scalar charge, whereas the scalar field would be very weak (or even null) outside the
star. Thus, for a given number of baryons, there would be three equilibria for a star: two stable ones
with high scalar charges (opposite in sign) and an unstable one with a weak scalar charge. Starting
from this last one, the evolution code described in [337] was able to follow the transition to a stable
equilibrium, with several hundreds of damped oscillations for the star. This damping is due to the
emission of monopolar gravitational waves, which carry away the star’s kinetic energy. The final state
corresponds to the equilibrium configuration, independently computed by a simple code solving the
generalized Tolman–Oppenheimer–Volkoff system with a scalar field, up to 1% error, after more than
50,000 timesteps. These studies could be undertaken with spectral methods because in these scenarios
the flow remains subsonic and one does not expect any shock to be formed.
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It is therefore quite natural to try and simulate stellar pulsations using spectral methods. Unfortu-
nately, there have been only a few such studies, which are detailed in the following. Lockitch et al. [304]
have studied the inertial modes of slowly-rotating stars in full general relativity. They wrote down
perturbation equations in the form of a system of ordinary differential equations, thanks to a decompo-
sition into vector and tensor spherical harmonics. This system is then a nonlinear eigenvalue problem
for the dimensionless mode frequency in the rotating frame. Equilibrium and perturbation variables
are then expanded in terms of a basis of Chebyshev polynomials, taking into account the coordinate
singularity at the origin and parity requirements. The authors were therefore able to determine the
values of the mode frequency, making the whole system singular and looked for eigenfunctions, through
their spectral decomposition. They found that inertial modes were slightly stabilized by relativistic
effects.

A different and maybe more natural approach, namely the time integration of the evolution equa-
tions, has been undertaken by Villain et al. [478, 477] with a spectral magnetohydrodynamics code
in spherical coordinates. The code solves the linearized Euler or Navier–Stokes equations, with the
anelastic approximation. This approximation, which is widely used in other fields of astrophysics and
atmospheric physics, consists in neglecting acoustic waves by assuming that time derivatives of the
pressure and the density perturbations are negligible. It allows for a characteristic time, which is not
set by acoustic propagation time, but is much longer and the timestep can be chosen so as to follow
the inertial modes themselves. In their 2002 paper [478], Villain et al. study inertial modes (i.e.
modes whose restoring force is the Coriolis force, among which the r-modes [23]) in slowly rotating
polytropes with γ = 2 in the linear regime. First, this is done in the framework of Newtonian grav-
ity, where the anelastic approximation implies that the Eulerian perturbations of the gravitational
potential do not play any role in the velocity perturbations. Second, they study the relativistic case,
but with the Cowling approximation, meaning again that the metric perturbations are discarded. In
both regimes and trying different boundary conditions for the velocity field at the surface of the star,
they note the appearance of a polar part of the mode and the “concentration of the motion” near
the surface, showing up in less than 15 periods of the linear r-mode. A more recent work [477] deals
with the study of gravity modes, in addition to inertial modes, in neutron stars. The interesting point
of this work is the use of a quite realistic equation of state for nuclear matter, which is valid even
when beta equilibrium is broken. The authors were, thus, able to show that the coupling between
polar and axial modes is increasing with the rotation of the star, and that the coupling of inertial
modes with gravity modes in nonbarotropic stars can produce fast energy exchanges between polar
and axial parts of the fluid motion. From a numerical point of view, one of the key ingredients is the
solution of the vector heat equation, coming from the Euler or Navier–Stokes equations. This is done
by a poloidal-toroidal [83] decomposition of the velocity field into two scalar potentials, which is very
natural in spectral methods. Moreover, to ensure correct analytical behavior at the origin, all scalar
quantities are projected at each timestep to a modified Legendre function basis.

More recently, a complete nonlinear study of rotating star pulsations has been set by Dim-
melmeier et al. [152]. They used the general relativistic code CoCoNuT (see above, Section 4.6.1)
in axial symmetry, with an HRSC hydrodynamic solver, and spectral methods for the simplified Ein-
stein equations (conformally-flat three metric). They noted that the conformal flatness condition did
not have much effect on the dynamics when comparing with the Cowling approximation. Nevertheless,
they found that differential rotation was shifting the modes to lower frequencies and they confirmed
the existence of the mass-shedding–induced damping of pulsations.
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4.6.2 Vacuum and black hole evolutions

If one wants to simulate the most interesting astrophysical sources of gravitational radiation, one
must have a code able to follow, in a stable manner, gravitational waves themselves on a background
spacetime. It has been observed by all numerical relativity groups that the stability of a numerical
code, which solves Einstein’s field equations, not only depends on the numerical algorithm, but also on
the particular formulation of the equations. Successes in the simulations of binary systems of compact
objects in general relativity (see Section 4.6.3) are also due to numerous studies and advances in the
formulations of Einstein’s equations. The methods known at present that work for the numerical
evolution of binaries are the generalized harmonic coordinate method [187, 199, 374] and the BSSN
method (for Baumgarte–Shapiro–Shibata–Nakamura [54, 421]). In particular, these two formulations
of the field equations have the important property that constraint violating modes (see discussion
following) stay at a reasonable level during the evolution. Use of the generalized harmonic gauge
requires constraint damping terms; and a particular method suited for harmonic evolution, which was
proposed by Gundlach et al. [232], enabled Pretorius to evolve black hole spacetimes [374, 373].

It is, therefore, a crucial step to devise such a stable formulation, and more particularly with
spectral methods, because they add very little numerical dissipation and thus, even the smallest
instability is not dissipated away and can grow to an unacceptable level. The situation becomes even
more complicated with the setup of an artificial numerical boundary at a finite distance from the
source, needing appropriate boundary conditions to control the physical wave content, and possibly
to limit the growth of unstable modes. All these points have been extensively studied since 2000 by
the Caltech/Cornell groups and their pseudospectral collocation code SpEC [279, 277, 402, 403, 296,
255, 278, 297, 86]; they were followed in 2004 by the Meudon group [73] and in 2006 by Tichy [466].

Next, it is necessary to be able to evolve black holes. Successful simulations of black hole binaries
have been performed using the black-hole puncture technique [101, 44]. Unfortunately, the dynamic
part of Einstein fields are not regular at the puncture points and it seems difficult to regularize
them so as to avoid any Gibbs-like phenomenon using spectral methods. Therefore, punctures are not
generally used for spectral implementations; instead the excision technique is employed, removing part
of the coordinate space inside the apparent horizon. There is no need for boundary conditions on this
new artificial boundary, provided that one uses a free-evolution scheme [402], solving only hyperbolic
equations. In the considered scheme, and for hydrodynamic equations as well, one does not need
to impose any boundary condition, nor do any special treatment on the excision boundary, contrary
to finite difference techniques, where one must construct special one-sided differencing stencils. On
the other hand, with a constrained scheme, elliptic-type equations are to be solved [73] and, as for
initial data (see Sections 4.5.3 and 4.5.6), boundary conditions must be provided, e.g., on the apparent
horizon, from the dynamic horizon formalism [223].

Finally, good outer boundary conditions, which are at the same time mathematically well posed,
consistent with the constraints and prevent as much as possible reflections of outgoing waves, must
be devised. In that respect, quite complete boundary conditions have been obtained by Buchman and
Sarbach [95].

Formulation and boundary conditions

Several formulations have been proposed in the literature for the numerical solution of Einstein’s
equations using spectral methods. The standard one is the 3+1 (a.k.a. Arnowitt–Deser–Misner –
ADM) formalism of general relativity [35, 486] (for a comprehensive introduction, see the lecture
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notes by Gourgoulhon [214]), which has been reformulated into the BSSN [54, 421] for better stability.
But first, let us mention an alternative characteristic approach based on expanding null hypersurfaces
foliated by metric two-spheres developed by Bartnik [48]. This formalism allows for a simple analysis
of the characteristic structure of the equations and uses the standard “edth” (ð) operator on S2 to
express angular derivatives. Therefore, Bartnik and Norton [49] use spin-weighted spherical harmonics
(see Section 4.3.2) to numerically describe metric fields.

Coming back to the 3+1 formalism, Einstein’s equations split into two subsets of equations. First,
the dynamic equations specifying the way the gravitational field evolves from one timeslice to the next;
then, the constraint equations, which must be fulfilled on each timeslice. Still, it is well known that
for the Einstein system, as well as for Maxwell’s equations of electromagnetism, if the constraints are
verified on the initial timeslice, then the dynamic equations guarantee that they shall be verified in the
future of that timeslice. Unfortunately, when numerically doing such free evolution, i.e. solving only
for the dynamic equations, small violations of the constraints due to round-off errors appear to grow
exponentially (for an illustration with spectral methods, see, e.g., [402, 466]). The opposite strategy
is to discard some of the evolution equations, keeping the equations for the two physical dynamic
degrees of freedom of the gravitational field, and to solve for the four constraint equations: this is a
constrained evolution [73].

The advantages of the free evolution schemes are that they usually allow one to write Einstein’s
equations in the form of a strongly- or symmetric-hyperbolic system, for which there are many mathe-
matical theorems of existence and well-posedness. In addition, it is possible to analyze such systems in
terms of characteristics, which can give very clear and easy-to-implement boundary conditions [278].
Using finite-difference numerical methods, it is also very CPU-time consuming to solve for constraint
equations, which are elliptic in type, but this is not the case with spectral methods. On the other hand,
constrained evolution schemes have, by definition, the advantage of not being subject to constraint-
violation modes. Besides, the equations describing stationary spacetimes are usually elliptic and are
naturally recovered when taking the steady-state limit of such schemes. Finally, elliptic PDEs usually
do not exhibit instabilities and are known to be well posed. To be more precise, constrained evolution
using spectral methods has been implemented by the Meudon group [73], within the framework of the
BSSN formulation. Free-evolution schemes have been used by Tichy [466] (with the BSSN formula-
tion) and by the Caltech/Cornell group, which has developed their Kidder–Scheel–Teukolsky (KST)
scheme [277] and have later used the Generalized-Harmonic (GH) scheme [297]. The KST scheme is,
in fact, a 12-parameter family of hyperbolic formulations of Einstein’s equations, which can be fine
tuned in order to stabilize the evolution of, e.g., black hole spacetimes [402].

Even when doing so, constraint-violating modes grow exponentially and three ways of control-
ling their growth have been studied by the Caltech/Cornell group. First, the addition of multiples
of the constraints to the evolution system in order to minimize this growth. The parameters linked
with these additional terms are then adjusted to control the evolution of the constraint norm. This
generalized version of the dynamic constraint control method used by Tiglio et al. [468] has been
presented by Lindblom et al. [296] and tested on a particular representation of the Maxwell equa-
tions. Second, Lindblom et al. [296] devised constraint preserving boundary conditions from those of
Calabrese et al. [100], where the idea was to get maximally dissipative boundary conditions on the
constraint evolution equations [296, 278]. This second option appeared to be more efficient, but still
did not completely eliminate the instabilities. Finally, bulk constraint violations cannot be controlled
by constraint-preserving boundary conditions alone, so Holst et al. [255] derived techniques to project
at each timestep the solution of the dynamic equations onto the constraint submanifold of solutions.
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This method necessitates the solution of a covariant inhomogeneous Helmholtz equation to determine
the optimal projection. Nevertheless, the most efficient technique seems to be the use of the GH
formulation, which also incorporates multiples of the constraints, thus exponentially suppressing bulk
constraint violation, together with constraint-preserving boundary conditions [297].

Boundary conditions are not only important for the control of the constraint-violation modes in
free evolutions. Because they cannot be imposed at spatial infinity (see Section 4.3.1), they must
be completely transparent to gravitational waves and prevent any physical wave from entering the
computational domain. A first study of interest for numerical relativity was done by Novak and
Bonazzola [341], in which gravitational waves are considered in the wave zone, as perturbations of flat
spacetime. The specificity of gravitational waves is that they start at the quadrupole level (ℓ = 2) in
terms of spherical harmonics expansion. Standard radiative boundary conditions (known as Sommer-
feld boundary conditions [436]) being accurate only for the ℓ = 0 component, a generalization of these
boundary conditions has been done to include quadrupolar terms [341]. They strongly rely on the spec-
tral decomposition of the radiative field in terms of spherical harmonics and on spherical coordinates.
More specific boundary conditions for the Einstein system, in order to control the influx of the radiative
part of the Weyl tensor, have been devised by Kidder et al. [278] for the KST formulation, generalizing
earlier work by Stewart [446] and Calabrese et al. [100]. They were then adapted to the GH formula-
tion by Lindblom et al. [297]. Rinne [388] has studied the well-posedness of the initial-boundary–value
problem of the GH formulation of Einstein’s equations. He has considered first-order boundary condi-
tions, which essentially control the incoming gravitational radiation through the incoming fields of the
Weyl tensor. He has also tested the stability of the whole system with a collocation pseudospectral
code simulating a Minkowski or Schwarzschild perturbed spacetime. Generalizing previous works, a
hierarchy of absorbing boundary conditions has been introduced by Buchman and Sarbach [95], which
have then been implemented in the Caltech/Cornell SpEC code by Ruiz et al. [395], together with new
sets of absorbing and constraint-preserving conditions in the generalized harmonic gauge. Ruiz et al.
have shown that their second-order conditions can control the incoming gravitational radiation, up
to a certain point. In addition, they have analyzed the well-posedness of the initial-boundary–value
problems arising from these boundary conditions. Rinne et al. [390] have compared various methods
for treating outer boundary conditions. They have used the SpEC code to estimate the reflections
caused by the artificial boundary, as well as the constraint violation it can generate.

Gauges and wave evolution

The final ingredient before performing a numerical simulation of the dynamic Einstein system is the
gauge choice. For example, the analytical study of the linearized gravitational wave in vacuum has
been done with the harmonic gauge, for which the coordinates {xµ} verify the scalar covariant wave
equation

Hµ = gµν∇σ∇σxν = 0. (4.185)

This is the definition of the form Hµ, where gµν is the metric and ∇σ the associated covariant derivative.
Recent work by the Caltech/Cornell group uses the GH formulation in which the gauge choice is
achieved through the specification of Hµ as an arbitrary function of {xµ} and gµν , which can be set,
for instance, to its initial value [404]. Still, it is with the KST formulation, and with the lapse and shift
set from the analytic values, that Boyle et al. [86] have submitted the Caltech/Cornell SpEC code to
the “Mexico City tests” [13]. These are a series of basic numerical relativity code tests to verify their
accuracy and stability, including small amplitude linear plane wave, gauge wave and Gowdy spacetime
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evolutions. These tests have been passed by the Caltech-Cornell code using a Fourier basis for all three
Cartesian coordinates and a fourth-order Runge-Kutta timestepping scheme. In the particular case of
the linear plane wave, Boyle et al. [86] exhibit the proper error behavior, which increases as the square
of the wave amplitude, because all nonlinear terms are neglected in this test. The authors have also
shown that the use of filtering of the spherical harmonics coefficients was very effective in reducing
nonlinear aliasing instabilities. Gauge drivers for the GH formulation of Einstein’s equations have
been devised by Lindblom et al. [298]. They provide an elegant way of imposing gauge conditions that
preserve hyperbolicity for many standard gauge conditions. These drivers have been tested with the
SpEC code.

Within the constrained formulation of Einstein’s equations, the Meudon group has introduced a
generalization of the Dirac gauge to any type of spatial coordinates [73]. Considering the conformal
3+1 decomposition of Einstein’s equations, the Dirac gauge requires that the conformal three-metric
γ̃ij (such that det γ̃ij = 1) be divergence-free with respect to the flat three-metric (defined as the
asymptotic structure of the three-metric and with the associated covariant derivative D̄)

D̄iγ̃
ij = 0. (4.186)

The time coordinate is set by the standard maximal slicing condition. These conditions turn out
to be dynamic gauge conditions: the lapse and the shift are determined through the solution of
elliptic PDEs at each timestep. With this setting, Bonazzola et al. have studied the propagation of
a three-dimensional gravitational wave, i.e. the solution of the fully nonlinear Einstein equations in
vacuum. Their multidomain spectral code based on the Lorene library [216] was able to follow the
wave using spherical coordinates, including the (coordinate) singular origin, and to let it out of the
numerical grid with transparent boundary conditions [341]. Evolution was performed with a second-
order semi-implicit Crank–Nicolson time scheme, and the elliptic system of constraint equations was
solved iteratively. Since only two evolution equations were solved (out of six), the others were used
as error indicators and proved the awaited second-order time convergence. A preliminary analysis of
the mathematical structure of the evolution part of this formalism done by Cordero et al. [134] has
shown that the choice of Dirac’s gauge for the spatial coordinates guarantees the strongly hyperbolic
character of that system as a system of conservation laws.

Black hole spacetimes

As stated at the beginning of Section 4.6.2, the detailed strategy to perform numerical simulations of
black hole spacetimes depends on the chosen formulation. With the characteristic approach, Bartnik
and Norton [49] modeled gravitational waves propagating on a black hole spacetime in spherical
coordinates, but with a null coordinate z = t−r. Interestingly, they combined a spectral decomposition
on spin-weighted spherical harmonics for the angular coordinates and an eighth-order scheme using
spline convolution to calculate derivatives in the r or z direction. Integration in these directions was
done with a fourth or eighth-order Runge–Kutta method. For the spectral part, they had to use
Orszag’s 2/3 rule [102] for antialiasing. This code achieved a global accuracy of 10−5 and was able to
evolve the black hole spacetime up to z = 55M . More recently, Tichy has evolved a Schwarzschild
black hole in Kerr–Schild coordinates in the BSSN formulation, up to t ≃ 100 M [466]. He used
spherical coordinates in a shell-like domain, excising the interior of the black hole. The expansion
functions are Chebyshev polynomials for the radial direction, and Fourier series for the angular ones.

Most successful simulations in this domain have been performed by the Caltech/Cornell group,
who seem to be able to stably evolve forever not only a Schwarzschild, but also a Kerr black hole
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perturbed by a gravitational wave pulse [297], using their GH formulation with constraint-damping
and constraint-preserving boundary conditions. However, several attempts had been reported by
this group before, starting with the spherically-symmetric evolution of a Schwarzschild black hole by
Kidder et al. [276]. Problems had arisen when trying three-dimensional simulations of such physical
systems with the new parameterized KST formalism [277]. Using spherical coordinates in a shell-like
domain, the authors decomposed the fields (or Cartesian components for tensor fields) on a Chebyshev
radial base and scalar spherical harmonics. The integration in time was done using a fourth-order
Runge–Kutta scheme and the gauge variables were assumed to keep their analytical initial values. The
evolution was limited by the growth of constraint-violating modes at t ∼ 1000 M . With a fine-tuning
of the parameters of the KST scheme, Scheel et al. [402] have been able to extend the lifetime of
the numerical simulations to about 8000M . On the other hand, when studying the behavior of a
dynamic scalar field on a fixed Kerr background, Scheel et al. [403] managed to get nice results on
the late time decay of this scalar field. They had to eliminate high-frequency numerical instabilities,
with a filter on the spherical harmonics basis, following again Orszag’s 2/3 rule [102] and truncating
the last third of the coefficients. It is interesting to note that no filtering was necessary on the radial
(Chebyshev) basis functions. A more complicated filtering rule has been applied by Kidder et al. [278]
when trying to limit the growth of constraint-violation in three-dimensional numerical evolutions of
black hole spacetimes with appropriate boundary conditions. They have set to zero the spherical
harmonics terms with ℓ ≥ ℓmax − 3 in the tensor spherical harmonics expansion of the dynamic fields.
The stable evolutions reported by Lindblom et al. [297], thus, might be due to the following three
ingredients:

• GH formalism, exponentially suppressing all small short-wavelength constraint violations,

• constraint-preserving boundary conditions,

• the filtering of spherical harmonics spectral coefficients.

4.6.3 Binary systems

As seen in Section 4.6.2, not many groups using spectral methods are able to solve all the three-
dimensional Einstein equations in a stable way. When dealing with black holes, the situation is even
worse. Only very recently, the Caltech/Cornell group succeeded in following 16 orbits, merger and
ring-down of an equal-mass nonspinning black-hole–binary system [405]. Moreover, we can report on
three recent partial results in the field using spectral methods, dealing with each type of binary system
(neutron stars and/or black holes) and leaving space for future study in this rapidly evolving field.
We note, of course, that successful numerical evolutions of such systems have been performed with
other numerical methods, which we very briefly summarize here. The first successful fully-relativistic
simulation of neutron star binaries was obtained by Shibata et al. [418, 417] and now, more groups
are also able to study such systems: the Louisiana State University (LSU) group [18] and the Albert
Einstein Institute (AEI, Golm) group [42]. We should also mention here the more microphysically-
detailed simulations by Oechslin and Janka [346], although with the conformally-flat approximation,
and those of Liu et al. [303] evolving magnetized neutron star binaries. Shibata and Uryū [426,
427] have successfully evolved black-hole–neutron-star binaries using the puncture technique for the
modeling of the black hole. As far as black hole binary systems are concerned, after many years of hard
work and codes evolving the binary system for a restricted time, a first stable simulation up to the
merger phase has been performed by Pretorius [373], who used general harmonic coordinates together
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with constraint-damping terms and a compactification of spatial infinity. He also used the excision
technique for a region surrounding the singularity inside the horizon. This first success was followed a
few moths later by the Texas/Brownsville group [101] and the NASA/Goddard group [44], using very
different techniques, namely BSSN with moving punctures and “1+log” slicing together with a “Γ-
driver” shift condition. These techniques have rapidly become standards for many other groups, which
are now able to stably evolve black hole binaries, such as the AEI/LSU collaboration [368], the group
in Jena [209], that at Pennsylvania State University [247] and at Florida Atlantic University [467]. The
results have reached a high level of confidence and it is possible to compare gravitational waveforms
obtained from numerical evolution with post-Newtonian template families [354].

Neutron star binaries

Numerical simulations of the final stage of inspiral and merger of neutron star binaries have been
performed by Faber et al. [170], who used spectral methods in spherical coordinates (based on Lorene

library [216]) to solve Einstein’s equations in the conformally-flat approximation (see Sections 4.5
and 4.6.1). The hydrodynamic evolution has been computed using a Lagrangian smoothed particle
hydrodynamics (SPH) code. As for the initial conditions described in Section 4.5.5, the equations
for the gravitational field reduce, in the case of the conformally-flat approximation, to a set of five
nonlinear coupled elliptic (Poisson-type) PDEs. The considered fields (lapse, shift and conformal
factor) are “split” into two parts, each component being associated with one of the stars in the binary.
Although this splitting is not unique, the result obtained is independent from it, because the equations
with the complete fields are solved iteratively, for each timestep. Boundary conditions are imposed
on each solution of the field equations at radial infinity thanks to a multidomain decomposition and
a u = 1/r compactification in the last domain. The authors used ∼ 105 SPH particles for each
run, with an estimated accuracy level of 1–2%. Most of the CPU time was spent in calculating the
values of quantities known from their spectral representation, at SPH particle positions. Another
difficulty has been the determination of the domain boundary containing each neutron star, avoiding
any Gibbs phenomena. Because the conformally-flat approximation discards gravitational waves, the
dissipative effects of gravitational radiation back reaction were added by hand. The authors used the
slow-motion approximation [481] to induce a shrinking of the binary systems, and the gravitational
waves were calculated with the lowest-order quadrupole formulae. The code has passed many tests
and, in particular, it has evolved several quasiequilibrium binary configurations without adding the
radiation reaction force with resulting orbits that were nearly circular (change in separation lower than
4%). The code was thus able to follow irrotational neutron star binaries, including radiation reaction
effects, up to the merger and the formation of a differentially rotating remnant, which is stable against
immediate gravitational collapse for reasonably stiff equations of state. All the results agreed pretty
well with previous relativistic calculations.

Black-hole–neutron-star binaries

A similar combination of numerical techniques has been used by Faber et al. [171] to compute the
dynamic evolution of merging black-hole–neutron-star binaries. In addition to the conformally-flat
approximation and similar to Taniguchi et al. [451], Faber et al. [171] considered only the case of an
extremely large mass ratio between the black hole and the neutron star, thus holding the black hole
position fixed and restricting the spectral computational grid to the neighborhood of the neutron star.
The metric describing the space surrounding the black hole was thus, supposed to keep the form of a
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Schwarzschild black hole in isotropic coordinates. The neutron star was restricted to low compactness
(only a few percent) in order to have systems that disrupt well outside the last stable orbit. The system
was considered to be in corotation and, just as for neutron star binaries, the gravitational radiation
reaction was added by hand. As stated above, the numerical methods used SPH discretization to treat
dynamic evolution of matter, and the spectral library Lorene [216] to solve the Einstein field Poisson-
like equations in the conformally-flat approximation. But here, the spectral domains associated with
the neutron star did not extend to radial infinity (no compactified domain) and approximate boundary
conditions were imposed, using a multipole expansion of the fields. The main reason being that the
black hole central singularity could not be well described on the neutron star grid.

Faber et al. [171] have studied the evolution of neutron-star–black-hole binaries with different
polytropic indices for the neutron star matter equation of state, the initial data being obtained as
solutions of the conformal thin-sandwich decomposition of Einstein’s equations. They found that, at
least for some systems, the mass transfer from the neutron star to the black hole plays an important
role in the dynamics of the system. For most of these systems, the onset of tidal disruption occurred
outside the last stable orbit, contrary to what had been previously proposed in analytical models.
Moreover, they have not found any evidence for significant shocks within the body of the neutron
star. This star possibly expanded during the mass loss, eventually losing mass outward and inward
provided that it was not too far within the last stable orbit. Although the major part of released matter
remained bound to the black hole, a significant fraction could be ejected with sufficient velocity to
become unbound from the binary system.

Black hole binaries

Encouraging results concerning black-hole–binary simulations with spectral methods have been first
obtained by Scheel et al. [404]. They have used two coordinate frames to describe the motion of black
holes in the spectral grid. Indeed, when using excision techniques (punctures are not regular enough
to be well represented by spectral methods), excision boundaries are fixed on the numerical grid.
This can cause severe problems when, due to the movement of the black hole, the excision surface
becomes timelike and the whole evolution problem becomes ill-posed in the absence of boundary
conditions. One solution seems to be the use of comoving coordinates, but the authors report that
the GH formulation they use appear to be unstable with this setting. They, therefore, consider a first
system of inertial coordinates (with respect to spatial infinity) to define the tensor components in the
triad associated with these coordinates, and a second system of comoving (in some sense) coordinates.
In the case of their black-hole–binary tests [404], they define the comoving coordinates dynamically,
with a feedback control system that adjusts the moving coordinate frame to control the location of
each apparent horizon center.

The spectral code uses 44 domains of different types (spherical and cylindrical shells, rectangular
blocks) to describe the binary system. Most of the numerical strategy to integrate Einstein’s equations
is taken from the tests on the GH formulation of Lindblom et al. [297] and has already been detailed in
Section 4.6.2. The important technical ingredient detailed by Scheel et al. [404] is the particular filter-
ing of tensor fields in terms of spherical harmonics. The dual-coordinate-frame representation can mix
the tensor’s spherical harmonic components. So, in their filtering of the highest-order tensor spherical-
harmonic coefficients, Scheel et al. [404] had to take into account this mixing by transforming spatial
tensors into a rotating-frame tensor spherical-harmonic basis before filtering and then transforming
back to an inertial frame basis. This method allowed them to evolve black-hole–binary spacetimes for
more than four orbits, until t & 600 MADM.
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However, a central problem has been the capability of the code to follow the merger phase, and even
though the code was able to compute the inspiral quite accurately, it used to fail just before the black
holes merged. The problem was that, when the black holes came close to each other, their horizons
became extremely distorted and strong gradients would develop in the dynamic fields. This has been
explained as a gauge effect, coming from the incapacity of the gauge condition to react and change
the geometry when the two black holes begin to interact strongly, and can be seen as a coordinate
singularity developing close to the merger. Nevertheless, a cure has been found, as explained in
Scheel et al. [405]. The original gauge is kept until some given time and then smoothly changed to
a new one, based on the gauge treatment by Pretorius [374, 373] (for the lapse): the gauge source
function is evolved through a damped, driven wave equation, which drives the lapse toward unity and
the shift vector toward zero near the horizons. Thus, the horizons expand in coordinate space and the
dynamic fields are smoothed out near the horizons, preventing gauge singularities from developing.
With this transition of the gauge condition, the evolution of the black holes can be tracked until the
formation of a common horizon encompassing both black holes. Then, the evolution of this single-
distorted dynamic black hole is achieved by first interpolating all variables onto a new computational
domain containing only one excised region, then by choosing a new comoving coordinate system, and
finally by again modifying the gauge condition to drive the shift vector to a time-independent state.

These new gauge conditions have allowed Scheel et al. [405] to follow the inspiral during 16 orbits,
and the merger and ring-down phase of an equal-mass nonspinning black-hole–binary system. They
were able to compute the mass and the spin of the final black hole with very high accuracy (10−5

and 10−4 relative accuracy for the mass and spin, respectively), and to extract the physical waveform
accurately to 0.01 radians in phase. This is the first spectral numerical simulation of the full evolution
of a black-hole–binary system.
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4.7 Conclusions

We would like to conclude our overview of spectral methods in numerical relativity by pointing out a
few items that we feel are particularly interesting.

4.7.1 Strengths and weaknesses

The main advantage of spectral methods, especially with respect to finite difference ones, is the very
rapid convergence of the numerical approximation to the real function. This implies that very high
accuracy can usually be reached with only a moderate number of points. This obviously makes the
codes both faster and less demanding on memory. Various examples of convergence can be found in
Section 4.2. However, this rapid convergence is only achieved for C∞ functions. Indeed, when the
functions are less continuous, spurious oscillations appear and the convergence only follows a power
law. In the case of discontinuous functions, this is known as the Gibbs phenomenon (see the extreme
case of Figure 4.11). Gibbs-like phenomena are very likely to prevent codes from converging or to make
time evolutions unstable. So spectral methods must rely heavily on the domain decomposition of space
and the domains must be chosen so that the various discontinuities lie at the boundaries. Because of
this, spectral methods are usually more difficult to implement than standard finite differences (see, for
instance, the intricate mappings of [28]). The situation is even more complicated when the surfaces
of discontinuities are not known in advance or have complicated shapes.

Spectral methods are also very efficient at dealing with problems that are related to coordinate
singularities. Indeed, if the basis functions fulfill the regularity requirements, then all the functions
will automatically satisfy them. In particular, it makes the use of spherical coordinates much easier
than with other methods, as explained in Section 4.3.2.

Another nice feature is the fact that a function can be represented either by its coefficients or
its values at the collocation points. Depending on the operation one has to perform, it is easier to
work with the one representation or the other. When working in the coefficient space, one takes full
advantage of the nonlocality of the spectral representation. A lot of operations that would be difficult
otherwise can then be easily performed, like computing the ratio of two quantities vanishing at the
same point (see, for instance, [185]).

4.7.2 Combination with other methods

Spectral methods have also demonstrated that they can be a valuable tool when combined with
other methods. For instance, when shocks are present, spectral methods alone have trouble dealing
with discontinuities at the shock interface. However, this can be efficiently dealt with using Godunov
methods. Such a combination has already been successfully applied to the simulation of the oscillations
of compact stars in [152] and of core collapse [352].

Spectral methods have also been used in conjunction with a description of the fluid based on SPH
(smoothed particle hydrodynamics) in the case of neutron star binaries [170] and for the merger of a
neutron star with a black hole [171]. In both cases, the fluid is described by an ensemble of particles
to which forces are applied. Such technique can account for complicated fluid configurations, like
the spiral arms that are formed during the merger. Such arms would be tricky to follow by means
of spectral methods alone. On the other hand, the equations describing gravity are nicely solved by
spectral solvers.
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4.7.3 Future developments

Finally, we would like to point out a few directions could lead to interesting results. Of course, we are
not aware of what the other groups have planned for the future.

Appropriate choice of coordinates is evidently important. However, for binary systems, rather few
results have been obtained using the natural choice of bispherical coordinates. So far, variations of
such coordinates have only been used by Ansorg and collaborators and only in the context of initial
data [33, 27, 28]. We believe that applying these coordinates, or similar coordinates, to evolutionary
codes could lead to interesting results, in terms of both speed and accuracy.

The application of spectral methods to theories more complicated than general relativity is also
imaginable. One of the possible fields of application is the study of branes, where there is an additional
dimension to spacetime. The fact that spectral methods are accurate with relatively few degrees of
freedom makes them a good candidate for simulating systems with extra dimensions. The addition
of gauge fields is also something that could be studied with spectral methods, to investigate the
possibility of “hairy” black holes, for instance. Of course, these are just a few ideas of what the future
applications of spectral methods to the field of relativity might be.
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5.1 Introduction

5.1.1 Wave equations in General Relativity

The determination of numerical solutions of the Einstein equations is the scope of numerical relativity.
It is a fundamental issue not only for the determination of gravitational wave signals for detector data
analysis, but also for the study of the properties of relativistic astrophysical objects [339]. Within
numerical relativity studies, the most commonly used formulation of the Einstein equations is the
so-called “3+1” formalism (also called Cauchy formalism [486]) in which space-time is foliated by a
family of space-like hypersurfaces Σt, which are described by their 3-metric γij . The 4-metric gµν

is then described in terms of γij , a 3-vector N i (called shift) and a scalar N (called lapse). In this
formalism, the Einstein equations can be decomposed into a set of four constraint equations and six
second-order dynamical equations. Solving the Einstein equations then turns to be a Cauchy problem
of evolution under constraints and there remains the freedom to choose the time coordinate (slicing)
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and the spatial gauge.
For example, the choice of maximal slicing for the time coordinate (see [435]) converts the con-

straint equations to scalar form and a vectorial Poisson-like equation, for which a numerical method
for solution has been presented in [228]. As far as evolution equations are concerned, they consist
of six non-linear scalar wave equations in curved space-time, with the additional choice of the Dirac
gauge [435]. The whole system is a mixed initial value-boundary problem, and this paper deals with
boundary conditions for the time evolution equations. Indeed, a simpler problem is considered: the
initial value-boundary problem for a linear and flat scalar wave equation:

2φ(t, r, θ, ϕ) = σ(t, r, θ, ϕ) (5.1)

where

2φ =
∂2φ
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is the usual flat scalar d’Alembert operator in spherical coordinates (r, θ, ϕ) and σ is a source. To
solve a more general problem in curved space-time, like for example:

∂2φ

∂t2
− µ2(t, r)∆φ = φ2, (5.2)

one can put non-linear terms to the source σ and represent at each time-step the metric function µ2

by a polynomial (semi-implicit scheme, see [337] for an example in spherical symmetry).

5.1.2 Motivations for general quadrupolar absorbing boundary con-
ditions

The study of the simple wave equation and its properties concerning quadrupolar waves is more than
a toy-model for numerical relativity. There are many degrees of freedom in the formulation of the
Einstein equations and in the gauge choice. It is not clear which of these formulations are well-posed
or numerically stable [191]. It is therefore important to have numerical tools that are general in
the sense that they can be used within the framework of various formulations and gauges. Still, in
many cases, the dynamical degrees of freedom of the gravitational field can be described by wave-like
propagation equations in curved space-time. On the other hand, since we are mainly interested in the
gravitational wave signal, which has a quadrupolar dominant term, we have to make high precision
numerical models (including boundary conditions) to study this mode, as well as lower multipoles.

These statements can be illustrated as follows. One of the main sources we want to study are
binaries of two compact objects (neutron star or black hole) orbiting around each other. Gravitational
waves take away angular momentum and the system coalesces. In some perturbative approach, the
terms corresponding to this “braking force” result from a subtle cancellation between terms of much
higher amplitude [62]. In numerical non-perturbative studies, the same phenomenon may happen and,
if the dominant modes of the wave are not computed with enough precision, the angular momentum
loss may be strongly overestimated. Moreover, the time-scale for coalescence is much larger than the
orbital period and the system is almost stationary.

There has been many interesting developments concerning absorbing boundaries in the last years,
with the Perfectly Matched Layers (PML, see [248] and [302]) which consist in surrounding the true
domain of interest by an absorbing layer where the wave is damped. These methods may not be
the best-suited for our problems since, as stated above, we might have to change the formulation of
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the equations we want to solve. Moreover, the main problem we want to address is the simulation of
quadrupolar waves and, as it will be shown later in this paper, with our formulation it is possible to have
a clear control on the behavior of these quadrupolar waves. Finally, this formulation is straightforward
to implement and very little CPU time consuming in the context of spectral methods and spherical
coordinates, which we are already using to solve elliptic partial differential equations (PDE) arising
in numerical relativity (scalar and vectorial ones, see [228]). The development and implementation of
the PML techniques for our problem would require much more work and computing time, whereas it
is not guaranteed at all it would give better results. For all these reasons we chose to develop a new
formulation of the Bayliss and Turkel [56] boundary conditions, particularly well suited for using with
spectral methods and spherical coordinates.

The paper deals with this new formulation as well as numerical tests. It is organized as follows.
First, Sec. 5.2 presents boundary conditions: it briefly recalls main results from Bayliss and Turkel
(5.2.1) and we then derive the formulation adapted up to quadrupolar modes of the wave (5.2.2).
Then, Sec. 5.3 briefly describes spectral methods in spherical coordinates that were used (5.3.1) and
details the numerical results (5.3.2). Finally, Sec. 5.4 gives a summary and some concluding remarks.

5.2 Absorbing boundary conditions

An important difference between the solution of the wave equation and that of the Poisson equation
(as in [228]) is the fact that boundary conditions cannot be imposed at infinity, since one cannot use
“compactification”, i.e. a change of variable of the type u = 1/r. This type of compactification is
not compatible with an hyperbolic PDE, see [436]. One has to construct an artificial boundary and
impose conditions on this surface to simulate an infinite domain. These conditions should therefore
give no reflection of the wave, that could spuriously act on the evolution of the system studied inside
the numerical grid. The boundary conditions have to absorb all the waves that are coming to the
outer limit of the grid. The general condition of radiation is derived e.g. in [436], and defined as

lim
r→∞

(
∂

∂r
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∂

∂t

)
(rφ) = 0. (5.3)

At a finite distance r = R the condition, which is then approximate, reads
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= 0, (5.4)

which will be hereafter referred as the “Sommerfeld condition” and is exact only for pure monopolar
waves. A completely general and exact boundary condition for the wave equation on an artificial
spherical boundary has recently been derived by Aladl et al. [6] and involves an infinite series of
inverse Fourier transforms of the solution. This condition may not be suitable for direct numerical
implementation for which Aladl et al. derived a truncated approximate condition.

5.2.1 Asymptotic expansion in terms of multipolar momenta

A rather general method to impose non-reflecting boundary conditions is to construct a sequence of
boundary conditions that, for each new term, are in some sense giving better results. Some of the
possibilities to define “better” are when the reflected wave decreases:
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• as the incident wave approaches in a direction closer to some preferred direction(s) (see e.g.
[162]),

• for shorter wavelengths,

• as the position of artificial boundary goes to infinity.

This last approach is the most relevant to the problem of solving the Einstein equation for isolated
systems. It is also a way of expanding condition (5.3) in terms of asymptotic series, which has been
studied in [56], where a sequence of recursive boundary conditions is derived. Let us recall here some
of their results.

A radiating solution of (5.1) with the source σ = 0 can be written as the following expansion:

φ(t, r, θ, ϕ) =
∞∑

k=1

fk(t − r, θ, ϕ)

rk
. (5.5)

The operators acting on a function f(t, r, θ, ϕ) are recursively defined by:
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The family of boundary conditions then reads:

Bnφ|r=R = 0. (5.8)

In [56], it is shown that, following from (5.5), a radiating solution of the wave equation verifies:

Bnφ = O

(
1

r2n+1

)
, (5.9)

which in particular means that condition (5.8) is an asymptotic one in powers of 1/r. The condition
B1φ = 0 is same as the Sommerfeld condition (5.4) and the same as the first approximation in terms
of the angle between the direction of propagation of the wave and the normal to the boundary, derived
in [162].

Finally, using expression (5.5) one can verify that the operator Bn annihilates the first n terms of
the expansion. Thinking in terms of spherical harmonics, this means that condition (5.8) is exact if
the wave carries only terms with l ≤ n − 1. In other words, the reflection coefficients for all modes
lower than n are zero. Since we are interested in the study of gravitational wave emission by isolated
systems, it is of great importance to have a very accurate description of the quadrupolar part of the
waves, which is dominant. Therefore, if the l = 2 part of the gravitational wave is well described,
higher-order terms may not play such an important role in the dynamical evolution of the system.
The situation then is not so bad even if only an approximate boundary condition is imposed for those
terms with l ≥ 3. Moreover, the error on the function scales like 1/Rn+1 so, if we impose

B3φ|r=R = 0, (5.10)
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we have an exact boundary condition for the main contribution to the gravitational wave and an error
going to zero as O(1/R4). When developing this expression, one gets:
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5.2.2 New formulation for quadrupolar terms

Starting from (5.11) and considering that φ is a solution of the wave equation (5.1), we replace second
radial derivatives with:
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is the angular part of the Laplace operator. We are making here the assumption that, at the outer
boundary of the grid (r = R), the source term σ of (5.1) is negligible. This is a very good approximation
for our studies of isolated systems and is also the assumption made when writing a solution to the
wave equation in the form (5.5). For example, the third order radial derivative is replaced with
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and the second-order radial derivatives of the last term (combined with its counterpart term in (5.11)
) is replaced once more using (5.12). The boundary condition is then written as:

B3φ =

(
4

∂3

∂t3
+ 4

∂3

∂t2∂r
+ 16

1

r

∂2

∂t2
+ 18

1

r2

∂

∂t
+ 12

1

r

∂2

∂t∂r
+ 6

1

r2

∂

∂r
+

− 3

r2
∆ang

∂

∂t
− 1

r2
∆ang

∂

∂r
− 5

r3
∆ang +

6

r3

)
φ. (5.15)

We use the auxiliary function ξ:
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which is defined on the sphere at r = R. Inserting this definition into the boundary condition
B3φ|r=R = 0, with Eq. (5.15), one gets:

∂2ξ

∂t2
− 3

4R2
∆angξ +

3

R

∂ξ

∂t
+

3ξ

2R2
=

1

2R2
∆ang

(
φ

R
− ∂φ

∂r

∣∣∣∣
r=R

)
; (5.17)

which is a wave-like equation on the outer boundary of the grid, with some source term, equal to zero
if the solution φ is spherically symmetric. The boundary condition (5.10) is now equivalent to the
system (5.16)-(5.17). Written in this way, this formulation can be regarded as a perturbation of the
Sommerfeld boundary condition (B1φ = 0) given by (5.16). The main advantages are that it can be
very easily implemented using spectral methods and spherical coordinates (see Sec. 5.3.1) and that
mixed derivatives have almost disappeared: there is only one remaining as a source of (5.17).



194 Absorbing boundary conditions. . .(Novak & Bonazzola 2004)

5.3 Numerical experiments

5.3.1 Implementation using spectral methods and spherical coordi-
nates

Spectral methods ([210], [102], for a review see [85]) are a very powerful approach for the solution of
a PDE and, in particular, they are able to represent functions and their spatial derivatives with very
high accuracy. As presented in [72], we decompose scalar fields on spherical harmonics Y m

l (θ, ϕ), for
the angular part:

φ(t, r, θ, ϕ) =
L∑

l=0

l∑

m=−l

φlm(t, r)Y m
l (θ, ϕ), (5.18)

and on even Chebyshev polynomials (T2k(x = r/R)) for the radial part of each φlm(t, r). Time deriva-
tives are evaluated using finite-difference methods. Since Chebyshev collocation points are spaced
by a distance of order 1/N2, (where N is the highest degree of the Chebyshev polynomials used for
the radial decomposition) near grid boundaries, the Courant condition on the time step for explicit
integration schemes of the wave equation (5.1) also varies like 1/N2. This condition is very restrictive
and it is therefore necessary to use an implicit scheme. We use the Crank-Nicholson scheme, which
is unconditionally stable, as shown by various authors (see e.g. [210]). This scheme is second-order
in time and the smoothing of the solution due to implicit time-stepping remains lower than the other
errors discussed hereafter. This implicit scheme results in a boundary-value problem for φ at each
time-step. The solution to this problem is obtained by inverting the resulting spatial operator acting
on φ using the tau method. Its matrix (in Chebyshev coefficient space) has a condition number that
is rapidly increasing with N . This can be alleviated by the use of preconditioning matrices, obtained
from finite-differences operators (see [102]).

At the beginning of time integration, we suppose that φ satisfies the Sommerfeld boundary con-
dition (5.4), that is ∀(θ, ϕ) ξ(t = 0, θ, ϕ) = 0. ξ is then calculated at next time-step using (5.17).
This is done very easily since the angular parts of φ and ξ are decomposed on the basis of spherical
harmonics; each component ξlm(t) is the solution of a simple ODE in time, which is integrated using
the same Crank-Nicholson scheme as for the main wave equation (5.1), with boundary conditions such
that ξ is periodic on the sphere. This is already verified by the Y m

l (Galerkin method). We get, with
δt being the time-step, φJ

lm(r) = φlm(t + Jδt, r) and ξJ
lm = ξlm(Jδt):

ξJ+1
lm − 2ξJ

lm + ξJ−1
lm

δt2
+

3

8

l(l + 1)

R2

(
ξJ+1
lm + ξJ−1

lm

)
+

3

R

ξJ+1
lm − ξJ−1

lm

2δt

+
3

4R2

(
ξJ+1
lm + ξJ−1

lm

)
=

l(l + 1)

2R2

(
φJ

lm(R)

R
− ∂φJ

lm

∂r

∣∣∣∣
r=R

)
.

This equation in ξJ+1
lm is solved and, for each pair (l, m), we impose for φJ+1

lm

(
∂

∂t
+

∂

∂r
+

1

r

)
φJ+1

lm (r)

∣∣∣∣
r=R

= ξJ+1
lm ,

which looks like a modification of the condition (5.4).
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Figure 5.1: Comparison between the efficiencies of B1φ = 0 (5.4) and B3φ = 0 (5.16) for l ≤ 2
modes. The source of the wave equation is defined in Eqs. (5.19) and (5.20). We took R = 1.2,
a time-step δt = 10−6, 33 polynomials for radial decomposition, 5 for θ and 4 for ϕ.

5.3.2 Tests on outgoing waves

The Sommerfeld boundary condition (5.4) is an exact condition, even at finite distance from the source,
when only considering monopolar waves. In order to test our implementation of absorbing boundary
condition (5.8), we compared its efficiency in being transparent to waves carrying only monopolar,
dipolar and quadrupolar terms, to the efficiency of the Sommerfeld boundary condition for monopolar
waves. We started with φ = 0 at t = 0 and then solved Eq. (5.1) with

σ(t, r, θ, ϕ) = S(r, θ, ϕ)e−1/t2e−1/(t−1)2 0 ≤ t ≤ 1 (5.19)

σ(t, r, θ, ϕ) = 0otherwise,

with S(r, θ, ϕ) null for r > R.

In all cases, we performed a first calculation with a very large grid (considered as infinite, we
checked with various values of the radius that the result in the interval 0 ≤ r ≤ R would be the
same), so that in the time interval [0, 2R + 1] the wave would not reach the boundary, on which
we imposed an homogeneous boundary condition1. This gave us the reference solution crossing the
r = R sphere without any reflection. We then solved again the same problem, but on a grid of
radius R, imposing Sommerfeld boundary conditions B1φ = 0 (5.4), or our quadrupolar boundary
conditions B3φ = 0 through the system (5.16)-(5.17). The L1 norm of the relative difference between
the functions obtained on the small grid and the reference solution was taken as the error.

1results obtained here did not depend on the nature of boundary conditions
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Figure 5.2: Time evolution of the first four modes of the wave generated by the source defined
in Eqs. (5.19) and (5.21); using B1φ = 0 (5.4). We took R = 1.2, a time-step δt = 10−4, 33
polynomials for radial decomposition, 17 for θ and 16 for ϕ.

l ≤ 2 case

First, we took

S(r, θ, ϕ) =
(
e−r2 − e−R2

) (
r2 cos2 θ + r sin θ cos ϕ

)
, (5.20)

which contains only l ≤ 2 modes. Figure 5.1 shows the relative efficiency of B3φ = 0 (5.16) condition
to B1φ = 0 (5.4) for all three modes present in the wave generated by (5.20). For the monopolar
(l = 0) mode, the evolution of the error would be the same for both types of boundary conditions,
within one percent of difference on the error. As far as the discrepancy for dipolar and quadrupolar
modes is concerned, one can see that it drops from 10−4 with Sommerfeld boundary condition, to 10−12

with B3φ = 0 (5.16). This lower level is the same as for the monopolar mode with the Sommerfeld
boundary condition. We have checked that all solutions had converged with respect to the number of
spectral coefficients and to the time-step. The error level at 10−12 is then mainly due to the condition
number of the matrix operator we invert (see Sec. 5.3.1 above). We here conclude that our formulation
of B3φ = 0 (5.16) is as efficient for waves containing only l ≤ 2 modes as the Sommerfeld boundary
condition (5.4) for monopolar waves.

Waves containing higher multipoles

The study has been extended to a more general source σ which contains a priori all multipolar terms:

S(r, θ, ϕ) =
(
e−r2 − e−R2

) (
e−4(x−0.7)2 + e−3(x+0.5)2

)
. (5.21)

Of course, in numerical implementation, only a finite number of these terms are represented. The
geometry of this source can be related to the distribution of mass in the case of a binary system of
gravitating bodies, which is one of the main astrophysical sources of gravitational radiation we try to
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Figure 5.3: Time evolution of the first four modes of the wave generated by the source defined
in Eqs. (5.19) and (5.21); using B3φ = 0 (5.16) as the boundary condition. We took R = 1.2,
a time-step δt = 10−4, 33 polynomials for radial decomposition, 17 for θ and 16 for ϕ.

model. Let us make a comparison between the errors obtained, on the one hand with the condition
B1φ = 0 (Figure 5.2), and on the other hand with B3φ = 0 (Figure 5.3).

As in the case in Figure 5.1, the error in the monopolar component remains roughly the same,
regardless of whether one uses boundary condition (5.4) or (5.16). The errors for the dipolar and
quadrupolar components also exhibit similar properties: the use of condition (5.16) causes these
errors to be of the same magnitude as the error in the monopolar term. In the case of Figure 5.3,
this level is higher than on Figure 5.1 because a longer time-step has been used. Finally, we have also
plotted the discrepancies between the reference and test solutions for the l = 3 multipole. Following
[56], the boundary condition B3φ = 0 is not exact for this component. Nevertheless, one can see a
reduction in the error for this component. This can be understood using the result of [56] which shows
that the condition B3φ = 0 cancels the first 3 terms in the asymptotic development in powers of 1/r
of the solution φ (5.9). Then, since a given multipolar term l0 is present in terms like 1/rn with n ≤ l0
(see e.g. [436]), it is clear that the condition B3φ = 0 is supposed to cancel all terms decaying slower
than 1/r4 in the l ≥ 3 mode. Thus, the error displayed on Figure 5.4 is three orders of magnitude
lower with the condition B3φ = 0 than with B1φ = 0.

We have checked this point, namely that the maximal error over the time interval would decrease
like 1/R4, where R is the distance at which the boundary conditions were imposed. We have also
checked that the error decreased both exponentially with the number of coefficients used in r, θ or
ϕ, as one would expect for spectral methods, and like δt2 (second-order time integration scheme).
Figure 5.4 shows the overall error as a function of time for both boundary conditions used. Comparing
Figure 5.4 with figures 5.2 and 5.3, one can see that most of the error comes from the l = 1 term
when using B1φ = 0 boundary condition, and from the l = 3 term when using B3φ = 0. Finally, the
computational cost of this enhanced boundary condition is very low with this new approach. For the
tests presented here, the difference in CPU time would be of about 10%. This is linked with the fact
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Figure 5.4: Time evolution of the error made in the computation of the wave generated by the
source defined in Eqs. (5.19) and (5.21); using B1φ = 0 (5.4) and B3φ = 0 (5.16). We took
R = 1.2, a time-step δt = 10−4, 33 polynomials for radial decomposition, 17 for θ and 16 for ϕ.

that our formulation (5.16) is a perturbation of the Sommerfeld boundary condition (5.4), where the
quantity ξlm(t) is obtained by simple (ordinary differential equation) integration.

5.4 Conclusions

The purpose of this paper has been to provide a boundary condition that is well-adapted for the
simulation of astrophysical sources of gravitational radiation, whose dominant modes are quadrupolar.
We took the series of boundary conditions derived by Bayliss and Turkel [56], truncated at quadrupolar
order, and derived a new formulation of that third-order condition in terms of a first-order condition
(resembling the classical radiation one), combined with a wave-like equation on the outer boundary
of the integration domain. This formulation is simple in the sense that mixed derivatives are (almost)
absent.

The numerical implementation using spectral methods and spherical coordinates is straightfor-
ward and this formulation of high-order boundary conditions requires only a little more CPU time
(less than 10% in our tests) than the simplest first-order condition (5.4). We have verified that our
implementation of this boundary condition had the same efficiency with respect to transparency for
dipolar and quadrupolar waves as the Sommerfeld condition (5.4) for monopolar waves. The precision
increases very rapidly (like 1/R4) as one imposes the boundary condition further from the source of
radiation. These two points are of great interest for the simulation of gravitational radiation from
isolated astrophysical sources.

As an alternative, one can cite that more accurate results may be obtained using the so-called 2+2
formalism in the wave zone [154] and matching it to the results in 3+1 formalism1 near the source.

1this is the characteristic-Cauchy matching, CCM
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Our approach is different, much simpler to implement and should give accurate enough results for the
Einstein equations.
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6.1 Introduction

Evolution partial differential equations (PDE) for vector fields under the divergence-free constraint
appear in many physical models. Similar problems are to be solved with second-rank tensor fields.
In most of these equations, if the initial data and boundary conditions satisfy the divergence-free
condition, then the solution on a given time interval is divergence-free too. But from the numerical
point of view, things can be more complicated and round-off errors can create undesired solutions,
which may then trigger growing unphysical modes. Therefore, in the case of vector fields, several
methods for the numerical solution of such PDEs have been devised, such as the constraint transport
method [167] or the toroidal-poloidal decomposition [160, 310]. The aim of this paper is to present
a new method for the case of symmetric tensor fields, which appear in general relativity within the
so-called 3+1 approach [7], keeping in mind the vector case for which the method can be closely related
to the toroidal-poloidal approach. We first give motivations for the numerical study of divergence-free
vectors and tensors in Secs. 6.1.1 and 6.1.2; we briefly introduce our notations and conventions for
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spherical coordinates and grid in Sec. 6.1.3. The case of the vector divergence-free evolution is studied
in Sec. 6.2, and the link with the poloidal-toroidal decomposition is detailed in Sec. 6.2.3. We then
turn to the symmetric tensor case in Sec. 6.3 with the particular traceless condition in Sec. 6.3.3. A
discussion of the treatment of boundary conditions is given in Sec. 6.4, with the particular point of
inner boundary conditions (Sec. 6.4.3). Finally, some numerical experiments are reported in Sec. 6.5
to support our algorithms and concluding remarks are given in Sec. 6.6.

6.1.1 Divergence-free vector fields in relativistic magneto-hydrody-
namics

In classical electrodynamics, the magnetic field is known to be divergence-free since Maxwell’s equa-
tions. This result can be extended to general relativistic electrodynamics as well. In classical hy-
drodynamics, the continuity equation can be expressed as ∂tρ + ∇ · (ρu) = 0, where ρ is the mass
density of the fluid, and u its velocity. Various approximations give rise to divergence-free vectors.
Incompressible fluids have constant density along flow lines and therefore verify that their velocity
field u is divergence-free. Water is probably the most common example of an incompressible fluid. In
an astrophysical context, the incompressible approximation can lead to a pretty good approximation
of the behavior of compressible fluid provided that the flow’s Mach number is much smaller than unity.
Another useful hydrodynamic approximation is the anelastic approximation, which essentially consists
in filtering out the sound waves, whose extremely short time scale would otherwise force the use of an
impractically small time step for numerical purposes. In general-relativistic magneto-hydrodynamics,
the anelastic approximation takes the form ∇ · (ρΓu) = 0, where u is the coordinate fluid velocity, Γ
the Lorentz factor of the fluid, and ρ its rest-mass density.

Divergence-free vectors have given rise to a large literature in numerical simulations. For example,
while using an induction equation to numerically evolve a magnetic field, there is no guarantee that
the divergence of the updated magnetic field is numerically conserved. The most common methods to
conserve divergences in hyperbolic systems are constrained transport methods, projection methods or
hyperbolic divergence cleaning methods (see [470] for a review).

6.1.2 Divergence-free symmetric tensors in general relativity

The basic formalism of general relativity uses four-dimensional objects and, in particular, symmetric
four-tensors as the metric or the stress-energy tensor. A choice of the gauge, which comes naturally
to describe the propagation of gravitational waves is the harmonic gauge (e.g. [144]), for which the
divergence of the four-metric is zero. The 3+1 formalism (see [7] for a review) is an approach to gen-
eral relativity introducing a slicing of the four-dimensional spacetime by three-dimensional spacelike
surfaces, which have a Riemannian induced three-metric. With this formalism, the four-dimensional
tensors of general relativity are projected onto these three-surfaces as three-dimensional tensors. Con-
sequently, the choice of the gauge on the three-surface is a major issue for the computation of the
solutions of Einstein’s equations.

The divergence-free condition on the conformal three-metric has already been put forward by
Dirac [156] in Cartesian coordinates, and generalized to any type of coordinates in [73]. This conformal
three-metric obeys an evolution equation which can be cast into a wave-like propagation equation. Far
from any strong source of gravitational field, this evolution equation tends to a tensor wave equation,
under the gauge constraint. With the choice of the generalized Dirac gauge this translates into the
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system we study in Sec. 6.3, with the addition of one extra constraint: the fact that the determinant
of the conformal metric must be one (Eq. (167) of [73]).

The choice of spherical coordinates and components comes naturally with the study of isolated
spheroidal objects as relativistic stars or black holes. Moreover, boundary conditions for the metric
or for the hydrodynamics equations can be better expressed and implemented using tensor or vector
components in the spherical basis. The numerical simulations of astrophysically relevant objects
in general relativity must therefore be able to deal with the evolution of divergence-free symmetric
tensors, in spherical coordinates and components. A particular care must be given to the fulfillment of
the divergence-free condition, since this additional constraint sets the spatial gauge on the spacetime.

6.1.3 Spherical components and coordinates

In the following, unless specified, all the vector and tensor fields shall be functions of the four space-
time coordinates V(t, r, θ, ϕ) and h(t, r, θ, ϕ), where (r, θ, ϕ) are the polar spherical coordinates. The
associated spherical orthonormal basis is defined as:

er =
∂

∂r
, eθ =

1

r

∂

∂θ
, eϕ =

1

r sin θ

∂

∂ϕ
. (6.1)

The vector and symmetric tensor fields shall be described by their contravariant components
{
V r, V θ, V ϕ

}

and
{
hrr, hrθ, hrϕ, hθθ, hθϕ, hϕϕ

}
, using this spherical basis:

V =
∑

i=r,θ,ϕ

V i ei, h =
∑

i=r,θ,ϕ

∑

j=r,θ,ϕ

hij ei ⊗ ej . (6.2)

The scalar Laplace operator acting on a field φ(r, θ, ϕ) is written:

∆φ =
∂2φ

∂r2
+

2

r

∂φ

∂r
+

1

r2
∆θϕφ, (6.3)

where ∆θϕ is the angular part of the Laplace operator, containing only derivatives with respect to θ
or ϕ:

∆θϕφ =
∂2φ

∂θ2
+

cos θ

sin θ

∂φ

∂θ
+

1

sin2 θ

∂2φ

∂ϕ2
. (6.4)

We now introduce scalar spherical harmonics, defined on the sphere as (see Sec. 18.11 of [85] for
more details)

∀ℓ ≥ 0, ∀m, 0 ≤ m ≤ ℓ, Y m
ℓ (θ, ϕ) = eimϕPm

ℓ (cos θ), (6.5)

where Pm
ℓ is the associated Legendre function. For negative m, spherical harmonics are defined

∀m, −ℓ ≤ m < 0, Y m
ℓ (θ, ϕ) = (−1)meimϕP

|m|
ℓ (cos θ). (6.6)

Their two main properties used in this study are that they form a complete basis for the development
of regular scalar functions on the sphere, and that they are eigenfunctions of the angular Laplace
operator:

∀(ℓ, m), ∆θϕY m
ℓ = −ℓ(ℓ + 1)Y m

ℓ . (6.7)
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6.2 Vector case

We look for the solution of the following initial-boundary value problem of unknown vector V, inside
a sphere of (constant) radius R, thus ∀(θ, ϕ):

∀t ≥ 0, ∀r < R,
∂2V

∂t2
= ∆V, (6.8)

∀t ≥ 0, ∀r ≤ R, ∇ · V = 0, (6.9)

∀r ≤ R, V(0, r, θ, ϕ) = v0(r, θ, ϕ),

∀r ≤ R,
∂V

∂t

∣∣∣∣
t=0

= w0(r, θ, ϕ),

∀t ≥ 0, V(t, R, θ, ϕ) = b0(t, θ, ϕ). (6.10)

v0,w0 and b0 are given regular functions for initial data and boundary conditions, respectively. ∆
is the vector Laplace operator, which in spherical coordinates and in the contravariant representa-
tion (6.2) using the orthonormal basis (6.1) reads:

(∆V)r =
∂2V r

∂r2
+

4

r

∂V r

∂r
+

2V r

r2
+

1

r2
∆θϕV r − 2

r
Θ, (6.11)

(∆V)θ =
∂2V θ

∂r2
+

2

r

∂V θ

∂r
+

1

r2

(
∆θϕV θ + 2

∂V r

∂θ
− V θ

sin2 θ
− 2

cos θ

sin2 θ

∂V ϕ

∂ϕ

)
,

(∆V)ϕ =
∂2V ϕ

∂r2
+

2

r

∂V ϕ

∂r
+

1

r2

(
∆θϕV ϕ +

2

sin θ

∂V r

∂ϕ
+ 2

cos θ

sin2 θ

∂V θ

∂ϕ
− V ϕ

sin2 θ

)
,

with the divergence Θ

Θ ≡ ∇ · V =
∂V r

∂r
+

2V r

r
+

1

r

(
∂V θ

∂θ
+

V θ

tan θ
+

1

sin θ

∂V ϕ

∂ϕ

)
. (6.12)

One can remark that a necessary condition for this system to be well-posed is that

∇ · v0 = ∇ · w0 = 0. (6.13)

In addition, the boundary setting at r = R is actually overdetermined: the three conditions are not
independent because of the divergence constraint. This aspect of the problem will be developed in
more details in Sec. 6.4.1.

In the rest of this Section, we devise a method to verify both equations (6.8) and (6.9). This
technique is similar to that presented in [74] with the difference that we motivate it by the use of
vector spherical harmonics, and can easily be related to the poloidal-toroidal decomposition method,
as discussed in Sec. 6.2.3.

6.2.1 Decomposition on vector spherical harmonics

The first step is to decompose the angular dependence of the vector field V onto a basis of pure spin
vector harmonics (see [464] for a review):

V(t, r, θ, ϕ) =
∑

ℓ,m

(
Eℓm(t, r)YE

ℓm + Bℓm(t, r)YB
ℓm + Rℓm(t, r)YR

ℓm

)
, (6.14)
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defined from the scalar spherical harmonics as

∀ℓ > 0, ∀ − ℓ ≤ m ≤ ℓ, YE
ℓm = r ∇Y m

ℓ , (6.15)

∀ℓ > 0, ∀ − ℓ ≤ m ≤ ℓ, YB
ℓm = er × YE

ℓm, (6.16)

∀ℓ ≥ 0, ∀ − ℓ ≤ m ≤ ℓ, YR
ℓm = Y m

ℓ er; (6.17)

where ∇ is the gradient in the orthonormal basis (6.1). Note that both YE
ℓm and YB

ℓm are purely
transverse, whereas YR

ℓm is purely radial. From this decomposition, we define the pure spin components
of V by summing all the multipoles with scalar spherical harmonics (6.5):

V η(t, r, θ, ϕ) =
∑

ℓ,m

Eℓm Y m
ℓ , (6.18)

V µ(t, r, θ, ϕ) =
∑

ℓ,m

Bℓm Y m
ℓ , (6.19)

the last one being the usual r-component

∑

ℓ,m

Rℓm Y m
ℓ = V r. (6.20)

The advantages of these pure spin components are first, that by construction they can be expanded
onto the scalar spherical harmonic basis, and second, that angular derivatives appearing in all equations
considered transform into the angular Laplace operator (6.7).

To be more explicit, (V η, V µ) can be related to the vector spherical components by (see also [73]):

V θ =
∂V η

∂θ
− 1

sin θ

∂V µ

∂ϕ
, (6.21)

V ϕ =
1

sin θ

∂V η

∂ϕ
+

∂V µ

∂θ
;

and inversely

∆θϕV η =
∂V θ

∂θ
+

V θ

tan θ
+

1

sin θ

∂V ϕ

∂ϕ
, (6.22)

∆θϕV µ =
∂V ϕ

∂θ
+

V ϕ

tan θ
− 1

sin θ

∂V θ

∂ϕ
. (6.23)

Let us here point out that the angular Laplace operator ∆θϕ is diagonal with respect to the functional
basis of spherical harmonics and, therefore, the above relations can directly be used to obtain V η and
V µ.

Thus, if the fields are defined on the whole sphere θ ∈ [0, π], ϕ ∈ [0, 2π), it is possible to transform
the usual components

(
V θ, V ϕ

)
to the pure spin ones (V η, V µ) by this one-to-one transformation, up

to a constant (ℓ = 0 part) for V η and V µ. Since this constant is not relevant, it shall be set to zero and
disregarded in the following. Therefore, a vector field shall be represented equivalently by its usual
spherical components or by (V r, V η, V µ).
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6.2.2 Divergence-free degrees of freedom

From the vector spherical harmonic decomposition, we now compute two scalar fields that represent
the divergence-free degrees of freedom of a vector. We start from the divergence of a general vector
W, expressed in terms of pure spin components:

Θ =
∂W r

∂r
+ 2

W r

r
+

1

r
∆θϕW η; (6.24)

where W η has been computed for the vector W from Eq. (6.22). This shows that the divergence of
W does not depend on the pure spin component Wµ. On the other hand, it is well-known that any
sufficiently smooth and rapidly decaying vector field W can be (uniquely on R3) decomposed as a sum
of a gradient and a divergence-free part (Helmholtz’s theorem)

W = ∇φ + D0, (6.25)

with ∇ · D0 = 0. From the formula (6.23), one can check that the component Wµ only depends on
D0. Next, taking the curl of W and, in particular, combining the θ- and ϕ- components of this curl,
one has that ∂rW

η + W η

r − W r

r has the same property of being invariant under the addition of any
gradient field to W, thus depends only on D0. Therefore, we define the potential

A =
∂W η

∂r
+

W η

r
− W r

r
. (6.26)

As a consequence, we have that

D0 = 0 ⇐⇒ Wµ = 0 and A = 0. (6.27)

We have thus identified two scalar degrees of freedom for a divergence-free vector field, which can be
easily related to the well-known poloidal-toroidal decomposition (Sec. 6.2.3), but have the advantage
of being generalizable to the symmetric tensor case.

We now write the wave equation (6.8) in terms of V µ and A (computed from V r and V η). It is
first interesting to examine the pure spin components of the vector Laplace operator (6.11):

(∆V)η = ∆V η + 2
V r

r2
, (6.28)

(∆V)µ = ∆V µ; (6.29)

one sees that the equation for V µ decouples from the system, therefore Eq. (6.8) implies that

∂2V µ

∂t2
= ∆V µ. (6.30)

Forming then from (6.11) and (6.28) an equation for the potential A, which is a consequence of the
original wave equation (6.8), we obtain

∂2A

∂t2
= ∆A. (6.31)

We are left with two scalar wave equations, (6.30) and (6.31), for the divergence-free part of the vector
field V. The recovery of the full vector field shall be discussed in Sec. 6.2.4; the treatment of boundary
conditions shall be presented in Sec. 6.4.1.
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6.2.3 Link with poloidal-toroidal decomposition

According to the classical poloidal-toroidal decomposition, a divergence-free vector field F can be
considered to be generated by two scalar potentials Φ and Ψ, via

F = ∇× (Ψk) + ∇×∇× (Φk) (6.32)

Here, k is a unit vector, called the pilot vector, which is chosen according to the geometry of the
problem considered. In [83, 84], k is chosen to be ez in cylindrical coordinates. One can also find the
decomposition F = ∇× (A(r, θ)eϕ) + B(r, θ)eϕ when considering axisymmetric solenoidal fields (see
for example [254]). The latter representation makes A appear clearly as a poloidal component, and
B as a toroidal component. In order to link the general poloidal-toroidal formalism to our previous
potentials, we chose k = er in spherical coordinates (sometimes called the Mie decomposition, see
[158] ). Then, one can show that

F = − 1

r2
∆θϕΦ er +

1

r

(
1

sin θ
∂ϕΨ + ∂θ∂rΦ

)
eθ +

1

r

(
−∂θΨ +

1

sin θ
∂ϕ∂rΦ

)
eϕ (6.33)

Hence, we can identify the former pure spin components F η and Fµ through

F η =
1

r
∂rΦ

Fµ = −1

r
Ψ

Therefore, the potential A is linked to the potential Φ via

A =
1

r
∂2

rΦ +
1

r3
∆θϕΦ = ∆

(
Φ

r

)
(6.34)

which gives us a compatibility condition

∆θϕA = −∆(rF r) (6.35)

The latter equation expresses that ∂r(r
2Θ) = 0 for the original vector. Since our vector is a regular

function of coordinates, it expresses that Θ = 0.
One can also show the following relations

er · ∇ × F =
1

r
∆θϕFµ

er · ∇ ×∇× F =
1

r
∆θϕA

6.2.4 Integration scheme

We defer to Sec. 6.5.1 the numerical details about the integration procedure, and we sketch here the
various steps. From the result of Sec. 6.2.2, the problem (6.8)-(6.9) can be transformed into two initial-
value boundary problems, for the component V µ (6.30) and the potential A (6.31) respectively. Initial
data can be deduced from v0 and w0, so that V µ(t = 0) and ∂V µ/∂t(t = 0) are the µ-components
of, respectively, v0 and w0. The same is true for the A potential. The determination of boundary
conditions from the knowledge of b0 shall be discussed in Sec. 6.4. We therefore assume here that
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we have computed the component V µ and the potential A, inside the sphere of radius R, for a given
interval [0, T ], and we show how to recover the whole vector V.

The pure spin components (V r, V η) of the vector V are obtained by solving the system of PDEs
composed by the definition of the potential A (6.26), together with the divergence-free condition (6.24).
From their definitions (6.18)-(6.20), it is clear that the angular parts of both V r and V η can be
decomposed onto the basis of scalar spherical harmonics, and therefore A as well:

A(t, r, θ, ϕ) =
∑

ℓ,m

Aℓm(t, r)Y m
ℓ (θ, ϕ). (6.36)

We are left with the following set of systems of ordinary differential equations in the r-coordinate:

∀ℓ > 0, ∀m − ℓ ≤ m ≤ ℓ,





∂Rℓm

∂r
+ 2

Rℓm

r
− ℓ(ℓ + 1)

r
Eℓm = 0

∂Eℓm

∂r
+

Eℓm

r
− Rℓm

r
= Aℓm

. (6.37)

The potential A being given, the pure spin components V r and V η are obtained from this system,
with the boundary conditions discussed in Sec. 6.4.1. The µ-component is already known too, so it
is possible to compute the spherical components of V ∀t ∈ [0, T ], from Eqs. (6.21). Note that all
angular derivatives present in this system (6.37) are only in the form of the angular Laplace operator
∆θϕ (6.4). It must also be emphasized that the divergence-free condition is not enforced in terms of
spherical components (Eq. (6.12)), but in terms of pure spin components. Thus, if the value of the
divergence is numerically checked, it shall be higher than machine precision, because of the numerical
derivatives one must compute to pass from pure spin to spherical components (Eqs. (6.21)).

The properties of the system (6.37) are easy to study. Substituting Rℓm in the first line by its
expression as a function of Eℓm and Aℓm (obtained from the second line), one gets a simple Poisson
equation:

∆
(
rEℓm

)
= r

∂Aℓm

∂r
+ 2Aℓm. (6.38)

The discussion about boundary conditions, homogeneous solutions and regularity for r = 0 and r → ∞
are immediately deduced from those of the Poisson equation (see e.g. [228]).

In the case where a source S is present on the right-hand side of the problem (6.8), the method of
imposing ∇·V = 0 can be generalized by adding sources to Eqs. (6.30)-(6.31), which are deduced from
S. Indeed, it is easy to show that the source for the equation for V µ is the pure spin µ-component
of S and the source for the equation for A is the equivalent potential computed from S pure spin
components, using formula (6.26). Note that an integrability condition for this problem is that the
source be divergence-free too. Therefore, for a well-posed problem, any gradient term present in S
can be considered as spurious and is naturally removed by this method, since the µ-component and
the A potential are both insensitive to the gradient parts.

6.3 Symmetric tensor case

Similarly to the vector case studied in Sec. 6.2, we look here for the solution of an initial-boundary
value problem of unknown symmetric tensor h, inside a sphere of radius R. As explained in Sec. 6.1.3,
the symmetric tensor h shall be represented by its contravariant components hij(= hji), where the



6.3 Symmetric tensor case 209

indices run from 1(r) to 3(ϕ); moreover, we suppose that all components of h decay to zero at least
as fast as 1/r, as r → ∞. We shall also use the Einstein summation convention over repeated indices.

Thus the problem is written, ∀(θ, ϕ):

∀t ≥ 0, ∀r < R,
∂2hij

∂t2
= ∆hij , (6.39)

∀t ≥ 0, ∀r ≤ R, ∇jh
ij = 0, (6.40)

∀r ≤ R, hij(0, r, θ, ϕ) = αij
0 (r, θ, ϕ),

∀r ≤ R,
∂hij

∂t

∣∣∣∣
t=0

= γij
0 (r, θ, ϕ),

∀t ≥ 0, hij(t, R, θ, ϕ) = βij
0 (t, θ, ϕ). (6.41)

The tensors αij
0 , γij

0 and βij
0 are given regular functions for initial data and boundary conditions,

respectively. The full expression of the tensor Laplace operator in spherical coordinates and in the
orthonormal spherical basis (6.1) is given by Eqs. (123)-(128) of [73] and shall not be recalled here.
We point out again that the boundary setting at r = R is overdetermined: this is discussed in more
detail in Sec. 6.4.2.

We introduce the vector H, defined as the divergence of hij and given in the spherical contravariant
components (6.2) by:

H i ≡ ∇jh
ij ⇐⇒





Hr =
∂hrr

∂r
+

2hrr

r
+

1

r

(
∂hrθ

∂θ
+

1

sin θ

∂hrϕ

∂ϕ
− hθθ − hϕϕ +

hrθ

tan θ

)
,

Hθ =
∂hrθ

∂r
+

3hrθ

r
+

1

r

(
∂hθθ

∂θ
+

1

sin θ

∂hθϕ

∂ϕ
+

1

tan θ

(
hθθ − hϕϕ

))
,

Hϕ =
∂hrϕ

∂r
+

3hrϕ

r
+

1

r

(
∂hθϕ

∂θ
+

1

sin θ

∂hϕϕ

∂ϕ
+

2hθϕ

tan θ

)
= 0.

(6.42)

We now detail, in the rest of this Section, a method to verify both evolution equation (6.39) and
the divergence-free constraint (6.40).

6.3.1 Decomposition on tensor spherical harmonics

As in the vector case (Sec. 6.2.1), we start by decomposing the angular dependence of the tensor
field hij onto pure spin tensor harmonics, introduced by [313] and [498] (we again use the notations
of [464]):

h(t, r, θ, ϕ) =
∑

ℓ,m

(
Lℓm

0 TL0

ℓm + T ℓm
0 TT0

ℓm + Eℓm
1 TE1

ℓm + Bℓm
1 TB1

ℓm + Eℓm
2 TE2

ℓm + Bℓm
2 TB2

ℓm

)
, (6.43)

where
(
Lℓm

0 , T ℓm
0 , Eℓm

1 , Bℓm
1 , Eℓm

2 , Bℓm
2

)
are all functions of only (t, r). Complete definitions and prop-

erties of this set of tensor harmonics can be found in [464]. Note that these harmonics have been
devised in order to describe gravitational radiation, far from any source. In that respect, the most rel-
evant harmonics are TE2 and TB2 , since they are transverse and traceless. The pure spin components
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of the tensor h are defined as:

hrr(t, r, θ, ϕ) =
∑

ℓ,m

Lℓm
0 Y m

ℓ , (6.44)

hτ (t, r, θ, ϕ) =
∑

ℓ,m

T ℓm
0 Y m

ℓ , (6.45)

hη(t, r, θ, ϕ) =
∑

ℓ,m

Eℓm
1 Y m

ℓ , (6.46)

hµ(t, r, θ, ϕ) =
∑

ℓ,m

Bℓm
1 Y m

ℓ , (6.47)

hW(t, r, θ, ϕ) =
∑

ℓ,m

Eℓm
2 Y m

ℓ , (6.48)

hX (t, r, θ, ϕ) =
∑

ℓ,m

Bℓm
2 Y m

ℓ . (6.49)

Explicit relations between the last five components and the usual spherical components (6.2) are
now given.

hτ = hθθ + hϕϕ (6.50)

is transverse; and the total trace is simply given by

h = hrr + hτ . (6.51)

In the following we shall use either the component hτ or the trace. The components hη and hµ have
similar formulas to those of the vector pure spin components, as

{
hri

}
i=1,2,3

can be seen as a vector:

hrθ =
∂hη

∂θ
− 1

sin θ

∂hµ

∂ϕ
, (6.52)

hrϕ =
1

sin θ

∂hη

∂ϕ
+

∂hµ

∂θ
;

the reverse formula being similar to Eqs. (6.22) and (6.23), they are not recalled here. Finally, the
last two components are obtained by:

P ≡
(
hθθ − hϕϕ

)

2
=

∂2hW

∂θ2
− 1

tan θ

∂hW

∂θ
− 1

sin2 θ

∂2hW

∂ϕ2
− 2

∂

∂θ

(
1

sin θ

∂hX

∂ϕ

)
, (6.53)

hθϕ =
∂2hX

∂θ2
− 1

tan θ

∂hX

∂θ
− 1

sin2 θ

∂2hX

∂ϕ2
+ 2

∂

∂θ

(
1

sin θ

∂hW

∂ϕ

)
;

and the inverse relations are given by:

∆θϕ (∆θϕ + 2) hW =
∂2P

∂θ2
+

3

tan θ

∂P

∂θ
− 1

sin2 θ

∂2P

∂ϕ2
− 2P +

2

sin θ

∂

∂ϕ

(
∂hθϕ

∂θ
+

hθϕ

tan θ

)
, (6.54)

∆θϕ (∆θϕ + 2) hX =
∂2hθϕ

∂θ2
+

3

tan θ

∂hθϕ

∂θ
− 1

sin2 θ

∂2hθϕ

∂ϕ2
− 2hθϕ − 2

sin θ

∂

∂ϕ

(
∂P

∂θ
+

P

tan θ

)
. (6.55)

Here as for the vector case, the hη and hµ components do not contain any relevant ℓ = 0 term, whereas
hW and hX contain neither ℓ = 0, nor ℓ = 1 terms, as expected for transverse traceless parts of the
tensor h. We shall use any set of components of the tensor h: either the usual ones

{
hij

}
, using the

spherical basis, or the pure spin ones
{
hrr, hτ (or h), hη, hµ, hW , hX

}
.
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6.3.2 Divergence-free degrees of freedom

The vector H defined as the divergence of h in Eq. (6.42) can be expanded in terms of vector pure
spin components, which are then written as functions of the tensor pure spin components of h (we
use the trace h instead of hτ ):

Hr =
∂hrr

∂r
+

3hrr

r
+

1

r
(∆θϕhη − h) , (6.56)

Hη = ∆θϕ

[
∂hη

∂r
+

3hη

r
+

1

r

(
(∆θϕ + 2)hW +

h − hrr

2

)]
, (6.57)

Hµ = ∆θϕ

[
∂hµ

∂r
+

3hµ

r
+

1

r
(∆θϕ + 2)hX

]
. (6.58)

A possible generalization of the Helmholtz theorem to the symmetric tensor case is that, for any
sufficiently smooth and rapidly decaying symmetric tensor field T, one can find a unique (on R3)
decomposition of the form

T ij = ∇iLj + ∇jLi + hij
0 , (6.59)

with ∇jh
ij
0 = 0. With these definitions, ∇jT

ij = 0 ⇐⇒ Li = 0 which means that, from the six scalar
degrees of freedom of the symmetric tensor T ij , the three longitudinal ones can be represented by the
three components of the vector L. Therefore, the divergence-free symmetric tensor hij

0 has only three
scalar degrees of freedom that we exhibit hereafter.

One can check that the three scalar potentials defined by

A =
∂TX

∂r
− Tµ

r
, (6.60)

B =
∂TW

∂r
− 1

2r
∆θϕTW − T η

r
+

T − T rr

4r
, (6.61)

C =
∂T

∂r
− ∂T rr

∂r
+

T

r
− 3T rr

r
− 2∆θϕ

(
∂TW

∂r
+

TW

r

)
, (6.62)

satisfy the property
A = B = C = 0 ⇐⇒ h0 = 0, (6.63)

and represent the three divergence-free scalar degrees of freedom of a symmetric tensor.
In order to write the wave equation (6.39) in terms of these potentials, we first express the pure

spin components of the tensor Laplace operator acting on a general symmetric tensor h:

(∆h)rr = ∆hrr − 6hrr

r2
− 4

r2
∆θϕhη +

2h

r2
(6.64)

(∆h)η = ∆hη +
2

r

∂hη

∂r
+

2hη

r2
− 2

r

(
∂hη

∂r
+

3hη

r
+ (∆θϕ + 2)

hW

r
+

1

2r
h − 3

2r
hrr

)
, (6.65)

(∆h)µ = ∆hµ +
2

r

∂hµ

∂r
+

2hµ

r2
− 2

r

(
∂hµ

∂r
+

3hµ

r
+ (∆θϕ + 2)

hX

r

)
, (6.66)

(∆h)W = ∆hW +
2hW

r2
+

2hη

r2
, (6.67)

(∆h)X = ∆hX +
2hX

r2
+

2hµ

r2
, (6.68)

trace of ∆h = ∆h. (6.69)
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The term between parentheses in Eq. (6.66) is exactly zero in the case of a divergence-free tensor, as it
represents the µ-component of the vector H (6.58). The similar term in Eq. (6.65) reduces to −hrr/r,
when using Hη = 0 with Eq. (6.57). We can now write evolution equations, implied by the original
tensor wave equation (6.39):

∂2A
∂t2

= ∆A, (6.70)

∂2B
∂t2

= ∆B − C
2r2

, (6.71)

∂2C
∂t2

= ∆C +
2C
r2

+
8∆θϕB

r2
. (6.72)

The situation is therefore slightly more complicated than in the vector case with Eqs. (6.30)-(6.31).
Indeed, the two potentials B and C are coupled, but it is possible to define new potentials satisfying
decoupled wave-like evolution equations. We first write the scalar spherical harmonic decomposition
of A, B and C:

A(t, r, θ, ϕ) =
∑

ℓ,m

Aℓm(t, r)Y m
ℓ (θ, ϕ),

B(t, r, θ, ϕ) =
∑

ℓ,m

Bℓm(t, r)Y m
ℓ (θ, ϕ),

C(t, r, θ, ϕ) =
∑

ℓ,m

Cℓm(t, r)Y m
ℓ (θ, ϕ).

Then, we define new potentials B̃ and Ĉ as:

B̃(t, r, θ, ϕ) =
∑

ℓ,m

(
2Bℓm(t, r) +

Cℓm(t, r)

2(ℓ + 1)

)
Y m

ℓ (θ, ϕ), (6.73)

Ĉ(t, r, θ, ϕ) =
∑

ℓ,m

(
Cℓm(t, r) − 4ℓBℓm(t, r)

)
Y m

ℓ (θ, ϕ). (6.74)

The Eqs. (6.71)-(6.72) are transformed into:

∂2B̃
∂t2

= ∆̃B̃, (6.75)

∂2Ĉ
∂t2

= ∆̂Ĉ; (6.76)

with, for any scalar field f(r, θ, ϕ) =
∑

(ℓ,m) f ℓm(r)Y m
ℓ (θ, ϕ), the operators defined as:

∆̃f =
∂2f

∂r2
+

2

r

∂f

∂r
+

1

r2

[
∑

ℓm

−ℓ(ℓ − 1)f ℓmY m
ℓ

]
, (6.77)

∆̂f =
∂2f

∂r2
+

2

r

∂f

∂r
+

1

r2

[
∑

ℓm

−(ℓ + 1)(ℓ + 2)f ℓmY m
ℓ

]
. (6.78)

These two operators are very similar to the usual Laplace operator, but in the angular part ∆θϕ, they

contain a shift of, respectively −1 and +1 in the multipolar number ℓ, for ∆̃ and ∆̂. We thus have
obtained three evolution wave-like equations (6.70), (6.75) and (6.76) for the three scalar degrees of
freedom of a divergence-free symmetric tensor.
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6.3.3 Traceless case

As presented in Sec. 6.1.2, some evolution problems of symmetric tensors in general relativity can
have another constraint, in addition to the divergence-free condition already studied (6.40). This
is the condition of determinant one for the conformal metric which turns into an algebraic condition
(Eq. (169) of [73]), and is enforced by iteratively solving a Poisson equation with the trace of the tensor
as a source, as described in Sec. V.D of [73]. Therefore, in the following the trace of the unknown
tensor h is assumed to be known.

The fact that the trace h (6.51) of a divergence-free symmetric tensor is fixed reduces a priori the
number of scalar degrees of freedom to two. For instance, we here show that if the trace is given, the
scalar potentials B and C are linked. We take the partial derivative with respect to r of the definition
of C (6.62) and B (6.61) to obtain:

∂C
∂r

+
2C
r

+ 2∆θϕ

(
∂B
∂r

+
3B
r

− C
4r

)
= ∆h. (6.79)

Therefore, if h and C are given, it is possible to integrate this relation with respect to the r-coordinate
to obtain B (which we have assumed to converge to 0 as r → ∞). Because of the definitions (6.73)-
(6.74), B̃ and Ĉ are also linked together if the trace is given.

We shall assume in the following that this trace is zero. All the equations presented hereafter can
easily be generalized to the non-zero (given) trace case, taking the general form of the equations of
Sec. 6.3.2. We shall therefore use only two scalar potentials, namely A and B̃ to describe a general
traceless divergence-free symmetric tensor.

6.3.4 Integration scheme

Similarly to what has been done in the beginning of this section, we consider the homogeneous wave
equation for a symmetric tensor (6.39), under the constraints that the tensor be divergence-free (6.40)
and traceless (h = 0). We have seen in Sec. 6.3.3 that it was necessary to solve for at least the two
wave-like evolution equations (6.70) and (6.75). We describe now how to obtain the whole tensor,
once A(t, r, θ, ϕ) and B̃(t, r, θ, ϕ) are known.

In order to obtain first the six pure spin components (actually, their spherical harmonic decom-
positions (6.44)-(6.49)) of h at any time t, we use the following six equations: the traceless condition,
the three divergence-free conditions and the definitions of A and B̃. They represent two systems of
coupled differential equations in the r-coordinate, that we express in terms of the tensor spherical
harmonic components (6.43). The first one comes from the definition of A (6.60) and the Hµ = 0
condition (6.58); it couples the µ- and the X -components of h:

∂Bℓm
2

∂r
− Bℓm

1

r
= Aℓm, (6.80)

∂Bℓm
1

∂r
+

3Bℓm
1

r
+

2 − ℓ(ℓ + 1)Bℓm
2

r
= 0. (6.81)

This system has two unknown functions Bℓm
1 and Bℓm

2 , whereas Aℓm is obtained from the time evolution
of A(t, r, θ, ϕ).
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The second one comes from the definition of B̃ (6.73) and the two Hr = Hη = 0 conditions (6.56)-
(6.57); it couples the rr-, η- and W-components:

(ℓ + 2)
∂Eℓm

2

∂r
+ ℓ(ℓ + 2)

Eℓm
2

r
− 2Eℓm

1

r
− 1

2(ℓ + 1)

∂Lℓm
0

∂r
− ℓ + 4

ℓ + 1

Lℓm
0

2r
= B̃ℓm, (6.82)

∂Lℓm
0

∂r
+

3Lℓm
0

r
− ℓ(ℓ + 1)Eℓm

1

r
= 0, (6.83)

∂Eℓm
1

∂r
+

3Eℓm
1

r
− Lℓm

0

2r
+

2 − ℓ(ℓ + 1)Eℓm
2

r
= 0. (6.84)

Here, the unknowns are Lℓm
0 , Eℓm

1 and Eℓm
2 and B̃ℓm is known from the evolution of B̃(t, r, θ, ϕ).

When looking at a more general setting, the trace h appears only in the second system. If we
combine Eq. (6.80) with Eq. (6.81), we obtain a Poisson equation for the unknown rhX , with A and
its radial derivative as a source. As for the vector case, this system can be solved using, for example,
the spectral scalar Poisson solver described in [228], and one obtains the pure spin components hµ and
hX .

Such an argument cannot be used for the second system, but a search for homogeneous solutions
gives that, for a given ℓ, the simple powers of r:

rℓ−2,
1

rℓ+3
and

1

rℓ+1
(6.85)

represent a basis of the kernel of the system (6.82)-(6.84). With this information, one can devise a
simple spectral method to solve this system (see Sec. 6.5.1) and obtain the pure spin components
hrr, hη and hW . With the traceless condition, one can also recover hτ from hrr, and finally use
Eqs. (6.52)-(6.53) to get the spherical components of h.

6.4 Boundary conditions

6.4.1 Vector system

We discuss here the spatial boundary conditions to be used during our procedure, so that we recover
the unknown vector field at any time-step. The source of the vector wave equation is put to zero for
the sake of clarity; but the reasoning would be exactly the same in the general case.

As pointed out in Sec. 6.2.4, the recovery of the vector field at each time-step will require two
different operations: first, we use the two scalar wave equations (6.31) and (6.30) to recover A and V µ.
Two boundary conditions, set at the outer sphere (the boundary of our computation domain), will
then be needed for these quantities. The second step will consist of the inversion of the differential
system (6.37), to obtain the pure spin components V r and V η. This system is, in terms of the
structure of the space of homogeneous solutions, mathematically equivalent to a Poisson problem (see
Eq. (6.38)); its inversion will then also require an additional boundary condition.

From the setting of our problem presented at the beginning of Sec. 6.2, we can impose Dirichlet
boundary conditions for the 3 pure spin components on the outer sphere. The condition on V µ enables
us to recover the value of the entire field on our computational domain, through the direct resolution
of (6.30). Once we obtain the value of the field A on our domain, we can use a condition on either V r

or V η to invert the system (6.37), and retrieve the additional spin components.
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There remains the necessity of imposing a boundary condition on A to solve Eq. (6.31). This
cannot be done using condition at r = R in (6.10) and the definition (6.26), because ∂V η

∂r must be
specified. To overcome this difficulty, we exhibit here algebraic relations that link the value of A at the
boundary and time derivatives of the pure spin components. These will be compatibility conditions,
derived only from the structure of our problem. We express radial derivatives of equations (6.24)
and (6.26), respectively, to obtain, using relations (6.11) and (6.28), the following identities (see also
Eq. (6.35)):

1

r
∆θϕA = −∂2V r

∂t2
, (6.86)

∂A

∂r
+

A

r
=

∂2V η

∂t2
, . (6.87)

Those equations are derived using only the fact that our vector field satisfies the wave equation
and is divergence-free. From the knowledge of the vector field at the boundary, we can impose either
of these two relations as boundary conditions for A; the first being of Dirichlet type for each spherical
harmonic of A, the second of Robin type. This way we are able to solve equation (6.31), and complete
our resolution scheme.

Let us finally note that our boundary problem is, as one could guess, actually overdetermined:
there is no need to know the value of the entire vector field on the outer sphere. It can be easily
seen that, if one only has access to the boundary values of V µ and V r, or V µ and V η, the boundary
conditions for all equations can be provided. This also gives us insight about what would happen if we
set up a numerical problem in which spatial boundary conditions are not consistent with a solution of
Eqs. (6.8, 6.9); this could occur for example because of numerical rounding errors or simply a physical
boundary prescription which is not compatible with a divergence-free vector field. Our method will
then still provide a solution that is divergence-free and which satisfies Eqs. (6.8, 6.9); however only
the boundary conditions that are directly enforced will be satisfied. For example, if we choose in our
scheme to enforce boundary conditions on V µ and V η, the outer boundary conditions that are satisfied
at each time-step are actually of the form (we keep the notation of (6.10)):

∀t ≥ 0, V µ(t, R, θ, ϕ) = bµ
0 (t, θ, ϕ),

V η(t, R, θ, ϕ) = bη
0(t, θ, ϕ),

∂V r(t, R, θ, ϕ)

∂r
+

2

r
V r(t, R, θ, ϕ) = −1

r
∆θϕbη

0(t, θ, ϕ). (6.88)

The last condition is directly derived from the vanishing of the divergence (Eq. (6.24)) at the
boundary. Let us note that we do not even impose a Dirichlet condition on V r as was originally
intended. We may then not satisfy all the boundary conditions we wished to prescribe at first. This
may also depend on the boundary value we choose to use for the inversion of the system (6.37).

We do not treat alternative cases for the boundary problem (for which the knowledge of the
vector field on the outer sphere could be substituted by, for example, the knowledge of its first radial
derivative); but a similar approach would also provide expressions for the boundary conditions of all
the equations tackled in our scheme.

6.4.2 Tensor system

The tensor problem presents itself in a similar way to the vector case, only with a few additional
difficulties. As seen in Sec. 6.3.4, we can separate the problem into two parts; the first consists in
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retrieving the field A from Eq (6.70), and then get the spin components hµ and hX . In a similar way,
we compute the value of B̃ from Eq. (6.75), so that we obtain the fields hrr, hW and hη from the
inversion of the system (6.82, 6.83, 6.84) . The field hτ is deduced from the traceless hypothesis. The
tensor field is then entirely determined.

As in the vector case, the solution of wave equations for A and B̃ requires one boundary condition
for each equation. The elliptic system (6.80, 6.81) is also quite similar to that for the vector case,
and its space of homogeneous solutions is also equivalent to that of a single Poisson equation. One
boundary condition is also required; it will be chosen as a Dirichlet condition on either hµ or hX ,
according to the setting of our problem (6.41).

For the elliptic system (6.82, 6.83, 6.84), the homogeneous solutions have been characterized in
Sec. 6.3.4. The only basis vector of the kernel of solutions that is regular in our computation domain
is, for any ℓ ≥ 2, the solution rℓ−2. The other two vectors of the kernel basis are not regular at the
origin of spherical coordinates. This means, from a basic point of view, that one boundary condition
will be sufficient at the outer sphere. It will be provided, again according to our problem setting, as
a Dirichlet condition on any of the fields hrr, hη or hW .

The last boundary problem concerns the fields A and B̃. They will be handled the same way as
in the vector case. We take the radial derivatives of the equations (6.58) and (6.60), using the elliptic
equations (6.66) and (6.68), to obtain the following compatibility conditions:

(∆θϕ + 2)A = −∂2hµ

∂t2
, (6.89)

∂A
∂r

+ 2
A
r

=
∂2hX

∂t2
, . (6.90)

These are again derived using only the divergence-free property of the vector field as well as the
verification of the main wave equation. Using the known value of, respectively, hµ and hX at the outer
boundary, we obtain either a Dirichlet boundary condition for each spherical harmonic from the first
relation, or a Robin condition with the second one. Again those identities have been obtained only
from the equations of our problem and the definitions of the variables we use.

Taking the same path for the second part of the problem, we express radial derivatives of Eqs. (6.56),
(6.57), (6.61) and (6.62) to obtain respectively, and for each spherical harmonic, the following rela-
tions:

∂2Lℓm
0

∂t2
= − 1

(2ℓ + 1)r

[
(ℓ + 1)(ℓ + 2)

2
Ĉℓm − ℓ(ℓ + 1)(ℓ − 1)B̃ℓm

]
(6.91)

∂2Eℓm
1

∂t2
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1

(2ℓ + 1)r

[
(ℓ + 1)(ℓ − 1)B̃ℓm +

ℓ + 2

2
Ĉℓm

]
(6.92)
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2
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4
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]
(6.93)
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2
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∂B̃ℓm
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+ ℓ(ℓ + 1)(ℓ − 1)2
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+
1

2
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r

]
. (6.94)
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When expressing the vanishing of the trace, the last equation can be transformed into:

∂2Eℓm
2

∂t2
=

1

2ℓ(ℓ + 1)(2ℓ + 1)

[
(ℓ + 1)

∂Ĉℓm

∂r
+ 2ℓ(ℓ + 1)

∂B̃ℓm

∂r
+

(ℓ + 1)(ℓ + 4)

2

Ĉℓm

r

− ℓ(ℓ + 1)(ℓ − 3)
B̃ℓm

r

]
. (6.95)

Although those equations involve both the fields B̃ and Ĉ, one can easily see that combining them
can lead to conditions on the field B̃ only. For example, the combination of (6.91) and (6.92) provides,
for each index ℓ:

B̃ℓm =
r

(ℓ + 1)(ℓ − 1)

[
∂2Lℓm

0

∂t2
+ (ℓ + 1)

∂2Eℓm
1

∂t2

]
, (6.96)

which is interpreted as a Dirichlet boundary condition for B̃. Robin boundary conditions can be
obtained from the combination of Eqs. (6.93), (6.94), and either (6.91) or (6.92). The tensor boundary
problem is then entirely solved; tests for some of the boundary conditions derived here are presented
in Sec. 6.5. Let us note again that this problem is overdetermined: concerning the first system,
the knowledge of a Dirichlet condition on either only hµ, or only hX suffices to provide boundary
conditions for A and the system (6.80, 6.81). For the part of the algorithm related to B̃, we easily see
that Dirichlet conditions for any two of the spin components hrr, hη and hW are sufficient to solve the
boundary problem.

We finally point out that, in the same fashion as in the vector case, if the value βij
0 imposed as a

Dirichlet condition for the tensor at the outer boundary (Eq. (6.41)) is not consistent with the system,
the boundary conditions actually imposed on our scheme will be slightly different: only the Dirichlet
conditions for the pure spin components that are explicitly enforced will be satisfied. Other boundary
values will only express the coherence with respect to the fact that the solution is indeed divergence
free. As done in Sec.6.4.1, it is possible to express other boundary conditions enforced in practice by
using the expression for the tensor divergence H as a function of the pure spin components.

6.4.3 Working in a shell: inner boundary conditions

We say a few words here about the resolution of the tensorial problem when our computation domain
is no longer an entire sphere, but is instead bounded on the interior at a finite coordinate radius
r = Rin > 0. We add in our setting the condition that, ∀(θ, ϕ):

∀t ≥ 0, hij(t, Rin, θ, ϕ) = ζij
0 (t, θ, ϕ).

Physical information is then also provided at the internal boundary (this is, again, an overdeter-
mined set of boundary conditions). This new geometry will imply the need for two inner boundary
conditions to be imposed for the wave equations on A and in B̃. These are easily found using the results
of the last section and the knowledge of Dirichlet boundary conditions on the inner and outer sphere for
all components. The system (6.80, 6.81) also needs an additional (inner) boundary condition, imposed
on either hµ or hX . There is, however, a slight subtlety concerning the triple system (6.82, 6.83, 6.84).
As seen in Sec. 6.3.4, the kernel of solutions to this system is of dimension 3, and since our compu-
tational domain no longer includes r = 0, all 3 basis vectors of this kernel are regular in our domain.
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This means that 3 boundary conditions have to be imposed overall for inverting this system (in con-
trast with the sphere case, where we only imposed one). Those three conditions are imposed here
on either hrr, hη or hW on each limit of the domain. We have a priori the freedom to choose which
boundary conditions we want to impose, and where to impose them; numerical experimentation would
be required to indicate whether or not there are preferable choices.

To conclude this section, we mention also the work of [475] where the authors used the formalism
presented in this paper to solve a tensor elliptic equation that is part of a formulation of the Einstein
equations. The resolution was made on a 3-space excised by a sphere of fixed coordinate radius, where
the tensor equation possessed a weak singularity property (see [236]). The boundary condition problem
was treated a little bit differently, as all boundary conditions imposed were either emanating from
the very structure of the problem, or were not needed at all. This is a consequence of the particular
behavior of that operator at the boundary; on this setting for the domain geometry, one boundary
condition was imposed to invert the system in hµ and hX , and two for the system involving hrr, hη

and hW .

6.5 Numerical tests

6.5.1 Spectral methods in a sphere

The numerical schemes presented in previous sections have been implemented using a multi-domain
spectral method in spherical coordinates (see e.g. [85, 250], for general presentations and [230] for a
more detailed description in the case of numerical relativity). We have used the lorene numerical
library [216], with scalar fields decomposed onto a basis of Chebyshev polynomials, in several domains,
for the r-coordinate, Fourier series for the ϕ-coordinate and either Fourier or associated Legendre
functions for the θ-coordinate (Pm

ℓ (cos θ), see Sec. 6.1.3). This last option is obviously needed by our
algorithms, which strongly rely on spherical harmonics decompositions and on the angular part of the
Laplace operator ∆θϕ. The other basis of decomposition (Fourier) is quite useful for computing angular
derivatives ∂/∂θ and operators such as 1/ sin θ, appearing in e.g. (6.21) or (6.52). The coordinate
singularity on the z-axis (θ = 0, π) is naturally handled by the spherical harmonic decomposition basis.
We cope with the coordinate singularity at the origin (r = 0), using an even/odd radial decomposition
basis (only even/odd Chebyshev polynomials), depending on the parity of the multipole ℓ (see [79] and
Sec. 3.2 of [230]). The complete regularity requirement would be that, for each multipole ℓ the radial
Taylor expansion of a regular function should include only rp with p ≥ ℓ. We have found however
that the simpler parity prescription described above is in practice sufficient for the study of the wave
or Poisson equations performed here.

The wave equations (6.30)-(6.31) and (6.70)-(6.75) are integrated numerically by writing them as
first-order systems:

∂2φ

∂t2
= ∆φ ⇐⇒





∂φ

∂t
= ψ,

∂ψ

∂t
= ∆φ.

(6.97)

After discretization in the angular coordinates using spherical harmonics, we then use a third-order
Adams-Bashforth (explicit) time-stepping scheme with a fixed time-step dt and a Chebyshev-tau tech-
nique in the radial coordinate. The differential systems for the computation of pure spin components
from the divergence-free degrees of freedom, as system (6.37) in the vector case, or systems (6.80)-
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Figure 6.1: Decay of the errors (difference with theoretical solution and divergence of the nu-
merical solution) for the vector wave equation, as a function of the number of radial Chebyshev
coefficients Nr used in each domain. Other settings are R = 6, dt = 0, 00032, Nθ = 17, Nϕ = 4.

(6.84) in the tensor case, are solved at every time-step in the Chebyshev coefficient space. A tau
method is used to match together the solutions across the domains, and to impose the boundary
conditions at r = R.

6.5.2 Vector wave equation

We consider here the numerical solution of the problem (6.8)-(6.10), with vi
0(r, θ, ϕ) given by its

Cartesian components by (with z = r cos(θ)):

vx
0 = −vy

0 = cos(z), (6.98)

the other component is zero. Thus, the vector vi
0 is clearly divergence-free. With appropriate boundary

conditions, the solution of the problem (6.8)-(6.10) is (still in Cartesian components) simple to express:

V x(t, r, θ, ϕ) = −V y(t, r, θ, ϕ) = cos(t) cos(z), (6.99)

the other component being zero. The vector wave equation is solved through the two scalar wave
equations for the potentials A and the component V µ as explained in Sec. 6.2.4. From Eq. (6.99),
we know the values of bi

0(t, θ, ϕ) appearing in Eq. (6.10) as Dirichlet boundary conditions and we can
deduce its pure spin components (br

0, b
η
0, b

µ
0 ). These are used to obtain Dirichlet boundary conditions

for the evolution equations for A and µ, as described in Sec.6.4.1 using Eq. (6.86) for A. Finally, the
elliptic system (6.37) is solved with the appropriate Dirichlet boundary condition given by the spin
component br

0 (see also Sec. 6.4.1).

We use the numerical techniques given in Sec. 6.5.1, with two domains, and numbers of points
in each direction given by (Nr, Nθ, Nϕ). We have integrated the vector wave equation over the time
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Figure 6.2: Decay of the errors (difference with theoretical solution and divergence of the
numerical solution) for the vector wave equation, as a function of the time-step dt. Other
settings are R = 6, Nr = 17, Nθ = 17, Nϕ = 4.

interval t ∈ [0, 2π] and looked at the maximum in time of two quantities to estimate the accuracy of the
solution. First, the difference between the numerical solution and the theoretical one (6.99), rotated
to spherical basis (6.1), is computed. Then, the divergence of the numerical solution, expressed in the
spherical basis is also monitored. Note that, even though all the Cartesian components of V i do not
depend on the azimuthal angle ϕ, the spherical components do depend on ϕ and we have always used
four points in the ϕ-direction.

In Fig. 6.1, we observe as expected an exponential convergence of both the discrepancy between the
theoretical and numerical solutions (maximum over all grid points and all components) as functions
of the number of spectral coefficients used in the radial direction Nr, all other parameters being fixed.
The same behavior has been observed when keeping Nr fixed and varying Nθ. Besides, we observe
an exponential decay of the divergence of the solution in the second (or outer) domain, whereas the
divergence of the solution in the first (central) domain remains constant to the radial precision. This
is due to the matching across domains and imposition of boundary conditions, which can be seen
as a modification of the solution of the system (6.37) by the addition of a linear combination of
homogeneous solutions. These homogeneous solutions of the system (6.37) are, for each multipole ℓ,
rℓ−1 and 1/rℓ+2. The latter being singular at r = 0 is not relevant in the central domain. The rℓ−1

function is a polynomial and is well represented in the first domain, whereas in the second domain,
we also need to resolve 1/rℓ+2, which is poorly approximated for low values of Nr.

On the other hand, when varying the time-step dt, the difference between the numerical and exact
solutions decreases as O(dt3) (see Fig. 6.2), as expected for a third-order scheme. Another feature
verified in Fig. 6.2 is the fact that the divergence of the solution is (almost) independent of the time-
step, being thus only a function of the spatial resolution. The best accuracy observed in Fig. 6.1 is
limited by angular resolution and the fact that the divergence is computed using spherical components
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Figure 6.3: Decay of the errors (difference with theoretical solution and divergence of the nu-
merical solution) for the tensor wave equation, as a function of the number of radial Chebyshev
coefficients Nr used in each domain. Other settings are R = 6, dt = 0.00032, Nθ = 17, Nϕ = 4.

(Eq. 6.12), whereas the divergence-free constraint is imposed using pure spin components (Eq. 6.24).
Therefore, the computation of derivatives in Eqs. (6.21) to obtain the spherical components introduces
additional numerical noise, depending on the angular resolution.

6.5.3 Divergence-free and traceless tensor wave equation

Similarly to Sec. 6.5.2, we consider here the numerical solution of the problem (6.39)-(6.41), with
αij

0 (r, θ, ϕ) given in the Cartesian basis by (with z = r cos(θ)):

αxx
0 = −αyy

0 = cos(z), (6.100)

all the other components are zero. Thus the tensor αij
0 is clearly symmetric, divergence-free and trace-

free. With γij
0 = 0 and appropriate boundary conditions, the solution of the problem (6.39)-(6.41) is

(still in Cartesian components) simple to express:

hxx(t, r, θ, ϕ) = −hyy(t, r, θ, ϕ) = cos(t) cos(z), (6.101)

all the other components being zero. The tensor wave equation is solved through the two scalar wave-
like equations for the potentials A and B̃ as explained in Sec. 6.3.4. From Eq. (6.101), we know the
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Figure 6.4: Decay of the errors (difference with theoretical solution and divergence of the
numerical solution) for the tensor wave equation, as a function of the time-step dt. Other
settings are R = 6, Nr = 17, Nθ = 17, Nϕ = 4.

values of βij
0 (t, θ, ϕ) appearing in Eq. (6.41) as Dirichlet boundary conditions and we can deduce its

pure spin components (βrr
0 , βη

0 , βµ
0 ). These are used to obtain Dirichlet boundary conditions for the

evolution equations for A and B̃, as described in Sec. 6.4.2 using Eqs. (6.89) and (6.96), respectively.
Finally, the elliptic systems (6.80)-(6.84) are solved with the appropriate Dirichlet boundary conditions
given by the spin components of βij

0 , namely βrr
0 and βµ

o . We have integrated the tensor wave equation
following the same procedure as in Sec. 6.5.2. results are displayed in Figs. 6.3 and 6.4, where we
observe as expected an exponential convergence of both the discrepancy between the theoretical and
numerical solutions, and the divergence of the numerical, as functions of Nr. When varying the time-
step dt, the difference between the numerical and exact solutions decreases as O(dt3), as expected.
Here again, the divergence of the solution is (almost) independent of the time-step, being thus only a
function of the spatial resolution, from the same reasons as in the vector case.

6.6 Concluding remarks

We have described a new numerical method for solving the wave equation of a rank-two symmetric
tensor on a spherical grid, ensuring the divergence-free condition on this tensor. In order to describe
this method, we have first addressed the vector case, for which we have reformulated the poloidal-
toroidal decomposition in spherical components. This approach, which relies on a decomposition
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onto vector spherical harmonics was then generalized to the case of a symmetric tensor. Through
numerical tests of the vector and tensor wave evolution in a sphere using spectral explicit time schemes,
we have observed that this method was convergent and accurate. In particular, the level at which
the divergence-free condition is violated is determined only by the spatial discretization and does not
depend on the time-step, as expected. This method strongly relies on the decomposition onto spherical
harmonic spectral bases, but is not bound to spectral methods for the representation of the radial
coordinate.

The discussion in Sec. 6.4 gave us the compatibility conditions (6.86), (6.89) (6.96), which are
necessary to obtain boundary conditions for the additional scalar field equations, representing the
evolution of the divergence-free degrees of freedom of our objects (A,A, B̃). The numerical tests
performed in this study have dealt only with simple Dirichlet boundary conditions. However, it would
be rather straightforward to generalize them to more complex boundary conditions, which are needed
in realistic simulations of gravitational waves [288, 341, 391].

In this respect, an interesting issue would probably be the general well-posed nature of these
boundary conditions with respect to our scheme, and how the modifications for these conditions with
this method, sketched in Sec.6.4.1 and 6.4.2, would alter the physical behavior of the solution. One
could for example think of a Robin-like boundary setting linked to an outer wave-absorbing condition
(as in [341]), instead of the Dirichlet setting studied here; the fact that boundary conditions may be
only partially verified could have an effect on how this required feature at the boundary would be
described eventually in our scheme. The same type of questions arise in a more general case, where
the source terms of the equations are non-vanishing: these sources would also require well-posedness
conditions (i.e. a vanishing divergence for the wave equation). If this requirement is not satisfied
(because of the iteration procedure or numerical errors), although the problem is then mathematically
ill-posed, our scheme will still converge: it provides us with a solution of the wave equation with a
source that is basically the divergence-free part of the original ill-posed source. The influence of this
feature on the general stability and physical relevance of the procedure is an open issue.

Future studies include the simulations of perturbed black hole spacetimes, with the extraction of
gravitational waves, and the solution of general-relativistic magneto-hydrodynamics in the case of a
rotating neutron star.
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7.1 Introduction

Apparent horizons play an important role in numerical relativity for spacetimes containing black
hole(s). Being defined locally in time (see section 7.2), the apparent horizon(s) can readily be computed
from the data on each hypersurface during a numerical evolution in 3 + 1 numerical relativity. In
contrast, the event horizon is a global property and can be determined approximately only when
the spacetime has essentially settled down to a stationary state. Once the spacetime has settled
down, the event horizon can be found at all previous times by integrating null geodesics backwards in
time (e.g., [256, 25, 290, 146]). As it (if exists) must be inside an event horizon [242], the apparent
horizon is an important tool to track the location and movement of black hole(s) in a numerically
generated spacetime. Furthermore, the surface of an apparent horizon also provides a natural boundary
within which the spacetime region can be excised from the computational domain in order to handle
the physical singularities inside a black hole [461, 408] (see also Unruh as cited in [461] and e.g.
[12, 101, 474, 43] for black hole simulations without excision). In the new concept of a “dynamical
horizon” (see [39, 82] for reviews), apparent horizons are essentially the cross sections of the (three-
dimensional spacelike) dynamical horizon on the hypersurfaces. It has recently been shown in this
context that the areas of the apparent horizons satisfy a causal evolution equation and give a positive
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bulk viscosity in a viscous fluid analogy [222]. This is in contrast to the event horizon which yields a
noncausal evolution and a negative bulk viscosity.

A wide variety of algorithms for finding apparent horizons have been proposed in the past decade.
We refer the reader to the review article by Thornburg [463] (and references therein) for details. In
this paper, we present a new apparent horizon finder which is based on spectral methods. While
spectral-method based algorithm for finding apparent horizons was first proposed by Nakamura et al.
[330] more than twenty years ago, our new approach does not suffer from the same weakness as in the
Nakamura et al. algorithm: namely the ℓ = 0 coefficient of the spherical harmonics decomposition
of the apparent-horizon’s surface needed to be determined by a root-finding procedure. Hence, our
algorithm leads to a more robust and efficient spectral apparent horizon finder. We have tested our
finder with analytic solutions for single and two black-hole spacetimes. Our finder is as efficient as the
currently fastest algorithms developed by Schnetter [406] and Thornburg [462].

This paper is organized as follows. In section 7.2 we present the notations and various definitions.
In section 7.3 we briefly review the Nakamura et al. algorithm; we describe our spectral algorithm
and the numerical procedure in section 7.4. Section 7.5 presents tests with analytic solutions to assess
the accuracy, robustness, and efficiency of our finder. Finally, we summarize our results in section 7.6.
Latin (Greek) indices go from 1 to 3 (0 to 3).

7.2 Notations and definitions

Given a spacelike hypersurface Σ with future-pointing unit normal nµ, the 3-metric γµν induced by
the spacetime metric gµν onto Σ is

γµν := gµν + nµnν . (7.1)

Let S be a closed smooth (two-dimensional) surface embedded in Σ, and let sµ be the outward-pointing
unit normal of S, which is spacelike and also normal to nµ (i.e., sµsµ = 1 and sµnµ = 0). The 3-metric
γµν now induces a 2-metric on S:

mµν := γµν − sµsν . (7.2)

Let kµ be the tangents of the outgoing future-pointing null geodesic whose projection on Σ is orthogonal
to S. We have (up to an overall factor)

kµ = sµ + nµ, (7.3)

on the 2-surface S.
The expansion of the outgoing null geodesics is

Θ = ∇µkµ, (7.4)

where ∇µ is the covariant derivative associated with gµν . In terms of three-dimensional quantities, on
the 2-surface S, the expansion can be written as (see, e.g., [55])

Θ = Dis
i − K + sisjKij , (7.5)

where Di is the covariant derivative associated with γij , Kij is the extrinsic curvature of Σ, and K is
the trace of Kij . The expansion can also be written as

Θ = mij (Disj − Kij) . (7.6)
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The 2-surface S is called a marginally trapped surface if Θ = 0 everywhere on S. We shall call here
the outermost of such surfaces (which is a marginally outer trapped surface - MOTS) the apparent
horizon.

To parameterize the apparent horizon, we assume that the topology of S is a 2-sphere, and S is
star-shaped around the coordinate origin r = 0, which means that for every point M inside S, the
straight line connecting the origin to M is entirely inside S [69]. The position of the apparent horizon
can then be represented as

F (r, θ, ϕ) := r − h(θ, ϕ) = 0, (7.7)

where (r, θ, ϕ) are the standard spherical coordinates. The function h measures the coordinate distance
to the horizon’s surface in the direction (θ, ϕ). With this parametrization, the unit normal si is given
by

si =
DiF

(γijDiFDjF )1/2
:=

DiF

|DF | , (7.8)

where Di := γijDj . The expansion (equation (7.6)) becomes

Θ = mij

(
DiDjF

|DF | − Kij

)
, (7.9)

where the condition mijsj = 0 has been used.

7.3 The Nakamura et al. algorithm

In this section, we give a brief review of the algorithm adopted by Nakamura et al. [330] for finding
apparent horizon based on spectral methods. They expand h in spherical harmonics:

h(θ, ϕ) =

ℓmax∑

ℓ=0

ℓ∑

m=−ℓ

aℓmY m
ℓ (θ, ϕ). (7.10)

They rewrite the apparent horizon equation Θ = 0 as1

∆θϕh = ρΘ + ∆θϕh, (7.11)

where ∆θϕ is the flat Laplacian operator on a 2-sphere defined by

∆θϕh := h,θθ + cot θh,θ + sin−2 θh,ϕϕ. (7.12)

The positive scalar function ρ is chosen such that the term h,θθ cancels on the right hand side (RHS).
Using the fact that the Y m

ℓ are an orthogonal set of eigenfunctions of ∆θϕ:

∆θϕY m
ℓ = −ℓ (ℓ + 1) Y m

ℓ , (7.13)

we obtain the relation (with dΩ = sin θdθdϕ)

−ℓ (ℓ + 1) aℓm =

∫

S
Y m∗

ℓ (ρΘ + ∆θϕh) dΩ. (7.14)

1We follow the notation of Gundlach [231].
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This equation can be used to solve for the coefficients aℓm via an iteration procedure. However, the
value of a00 has to be determined at each iteration step by solving for the root of

∫

S
Y 0∗

0 (ρΘ + ∆θϕh) dΩ = 0. (7.15)

The main disadvantage of the above scheme is that the coefficient a00 has to be determined sepa-
rately by equation (7.15). As pointed out by Gundlach [231], solving equation (7.15) by any iteration
method is as computationally expensive as many steps of the main iteration loop. Furthermore, equa-
tion (7.15) may have multiple roots or none. In those cases, each root or each minimum (if there is
no root) should be investigated separately [274]. This clearly reduces the efficiency of the algorithm
significantly.

7.4 Our algorithm

7.4.1 Master equation for apparent horizon

Our spectral-method based algorithm uses a similar ansatz (7.11) as Nakamura et al. [330]. The main
difference is that we do not need to determine a00 separately. Hence, this leads to a more robust and
efficient apparent horizon finder based solely on spectral method1.

To begin, we first introduce a flat metric fij on the hypersurface Σ. The components of the flat
metric with respect to the spherical coordinates (r, θ, ϕ), and the associated natural basis ( ∂

∂r , ∂
∂θ , ∂

∂ϕ),

are fij = diag(1, r2, r2 sin θ). Let Di be the covariant derivative associated with fij . The expansion
function Θ (equation (7.9)) can now be written as

Θ =
(
γij − sisj

) [
|DF |−1

(
DiDjF − ∆m

ijDmF
)
− Kij

]
, (7.16)

where the tensor field ∆m
ij is defined by

∆m
ij :=

1

2
γmn (Diγjn + Djγin −Dnγij) . (7.17)

We have also used the following relation between the two covariant derivatives Di and Di:

DiVj = DiVj − ∆m
ijVm, (7.18)

where V j is an arbitrary 3-vector on Σt.
Motivated by the recently proposed fully constrained-evolution scheme for numerical relativity

[73], we define a conformal factor Ψ by

Ψ :=

(
detγij

detfij

)1/12

, (7.19)

and also a tensor field hij by

γij = Ψ−4
(
f ij + hij

)
. (7.20)

1See [231] for Gundlach’s “fast flow” algorithm which combines the spectral algorithm of Nakamura et al.
and the so-called curvature flow method (see also [463] for discussion).
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We also expand all tensor fields onto the following spherical basis:

er̂ :=
∂

∂r
, eθ̂ :=

1

r

∂

∂θ
, eϕ̂ :=

1

r sin θ

∂

∂ϕ
. (7.21)

This basis is orthonormal with respect to the flat metric: fîĵ = diag(1, 1, 1). Here and afterwards we
denote the tensor indices associated with this basis with a hat. The expansion function now becomes

Θ = Ψ−4|DF |−1f îĵDîDĵF +
(
Ψ−4hîĵ − sîsĵ

)
|DF |−1DîDĵF

−
(
γ îĵ − sîsĵ

) (
|DF |−1∆m̂

îĵ
Dm̂F + Kîĵ

)
. (7.22)

Now let us consider the first term on the RHS of this equation:

Ψ−4|DF |−1f îĵDîDĵF = Ψ−4|DF |−1
(
Dr̂Dr̂F + Dθ̂Dθ̂F + Dϕ̂Dϕ̂F

)

=
−1

Ψ4|DF |r2

(
h,θθ + cot θh,θ + sin−2 θh,ϕϕ − 2r

)

=
−1

Ψ4|DF |h2
(∆θϕh − 2h) , (7.23)

where we have set r = h(θ, ϕ) for the apparent horizon in the last equality. In equation (7.23), we

have used the following relation for the components of the covariant derivative Dĵ of a 3-vector V î in
the orthonormal basis {eî}:

DĵVî = e k
ĵ

∂

∂xk
Vî − Γ̂k̂

îĵ
Vk̂, (7.24)

where e k
ĵ

:= diag[1, 1/r, 1/(r sin θ)]. The Γ̂k̂
îĵ

are the connection coefficients of Dk̂ associated with

{eî}. The non-vanishing components are

Γ̂r̂
θ̂θ̂

= −Γ̂θ̂
r̂θ̂

= −1

r
, Γ̂r̂

ϕ̂ϕ̂ = −Γ̂ϕ̂
r̂ϕ̂ = −1

r
, Γ̂θ̂

ϕ̂ϕ̂ = −Γ̂ϕ̂

θ̂ϕ̂
=

−1

r tan θ
. (7.25)

Equations (7.22) and (7.23) suggest that, instead of the ansatz (7.11) as taken by Nakamura et
al., it is more appropriate to rewrite the apparent horizon equation Θ = 0 as

∆θϕh − 2h = λΘ + ∆θϕh − 2h, (7.26)

where the scalar function λ is chosen to be λ = Ψ4|DF |h2 such that the combination ∆θϕh − 2h
cancels on the RHS of this equation. Hence, the master equation that we solve in our algorithm is

∆θϕh − 2h = Ψ4|DF |h2
[(

Ψ−4hîĵ − sîsĵ
)
|DF |−1DîDĵF

−
(
γ îĵ − sîsĵ

)(
|DF |−1∆m̂

îĵ
Dm̂F + Kîĵ

)]
. (7.27)

The expansion coefficients are now determined by solving the following equation iteratively:

aℓm =
−1

ℓ (ℓ + 1) + 2

∫

S
Y m∗

ℓ (λΘ + ∆θϕh − 2h) dΩ. (7.28)
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This equation applies for all ℓ ≥ 0, and hence a00 is not treated specially. In Ref. [413], Shibata
developed an apparent horizon finder based essentially on the same form of equation (7.26). However,
he solved the equation using finite-differencing method without pointing out the key advantage that, if
solved by spectral method, the coefficient a00 (as determined by our equation (7.28) and his equation
(1.3) in [413]) does not needed to be solved by a root-finding procedure. In this work, we solve the
algorithm for the first time with spectral method. The difference between equations (7.28) and (7.14)
leads to a dramatic improvement in the efficiency and robustness of spectral-method based algorithms
for finding apparent horizons.

7.4.2 Numerical procedure

For given 3-metric γij and extrinsic curvature Kij on a hypersurface Σ, equation (7.27) represents
a nonlinear elliptic equation for the function h. We solve this equation iteratively by considering
the RHS of the equation as a source term for the linear operator ∆θϕ − 2 acting on h. We use a
multidomain spectral method to solve the elliptic equation [69, 72]. The code is constructed upon the
C++ library LORENE [216], and is publicly available.

The numerical iteration procedure is briefly described here. Assume that the data (γîĵ , Kîĵ) are

given on Σ. The conformal factor Ψ and the tensor field hîĵ are then calculated by equations (7.19)
and (7.20) respectively. Assume that an initial guess for the function h(θ, ϕ) is chosen (equivalently
for the spectral coefficients aℓm). The iteration processes as follows:

1. At the n-th iteration step, the function h(n) is determined by the coefficients a
(n)
ℓm (with the

superscript (n) labels the iteration steps). The level-set function F and the unit normal vector
si are then obtained from h(n) (see section 7.2).

2. The spectral coefficients at the next iteration step are calculated by equation (7.28):

a
(n+1)
ℓm =

−1

ℓ(ℓ + 1) + 2

∫

S
Y m∗

ℓ S(n)dΩ, (7.29)

where S(n) represents the RHS of equation (7.27) evaluated from a
(n)
ℓm . The new function h(n+1)

is then obtained from a
(n+1)
ℓm by equation (7.10).

3. The difference between h(n+1) and h(n) is calculated. The iteration procedure continues until
the maximum value of the difference throughout the whole angular grid (θi, ϕj) is smaller than
some prescribed value ǫh.

7.5 Tests

7.5.1 Kerr-Schild data

As a first test of the apparent horizon finder, we use a single black hole in Kerr-Schild coordinates
(see, e.g., [320]) to study its convergence properties and robustness. Let M and a denote respectively
the mass and spin parameter of the black hole. In the standard spherical coordinates (r, θ, ϕ), the
polar and equatorial coordinate radii of the apparent horizon are given by

rpo = r, req =
√

r2 + a2, (7.30)
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Table 7.1: Convergence test for a Kerr-Schild black hole with M = 1 and a = 0.9. Listed are
the number of radial collocation points in each domain Nr, the fractional errors in the polar
(equatorial) coordinate radius ∆rpo/rpo (∆req/req) and area ∆A/A, the maximum remaining
error of the expansion function ∆Θmax on the horizon, and the run times. We use Nθ =
(Nr + 1)/2 points in the polar direction and Nϕ = 1 in the azimuthal direction. We set the
iteration parameter ǫh = 10−10.

Nr ∆rpo/rpo ∆req/req ∆A/A ∆Θmax Time (s)
13 2.360 × 10−5 8.003 × 10−6 1.276 × 10−5 4.240 × 10−3 0.507
17 1.693 × 10−6 9.705 × 10−8 1.605 × 10−6 5.333 × 10−4 0.747
21 1.580 × 10−7 2.145 × 10−8 1.788 × 10−7 6.574 × 10−5 1.129
25 1.692 × 10−8 4.235 × 10−9 2.045 × 10−8 8.033 × 10−6 1.615
33 1.067 × 10−10 1.707 × 10−10 4.733 × 10−10 1.559 × 10−7 3.059
37 1.649 × 10−10 1.325 × 10−10 2.863 × 10−10 2.383 × 10−8 4.286
41 1.590 × 10−10 1.053 × 10−10 2.154 × 10−10 3.790 × 10−9 5.722

where r = M +
√

M2 − a2. The area is given by

A = 4π
(
r2 + a2

)
. (7.31)

We first test the convergence property of the code with respect to increasing number of collocation
points from runs with a black hole of M = 1 and a = 0.9. The polar radius of the apparent horizon
is rpo ≈ 1.436 and the equatorial radius is req ≈ 1.695. The analytic data (γîĵ , Kîĵ) are set on the
numerical grid points of the computational domain ranging from r = 1 to r = 5, which is covered by
three spectral domains. The boundary between the first and the second domain is at r = r12 = 1.5,
whereas that between the second and the third domain is at r = r23 = 2.5. In each domain, we use
(Nr, Nθ, Nϕ) collocation points. We also enforce a symmetry with respect to the equatorial plane.
The initial guess for h is a sphere at r = 3.

Table 7.1 shows the results for increasing Nr, with Nθ = (Nr + 1)/2 and Nϕ = 1. We choose
the iteration parameter ǫh = 10−10 in this test (see section 7.4.2). In the table, for each Nr, we list
the fractional errors in the polar (equatorial) coordinate radius ∆rpo/rpo (∆req/req) and area ∆A/A,
the maximum remaining error in the expansion function ∆Θmax on the horizon’s surface, and the run
times1. The error in the area is defined by ∆A/A := |(Aana − Anum)/Aana|, where the analytic result
Aana is given by equation (7.31) and the numerical result is calculated by the integral

Anum =

∫

S

√
q̂h2 sin θdθdϕ, (7.32)

with q̂ being the determinant of the 2-metric on the apparent-horizon’s surface (expanded onto the

1The run times correspond to the CPU time the code took to locate the apparent horizon on a 2 GHz Intel
Core Duo processor. The best-fitted curve suggests that the scaling of the run time is close to N2

θ , which comes
from the computation of discrete Legendre transforms.
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Figure 7.1: Convergence towards zero of the fractional error in the area ∆A/A with the number
of collocation points for three different choices of the iteration parameter ǫh.

basis {eî}). Explicitly, in terms of a general 3-metric γîĵ , Anum is given by

Anum =

∫ 2π

0

∫ π

0

[(
γr̂r̂h

2
,θ + 2γr̂θ̂hh,θ + γθ̂θ̂h

2
) (

γr̂r̂h
2

,ϕ + 2γr̂ϕ̂hh,ϕ sin θ + γϕ̂ϕ̂h2 sin2 θ
)

−
(
γr̂r̂h,θh,ϕ + γr̂θ̂hh,ϕ + γr̂ϕ̂hh,θ sin θ + γθ̂ϕ̂h2 sin θ

)2
]1/2

dθdϕ. (7.33)

In figure 7.1 we plot ∆A/A against Nr to show explicitly the convergence behavior of the finder for
three different choices of ǫh. It can be seen that the error ∆A/A converges exponentially towards zero
with the number of points, as expected for spectral methods, until the accuracy is limited by the choice
of ǫh. Furthermore, we also see that the number of iterations to a given error level ǫh is essentially
independent of the value of ℓmax used in equation (7.10). This agrees with the conclusions obtained
from the original Nakamura et al.’s algorithm (or its modifications) as investigated by Kemball and
Bishop [274].

Next we test the robustness of our finder by performing runs with different initial guesses for h.
We use the same black hole as above (M = 1, a = 0.9), but with a larger computational domain
ranging from r = 1 to r = 10. The boundaries between the different spectral domains are r12 = 2.5
and r23 = 5.5. In general, we set up an initial guess for h to be the surface of an ellipsoid given by

x2

a2
+

y2

b2
+

z2

c2
= 1, (7.34)

where (x, y, z) are the Cartesian coordinates relating to the spherical coordinates (r, θ, ϕ) in the stan-
dard way. The constants (a, b, c) are freely chosen. The initial guess used for the results listed in
table 7.1 corresponds to a = b = c = 3. Table 7.2 contains the results for five different initial guesses.
Case A corresponds to a sphere with a coordinate radius which is about five times away from the
horizon’s surface. On the other hand, the initial surface for case B is a sphere located entirely inside
the apparent horizon. The initial guess for case C is an ellipsoid enclosing the horizon. Finally, cases
D and E represent initial surfaces which cross the horizon. The results show that our finder can locate
the apparent horizon to the same accuracy with all the five (quite generic) choices of (a, b, c).
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Table 7.2: Robustness test for the same black hole used in table 7.1. The polar coordinate radius
of the apparent horizon is rpo ≈ 1.436 and the equatorial coordinate radius is req ≈ 1.695. The
initial guess for the 2-surface h is given by the surface of an ellipsoid with axes (a, b, c) defined
in equation (7.34). We use collocation points Nr = 25 and Nθ = 13 for all the five cases
considered, but Nϕ = 1 (4) for cases A and B (C-E).

Case (a, b, c) ∆A/A (10−6)
A (8, 8, 8) 4.04871
B (1.2, 1.2, 1.2) 4.04905
C (4, 6, 8) 4.04875
D (2, 3, 1.2) 4.04910
E (1.2, 1.5, 2) 4.04909

One of the main requirements of an apparent horizon finder is speed. This is in particular an
important issue if the finder has to run frequently during a simulation. In order to compare the speed
of our finder with some other commonly used methods, we take the data given by Schnetter [406].

In table 5 of [406] Schnetter compared the run times to locate the apparent horizon of a Kerr-
Schild black hole with M = 1 and a = 0.6 for his elliptic method and two other methods, namely the
fast-flow [231] and minimization [26] algorithms. The fastest case (0.5 s on a 1.2 GHz processor) was
obtained by his elliptic method with the initial guess being a sphere at r = 2. The error in the area
is ∆A/A = 9 × 10−3 (according to table 4 of [406]). For comparison, the fast-flow and minimization
algorithms took more than 10 s and 90 s respectively in the test [406].

We have performed tests with the same black hole and initial guess, and found that our finder
took 0.129 s (on our 2 GHz processor) to locate the horizon to the accuracy ∆A/A = 2 × 10−5

using the resolution (Nr, Nθ, Nϕ) = (7, 5, 1) with ǫh = 10−8. We have also used Thornburg’s finder
AHFinderDirect [462] (which is implemented within the CACTUS computational toolkit [15]) to
perform the same test using Cartesian grid resolutions (Nx, Ny, Nz) = (31, 31, 19) with ∆x = ∆y =
∆z = 0.2 in bitant symmetry. We found that his finder took 1.004 s (on our 2 GHz processor) to
locate the apparent horizon to the accuracy ∆A/A = 3 × 10−4.

We note that the above test does not represent a direct comparison between the different algorithms
because of the different grid structures (Cartesian vs spherical coordinates), code implementations,
memory usage, and computer systems. Nevertheless, we can conclude that for this particular test, to
obtain about the same accuracy level, our spectral-method based finder is as efficient as the finders
developed by Schnetter [406] and Thornburg [462].

7.5.2 Brill-Lindquist data

In this part, we test our finder using the Brill-Lindquist data [91]. This is a classic test involving
multiple black holes used in numerical relativity. The 3-metric is conformally flat, γij = φ4fij , and is
time symmetric (i.e., Kij = 0). For two black holes, φ is given by

φ = 1 +
M1

2|~r − ~r1|
+

M2

2|~r − ~r2|
, (7.35)
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Table 7.3: Schwarzschild black hole offset from the coordinate origin. The hole is located at the
Cartesian coordinates (d/

√
2, d/

√
2, 0). Listed are the offset d, the fractional error in the area

∆A/A, and the maximum remaining error of the expansion function on the horizon ∆Θmax.

d ∆A/A ∆Θmax

0.1 9 × 10−6 3 × 10−3

0.2 3 × 10−6 5 × 10−3

0.3 2 × 10−6 2 × 10−2

0.4 1 × 10−4 5 × 10−2

where Mi (i = 1, 2) is the mass of the ith black hole and the ~ri are the coordinate positions of the
holes.

We first begin with a single black hole (M2 = 0), in which case the problem is equivalent to
a Schwarzschild black hole in isotropic coordinates offset from the coordinate origin. The apparent
horizon is a coordinate sphere of radius M1/2 with respect to the center of the hole. The area of the
horizon is A = 16πM2

1 . We set M1 = 1 and the coordinate position of the hole at ~r1 = (x1, y1, z1) =
(d/

√
2, d/

√
2, 0). We have varied d in order to verify that our finder also works when the center of the

spherical harmonics is offset from the center of the horizon. Table 7.3 lists the results for four different
values of d. The initial guesses are always a = b = c = 1 in equation (7.34). We use three spectral
domains to cover the spatial slice up to r = 1.5, with collocation points (Nr, Nθ, Nϕ) = (33, 17, 16)
in each domain. The boundaries between the domains are r12 = 0.5 and r23 = 0.8. Similar to
[231, 274], we see that the accuracy drops quite significantly for very distorted surfaces with respect
to the coordinate origin. In particular, the error in the area ∆A/A increases by almost two orders of
magnitude when d increases from 0.3 to 0.4; this error could be reduced using higher grid resolution1.
Nevertheless, it is worth to point out that the original Nakamura et al. spectral algorithm [330] would
not produce any results for d = 0.3 and 0.4 because equation (7.15) has no roots [274]. We also see
that the results are essentially independent of the direction of the offset.

Next we turn to a Brill-Lindquist data for two black holes of equal mass. In particular, we take
M1 = M2 = 1 in the test. The data forms a one-parameter family parameterized by the coordinate
separation d between the holes. When they are far apart, each hole has an individual apparent horizon.
For small separation, there is a single common apparent horizon enclosing both holes. Determining the
critical separation at which the common horizon appears in this two black hole spacetime is a standard
test problem for apparent horizon finders. The critical separation obtained originally by Brill and
Lindquist is dc = 1.56 [91], while more recent results suggest that dc ≈ 1.53 (e.g., [462, 274, 9, 430]).
In particular, we note that Thornburg [462] and Shoemaker et al. [430] report very close results
at dc = 1.532 and dc = 1.535 respectively. Nevertheless, Thornburg reports A = 196.407 for the
area of the critical apparent horizon, which is quite different from the value A = 184.16 obtained by
Shoemaker el al..

Here we test our finder by trying to find a common horizon at the critical separations as reported
by Thornburg [462] and Shoemaker et al. [430]. The black holes are on the z-axis, with their centers

1The error ∆A/A drops down to 2 × 10−5 for the case d = 0.4 using collocation points (Nr, Nθ, Nϕ) =
(33, 25, 24).
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Figure 7.2: Position of the common apparent horizon on the x-z plane for Brill-Lindquist data
with d = 1.532. The black holes are centered at z = ±d/2 along the z-axis. The results
obtained by four different values of Nθ are shown (with Nr = 41 and Nϕ = 1 fixed).

at z = ±d/2. In the test, we use four spectral domains to cover the spatial slice up to r = 2. The
boundaries between the domains are r12 = 0.5, r23 = 1, and r34 = 1.5. The initial guesses are
a = b = c = 2 in equation (7.34). We use (Nr, Nθ, Nϕ) = (41, 31, 1) in each domain and the iteration
parameter ǫh = 10−6. Our finder reports a common horizon at d = 1.532 (Thornburg’s critical value)
with the area of that horizon determined to be A = 196.417, which agrees to Thornburg’s value to
0.005%. The maximum remaining error of the expansion function on the horizon is ∆Θmax = 7×10−4.
The finder took 59.2 s to locate the horizon. We note that increasing ǫh to 10−4 would reduce the
run time to 23.3 s, without changing the three significant figures of A. On the other hand, for the
same grid setting and parameters, our finder does not find a common horizon at the critical value
d = 1.535 reported by Shoemaker et al.. In general, for d > 1.532, we find two disjoint apparent
horizons surrounding ~r1 and ~r2 by setting the coordinate origin for the apparent horizon finder (see
section 7.2) separately at around the points ~r1 and ~r2. In figure 7.2 we show the position of the
common apparent horizon on the x-z plane for the case d = 1.532. The results obtained by four
different values of Nθ (with Nr = 41 and Nϕ = 1 fixed) are plotted together to show the convergence
of the horizon.

7.6 Conclusions

In this paper we have presented a new apparent horizon finder which is based on spectral methods.
Our proposed algorithm does not need to treat the ℓ = 0 coefficient of the spherical harmonics
decomposition separately as required in previous spectral apparent horizon finders [330, 274]. Hence,
this leads to a faster and more robust finder based solely on spectral methods. We have made a
performance comparisons with other apparent horizon finders using the Kerr-Schild data. Our finder
is much faster (by orders of magnitude) than other commonly-used methods (e.g., the fast-flow and
minimization algorithms). It is also as efficient as the currently fastest methods developed recently by
Schnetter [406] and Thornburg [462]. We have also shown that our finder is capable of locating the
horizon of a shifted Schwarzschild black hole with a large offset from the coordinate origin. This would
not be possible by using the original Nakamura et al. spectral algorithm [330] because equation (7.15)
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has no roots if the offset is too large. We have also tested our finder for a two black-hole spacetime
using the Brill-Lindquist data. In particular, we have verified previous results on the critical separation
at which a common horizon appears in this spacetime.

Our apparent horizon finder is implemented within the C++ library LORENE for numerical
relativity [216], and is freely available. The finder should be easily adopted in spectral-method based
evolution codes [73, 403, 466, 86], particularly to those using shell-like domains in spherical coordinates.
Comparing to other freely available apparent horizon finders which are based on finite-differencing
method (AHFinder [9] and AHFinderDirect [462]), our finder also represents another option
available to finite-differencing evolution codes, with some interpolation to be implemented between
the finite-difference and spectral grids as, for example, in [151].
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Après avoir détaillé les travaux sur la formulation des équations d’Einstein et les techniques
numériques pour les résoudre, cette dernière partie donne les résultats d’intérêt astrophysique
obtenus sur les modèles numériques d’astres compacts. Les observations de ces astres compacts,
tels que les trous noirs ou les étoiles à neutrons, sont venues avec l’exploration de nouvelles
gammes de fréquences à partir des années 1960 : en rayons X (binaires) et ondes radio (pulsars).
Cependant, les concepts et les modèles qui leurs sont attachés aujourd’hui ont été développés
avant : peu après la publication de la théorie de la relativité générale (1915) pour les trous noirs1

et la découverte du neutron (1932) pour les étoiles à neutrons. C’est le champ gravitationnel
extrêmement intense qui caractérise ces deux types d’objets, ce champ est quantifié par la
compacité de l’astre, définie comme le rapport

Ξ =
2GM

Rc2
,

où M et R sont, respectivement, la masse et le rayon de l’astre. Par définition pour un trou
noir Ξ = 1, alors que pour une étoile à neutrons il a été possible de mesurer Ξ ∼ 0.3 [136],
ce qui est conforme aux prédictions théoriques. Ces valeurs de Ξ montrent la nécessité de faire
appel à la théorie de la relativité générale pour décrire correctement ces astres et qu’une ap-
proche purement newtonienne reste très incomplète, même au niveau qualitatif. Il en va de
même si l’on cherche à modéliser la formation des astres compacts : les codes numériques simu-
lant les effondrement gravitationnels des supernovae donnant naissance aux étoiles à neutrons,
comme les hypernovae supposées former un trou noir en leur centre, risquent d’être incom-
plets s’ils ne résolvent pas, au moins partiellement, les équations d’Einstein. Ainsi, le travail
présenté au Chap. 8 décrit un code de simulation d’effondrement gravitationnel des cœurs
d’étoiles dégénérés, donnant naissance à une étoile à neutrons. Ce code, pour l’instant, n’a
pas pour objectif de simuler de manière auto-consistante le phénomène de supernova, mais
de prendre un modèle effectif pour l’équation d’état, qui permet d’obtenir une explosion. Le
mécanisme exact conduisant à cette explosion est aujourd’hui encore un problème ouvert. Notre
but est plutôt d’estimer, de la manière la plus précise possible, quel est le signal d’ondes gra-
vitationnelles émis lors de l’explosion d’une supernova. Ainsi le code CoCoNuT [150] résout
les équations d’hydrodynamique relativiste couplées au champ gravitationnel obtenu par l’ap-
proximation conformément plate (voir plus haut, le chapitre sur le formalisme contraint) des
équations d’Einstein. L’originalité de ce code réside dans l’utilisation combiné de deux tech-
niques numériques très différentes : les méthodes de capture de choc (ou « de Godunov »)
pour la résolution des équations d’Euler relativistes et les méthodes spectrales pour le champ
gravitationnel. Cette combinaison des deux types de méthodes numériques (appelée Mariage
des maillages) est justifiée par le fait qu’elles possèdent des qualités complémentaires. Les
méthodes spectrales sont extrêmement précises et peu coûteuses en ressources informatiques,
mais ne peuvent représenter correctement des fonctions discontinues à cause du phénomène de
Gibbs. Elles sont donc bien adaptées pour représenter le champ gravitationnel (qui est toujours
continu), mais sont sérieusement handicapées pour la modélisation des quantités hydrodyna-
miques lors d’événements tels que les supernovæ où il se forme des chocs. D’un autre côté,
les méthodes dites de capture de chocs sont capables de résoudre ce genre de discontinuités

1un premier concept de « trou noir » a été introduit par Michell [317] au XVIIIe siècle
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mais requièrent beaucoup de mémoire et de temps de calcul, ce qui les rend peu attrayantes
pour traiter les équations du champs gravitationnel dans les problèmes complexes à deux ou
trois dimensions (sans hypothèse de symétrie). Une des difficultés techniques a été le passage
de l’information sur les champs physique d’une méthode numérique à l’autre ; il a fallu en effet
développer des techniques d’interpolation et de filtrage performantes.

Les résultats de ce code ont été exposés dans un article commun Dimmelmeier et al.
2005 [151], où nous avons démontré la capacité du code à suivre parfaitement l’effondrement
et la formation de l’étoiles à neutrons. Les ondes gravitationnelles sont extraites par la formule
du quadrupôle, à partir de l’évolution de la distribution du fluide. Des tests ont été faits en
simulant cette fois-ci l’évolution d’une étoile à neutrons en rotation, qui a été perturbée et dont
on a suivi les oscillations. Les modes fondamentaux, ainsi que les premiers harmoniques ont été
retrouvés avec une très bonne précision. CoCoNuT a été ensuite utilisé pour affiner les esti-
mations d’ondes gravitationnelles émises en prenant en compte un équation d’état plus réaliste
et un processus de déleptonisation effectif [352]. Cela a permis de ne garder qu’un seul type de
formes d’ondes, contre trois auparavant, en éliminant la possibilité de rebonds multiples. Avec
les améliorations apportées récemment sur la stabilité des solutions des équations elliptiques
(discutées au chapitre 3) et le trouveur d’horizon apparent (Chap. 7), le code est maintenant
capable de suivre aussi les effondrements d’étoiles plus massives menant à un trou noir. De
multiples autres applications de ce code ont été faites depuis, si bien qu’il a fallu organiser une
école au mois de novembre 2008, afin de former des thésitifs et jeunes post-doctorants venus
de plusieurs pays d’Europe. Cela a aussi montré que, malgré le départ de la recherche de son
principal développeur M. Dimmelmeier, le relais a été pris par de jeunes chercheurs, assurant
ainsi la pérennité du projet.

Les études qui sont présentées ensuite portent essentiellement sur la structure interne des
astres compacts, c’est-à-dire les propriétés de l’intérieur de ces objets jusqu’au voisinage de la
surface (ou horizon pour les trous noirs), par opposition aux questions d’accrétion–éjection ou
des mécanismes d’émission des pulsars. Les questions et problèmes physiques abordés peuvent
être néanmoins très riches. Dans le cas des étoiles à neutrons, la question de l’équation d’état est
centrale : quelle sont la composition et les propriétés de la matière froide aux densités voisines
de la densité nucléaire ? Il faut ajouter à cela les propriétés du champ magnétique (Fig. III.1), la
superfluidité et supraconductivité, l’écorce (élasticité), l’apparition de condensats de particules
exotiques au centre, . . .Tous ces points n’ont pas été étudiés dans les travaux présentés ci-
après, il convient donc de garder en mémoire que les modèles sont encore trop incomplets pour
être tout-à-fait réalistes et qu’il reste beaucoup de travail à effectuer pour incorporer tous les
« ingrédients physiques » dans un modèle numérique cohérent. Afin d’illustrer ce point, on
peut citer la quasi-impossibilité (aujourd’hui) d’effectuer des calculs exacts ou numériques en
chromodynamique quantique (QCD) et d’obtenir une équation d’état fiable pour la matière
froide au-delà de la densité nucléaire. Ces conditions de température et de pression n’étant
pas non plus accessibles par les expériences de physique des particules, il reste la possibilité de
contraindre cette équation d’état par les observations astrophysiques : beaucoup d’informations
sont données par les vitesses de rotation (ou pulsation), les masses et surtout les rayons, bien
que ces derniers soient très difficiles à obtenir.
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Fig. III.1 – Lignes de champ magnétique dans le plan (x, z), pour une étoile à neutrons en
rotation. La surface de l’étoile est donnée par le trait épais. D’après les modèles numériques
décrits dans [64, 343].

Un travail a été réalisé avec M. Lap-Ming Lin, afin de pouvoir obtenir des conditions initiales
pour le code d’effondrement CoCoNuT, mais aussi pour étudier les propriétés de la jauge de
Dirac et du formalisme contraint en présence de matière. Dans cette optique, nous avons mis
au point un programme de calcul des caractéristiques d’étoiles en rotation en relativité générale
dans la jauge de Dirac et nous l’avons testé en détails. Les résultats ont été publiés dans l’article
Lin & Novak 2006 [293] (Chap. 9), où nous explicitons aussi les techniques numériques. Cette
approche est particulièrement bien adaptée au calcul de données initiales dans l’approximation
de la 3-métrique conformément plate, puisqu’il suffit alors de mettre à zéro le tenseur hij

de déviation de la 3-métrique conforme par rapport à la métrique plate. Nous avons ainsi à
notre disposition les données initiales nécessaires à CoCoNuT, de la manière la plus correcte
possible. Toujours dans le domaine des modèles d’étoiles en rotation, nous avons développé,
avec MM. Reinhardt Prix et Gregory Comer, des modèles superfluides. En effet, assez vite
après leur formation dans la supernova, les étoiles à neutrons se refroidissent bien en dessous de
leur température de Fermi et les neutrons qui la constituent deviennent superfluides. Or, dans
les modèles numériques utilisés habituellement, cette propriété n’était pas prise en compte. Dans
l’article Prix et al. 2005 [379] (Chap. 10 ci-après), nous avons développé un cadre théorique,
ainsi qu’un code numérique pour le calcul de modèles d’étoiles à neutrons en rotation, prenant
en compte la superfluidité dans la théorie de la relativité générale. En particulier, les modèles
font appel au formalisme à deux fluides développé par Brandon Carter, pour lequel un fluide
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représente les neutrons superfluides et l’autre l’ensemble des particules chargées qui sont liées
ensemble par la viscosité et le champ magnétique. L’équation d’état, bien qu’analytique, prend
en compte l’interaction entre ces deux fluides, notamment à travers un terme d’entrâınement,
qui dépend de la vitesse relative des deux fluides. Avec ce code, nous avons trouvé l’existence
de configurations dans lesquelles l’un des fluides a bien une forme aplatie le long de l’axe de
rotation (ce qui est la situation intuitive) et l’autre a, en revanche, une forme allongée le long
de cet axe. Un résultat intéressant du point de vue observationnel est que la limite de rotation
maximale d’étoiles à deux fluides est donnée par la rotation maximale du fluide le plus externe,
même si celle-ci est inférieure à celle du fluide qui n’atteint pas la surface. D’une manière
générale, les propriétés superfluides des étoiles à neutrons sont invoquées pour expliquer les
phénomènes observés de « glitch » des pulsars, où le signal subit une brusque accélération.

En ce qui concerne le champ magnétique dans les étoiles à neutrons et suivant l’idée du
professeur Pfister de l’Université de Tübingen, une étude sur le rapport gyromagnétique (masse
× moment magnétique / charge × moment cinétique) des objets autogravitants chargés en
relativité générale a été faite avec M. Emmanuel Marcq. Nous avons ainsi numériquement
montré que, dans le cadre de la relativité générale et pour des objets isolants chargés, ce
rapport pouvait varier entre 1 (qui est la valeur dans le cadre de la théorie Newtonienne de
la gravité) et 1.8 [343]. Il existe donc un “gap” entre cette valeur maximale et celle associée
aux trous noirs de Kerr chargés, qui est 2. Cette valeur 2 est par ailleurs associée au rapport
gyromagnétique des particules élémentaires en mécanique quantique. Cette étude, exposée au
chapitre 11 a également permis d’implémenter dans la bibliothèque lorene quelques outils
pour la résolution des équations de Maxwell stationnaires, telles qu’elles sont décrites dans les
travaux plus anciens [67, 64].

Fig. III.2 – Image simulée d’un disque d’accrétion autour d’un trou noir c© Jean-Alain Marck.
La courbure des rayons lumineux fait qu’il est possible de voir la partie du disque qui est
« derrière » le trou noir comme étant au dessus. Des images plus récentes et plus réalistes ont
été réalisées par A. Riazuelo [386].

Enfin, un autre aspect a été abordé avec un travail sur l’effondrement d’une étoile à neutrons,
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de masse inférieure à la masse critique, en trou noir [338] (voir Chap. 12). Cela peut se produire
si l’étoile à neutrons, récemment produite lors de la supernova, reçoit de l’énergie cinétique des
couches externes du progéniteur, qui lui retombent dessus. Cette énergie cinétique peut alors
aider l’étoile à neutrons à passer la « barrière de potentiel » qui la sépare d’un trou noir et for-
mer des trous noirs de faibles masses. S’il est aujourd’hui admis que les trous noirs provenant
de l’évolution stellaire ont une masse supérieure à la masse maximale des étoiles à neutrons
(autour de 2 masses solaires, suivant les caractéristiques mal connues de la matière nucléaire),
les résultats obtenus montrent qu’ils peuvent aussi avoir une masse inférieure, suivant les condi-
tions exactes de leur naissance au cours du phénomène de supernova. En plus, ces simulations
numériques ont permis de montrer que ces objets suivaient également une loi d’échelle pour la
masse du trou noir formé en fonction de l’énergie cinétique impulsée à l’étoile à neutrons. Ces
phénomènes entrent ainsi dans une classe d’universalité étudiée par Matt Choptuik dans les
années 90 appelée effondrements critiques [117]. L’aspect d’effondrement critique de ce travail
a été ensuite amélioré, avec un code nettement plus performant, et les valeurs erronées des
exposants critiques ont été récemment corrigées par Noble et Choptuik (2008) [335].

En ce qui concerne les trous noirs la théorie peut sembler moins incertaine. Il reste que
ces objets se comportent souvent de manière contraire à l’intuition (Fig. III.2) et que leur
modélisation numérique n’est pas aisée. En effet, dans le cadre de la relativité générale, un trou
noir implique l’existence d’une singularité c’est-à-dire que tous les champs physiques divergent
en ce(s) point(s). Il existe alors essentiellement deux techniques numériques pour représenter
le trou noir. La première est d’appliquer une prescription analytique (généralement en 1/r) à
la partie singulière des champ au voisinage du centre du trou noir, puis d’évoluer ces champs
dans un formalisme et une jauge bien adaptés ; c’est la méthode des « punctures » [87, 474]. La
seconde consiste à ne pas résoudre les équations au voisinage de la singularité, et à remplacer ce
domaine par des conditions au bord, quand c’est nécessaire ; c’est la méthode d’excision [14, 264].
C’est cette dernière méthode qui est utilisée dans notre groupe, à l’Observatoire de Meudon.
D’une part cette approche est plus claire du point de vue mathématique [238] et d’autre part,
elle permet aussi des diagnostiques très précis sur les propriétés physiques du trou noir. En effet,
cette technique est basée sur les concepts locaux d’horizon apparent et d’horizon dynamique [39,
222] (voir aussi chapitre 7). Ainsi, le travail avec M. Nicolas Vasset, qui a fini sa thèse sous
ma responsabilité, sur les modèles numériques de trous noirs a donné lieu à un l’article Vasset
et al. (2009) [475] (Chap. 13). Il montre en particulier que, dans le formalisme contraint et la
jauge de Dirac, il n’est pas non plus nécessaire d’imposer des conditions au bord du trou noir
sur la métrique conforme (γ̃ij, voir section 1.2.2) dans le cas stationnaire, contrairement à ce
qui avait été annoncé dans la littérature par un groupe américain [132]. C’est aussi le premier
résultat numérique capable de retrouver la métrique d’un trou noir en rotation (Kerr), en ne
partant que de conditions au bord données sur l’horizon. De nombreux tests ont été donnés
dans cet article pour valider le fait que l’espace-temps obtenu numériquement était bien celui
d’un trou noir de Kerr.
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Chapitre 8

Combining spectral and
shock-capturing methods : A new
numerical approach for 3D relativistic
core-collapse simulations

Version publiée : H. Dimmelmeier, J. Novak, J. A. Font, J. M. Ibáñez et E. Müller, Physical
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8.1 Introduction

8.1.1 Relativistic core collapse simulations

Improving our understanding of the formation of neutron stars as a result of the gravitational collapse
of the core of massive stars is a difficult endeavour involving many aspects of extreme and not very
well understood physics of the supernova explosion mechanism [97]. Numerical simulations of core
collapse supernova are driving progress in the field despite the limited knowledge on issues such
as realistic precollapse stellar models (including rotation) or realistic equation of state, as well as
numerical limitations due to Boltzmann neutrino transport, multidimensional hydrodynamics, and
relativistic gravity. Axisymmetric and three-dimensional approaches based on Newtonian gravity are
available since a few decades now (see e.g. [325] and references therein). These approaches, which are
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constantly improving over time, have provided valuable information on important issues such as the
dynamics of the collapse of a stellar core to nuclear density, the formation of a proto-neutron star, and
the propagation of the shock front which ultimately is believed to eject the outer layers of the stellar
progenitor. Currently, however, even the most realistic simulations of both nonrotating and rotating
progenitor models do not succeed in producing explosions (see [97] and references therein).

In addition, the incorporation of full relativistic gravity in the simulations is likely to bring in
well-known difficulties of numerical relativity, where the attempts are traditionally hampered by chal-
lenging mathematical, computational, and algorithmic issues as diverse as the formulation of the field
equations, robustness, efficiency, and long-term stability (particularly if curvature singularities are
either initially present or develop during black hole formation). As high densities and velocities are
involved in combination with strong gravitational fields, gravitational collapse and neutron star forma-
tion constitute a challenging problem for general relativistic hydrodynamic simulations. The pace of
the progress is, no wonder, slow; for instance, in the three-dimensional case, there is still no description
of core collapse in full general relativity today, even for the simplest matter models one can conceive,
where all microphysics is neglected.

In recent years, the interest in performing core collapse simulations has been further motivated
by the necessity of obtaining reliable gravitational waveforms from (rotating) core collapse, one of the
main targets of gravitational radiation for the present and planned interferometer detectors such as
LIGO, GEO600, and VIRGO (see [194] for a review). As a result of the complexities listed above, it is
not surprising that most previous studies aimed at computing the gravitational wave signature of core
collapse supernovae have considered greatly simplified parameterized models [324, 175, 321, 484, 499,
383, 147, 148, 149, 192, 193, 258, 285, 423, 350]. In addition to the burst signal of gravitational waves
emitted during core bounce, multidimensional simulations have also provided the signals produced by
convection [327] (see also [326] for the most realistic simulations available at present), as well as those
from the resulting neutrino emission [98, 327].

From the above references it becomes apparent that our understanding of core collapse and neu-
tron star formation has advanced mainly by studies carried out employing Newtonian dynamics. The
situation is now slowly changing, at least for simplified matter models where microphysics and radia-
tion transport are not yet included, with new formulations of the Einstein field equations and of the
general relativistic hydrodynamics equations. Unfortunately, the 3 + 1 Einstein equations describing
the dynamics of spacetime are a complicated set of coupled, highly nonlinear hyperbolic-elliptic equa-
tions with plenty of terms. Their formulation in a form suitable for accurate and stable numerical
calculations is not unique, and constitutes one of the major fields of current research in numerical rela-
tivity (see [289, 299] and references therein). Not surprisingly, approximations of those equations have
been suggested, such as the conformal flatness condition of Isenberg–Wilson–Mathews [260, 481] (CFC
hereafter), who proposed to approximate the 3-metric of the 3 + 1 decomposition by a conformally
flat metric.

Using this approximation, Dimmelmeier et al. [147, 148, 149] presented the first relativistic simula-
tions of the core collapse of rotating polytropes and neutron star formation in axisymmetry, providing
an in-depth analysis of the dynamics of the process as well as of the gravitational wave emission.
The results showed that relativistic effects may qualitatively change in some cases the dynamics of
the collapse obtained in previous Newtonian simulations [321, 325]. In particular, core collapse with
multiple bounces was found to be strongly suppressed when employing relativistic gravity. In most
cases, compared to Newtonian simulations, the gravitational wave signals are weaker and their spectra
exhibit higher average frequencies, as the newly born proto-neutron stars have stronger compactness
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in the deeper relativistic gravitational potential. Therefore, telling from simulations based on rotating
polytropes, the prospects for detection of gravitational wave signals from supernovae are most likely
not enhanced by taking into account relativistic gravity. The gravitational wave signals computed by
Dimmelmeier et al. [147, 148, 149] are within the sensitivity range of the planned laser interferometer
detectors if the source is located within our Galaxy or in its local neighbourhood. A catalogue of the
core collapse waveforms presented in [149] is available electronically [197]. This catalogue is currently
being employed by gravitational wave data analysis groups to calibrate their search algorithms (see
e.g. [372] for results concerning the VIRGO group).

More recently, Shibata and Sekiguchi [423] have presented simulations of axisymmetric core col-
lapse of rotating polytropes to neutron stars in full general relativity. These authors used a conformal-
traceless reformulation of the 3+1 gravitational field equations commonly referred to in the literature
by the acronym BSSN after the works of [421, 54] (but note that many of the new features of the BSSN
formulation were anticipated as early as 1987 by Nakamura, Oohara, and Kojima [331]). The results
obtained for initial models similar to those of [149] agree to high precision in both the dynamics of
the collapse and the gravitational waveforms. This conclusion, in turn, implies that, at least for core
collapse simulations to neutron stars, CFC is a very precise approximation of general relativity.

We note that in the relativistic core collapse simulations mentioned thus far [149, 423], the grav-
itational radiation is computed using the (Newtonian) quadrupole formalism. To the best of our
knowledge the only exception to this is the work of Siebel et al. [432], where, owing to the use of
the characteristic (light-cone) formulation of the Einstein equations, the gravitational radiation from
axisymmetric core collapse simulations was unambiguously extracted at future null infinity without
any approximation.

8.1.2 Einstein equations and spectral methods

The most common approach to numerically solve the Einstein equations is by means of finite differ-
ences (see [289] and references therein). However, it is well known that spectral methods [210, 102]
are far more accurate than finite differences for smooth solutions (e.g. best for initial data without
discontinuities), being particularly well suited to solve elliptic and parabolic equations. Good results
can be obtained for hyperbolic equations as well, as long as no discontinuities appear in the solution.
The basic principle underlying spectral methods is the representation of a given function f(x) by its
coefficients in a complete basis of orthonormal functions: sines and cosines (Fourier expansion) or a
family of orthogonal polynomials (e.g. Chebyshev polynomials Ti(x) or Legendre polynomials). In
practice, of course, only a finite set of coefficients is used and one approximates f by the truncated
series f(x) ≃ ∑n

i=0 ciTi(x) of such functions. The use of spectral methods results in a very high
accuracy, since the error made by this truncation decreases like e−n for smooth functions (exponential
convergence).

In an astrophysical context spectral methods have allowed to study subtle phenomena such as
the development of physical instabilities leading to gravitational collapse [79]. In the last few years,
spectral methods have been successfully employed by the Meudon group in a number of relativistic
astrophysics scenarios [72], among them the gravitational collapse of a neutron star to a black hole, the
infall phase of a tri-axial stellar core in a core collapse supernova (extracting the gravitational waves
emitted in such process), the construction of equilibrium configurations of rapidly rotating neutron
stars endowed with magnetic fields, or the tidal interaction of a star with a massive black hole. Their
most recent work concerns the computation of the inertial modes of rotating stars [478], of quasi-
equilibrium configurations of co-rotating binary black holes in general relativity [229], as well as the
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evolution of pure gravitational wave spacetimes [73]. To carry out these numerical simulations the
group has developed a fully object-oriented library called Lorene [216] (based on the C++ computer
language) to implement spectral methods in spherical coordinates. Spectral methods are now employed
in numerical relativity by other groups as well [185, 361].

8.1.3 Hydrodynamics equations and HRSC schemes

On the other hand, robust finite difference schemes to solve hyperbolic systems of conservation (and
balance) laws, such as the Euler equations of fluid dynamics, are known for a long time and have
been employed successfully in computational fluid dynamics (see e.g. [469] and references therein). In
particular, the so-called upwind high-resolution shock-capturing schemes (HRSC schemes hereafter)
have shown their advantages over other type of methods even when dealing with relativistic flows with
highly ultrarelativistic fluid speeds (see e.g. [311, 176] and references therein). HRSC schemes are based
on the mathematical information contained in the characteristic speeds and fields (eigenvalues and
eigenvectors) of the Jacobian matrices of the system of partial differential equations. This information
is used in a fundamental way to build up either exact or approximate Riemann solvers to propagate
forward in time the collection of local Riemann problems contained in the initial data, once these data
are discretized on a numerical grid. These schemes have a number of interesting properties: (1) The
convergence to the physical solution (i.e. the unique weak solution satisfying the so-called entropy
condition) is guaranteed by simply writing the scheme in conservation form, (2) the discontinuities in
the solution are sharply and stably resolved, and (3) these methods attain a high order of accuracy in
smooth parts of the solution.

8.1.4 Mariage des Maillages

From the above considerations, it seems a promising strategy, in the case of relativistic problems where
coupled systems of elliptic (for the spacetime) and hyperbolic (for the hydrodynamics) equations must
be solved, to use spectral methods for the former and HRSC schemes for the latter (where discontinuous
solutions may arise). Showing the feasibility of such an approach is, in fact, the main motivation
and aim of this paper. Therefore, we present and assess here the capabilities of a new, fully three-
dimensional code whose distinctive features are that it combines both types of numerical schemes and
implements the field equations and the hydrodynamic equations using spherical coordinates. It should
be emphasized that our Mariage des Maillages approach is hence best suited for formulations of the
Einstein equations which favor the appearance of elliptic equations against hyperbolic equations, i.e.
either approximations such as CFC [260, 481] (the formulation we adopt in the simulations reported in
this paper), higher-order post-Newtonian extensions [114], or exact formulations as recently proposed
by [73, 401]. The hybrid approach put forward here has a successful precedent in the literature; using
such combined methods, first results were obtained in one-dimensional core collapse in the framework
of a tensor-scalar theory of gravitation [342].

We note that one of the main limitations of the previous axisymmetric core collapse simulations
presented in [147, 148, 149] was the CPU time spent when solving the elliptic equations describing
the gravitational field in CFC. The restriction was severe enough to prevent the practical extension
of the investigation to the three-dimensional case. In that sense, spectral methods are again particu-
larly appropriate as they provide accurate results with reasonable sampling, as compared with finite
difference methods.
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The three-dimensional code we present in this paper has been designed with the aim of studying
general relativistic astrophysical scenarios such as rotational core collapse to neutron stars (and,
eventually, to black holes), as well as pulsations and instabilities of the formed compact objects. Core
collapse may involve, obviously, matter fields which are not rotationally symmetric. While during the
infall phase of the collapse the deviations from axisymmetry should be rather small, for rapidly rotating
neutron stars which form as a result of the collapse, or which may be spun up by accretion at later times,
rotational (nonaxisymmetric) bar mode instabilities may develop, particularly in relativistic gravity
and for differential rotation. In this regard, in the previous axisymmetric simulations of Dimmelmeier
et al. [149], some of the most extremely rotating initial models yielded compact remnants which are
above the thresholds for the development of such bar mode instabilities on secular or even dynamic time
scales for Maclaurin spheroids in Newtonian gravity (which are βs ∼ 0.14 and βd ∼ 0.27, respectively,
with β = Er/|Eb| being the ratio of rotational energy and gravitational binding energy).

Presently, only a few groups worldwide have developed finite difference, three-dimensional (Carte-
sian) codes capable of performing the kind of simulations we aim at, where the joint integration of
the Einstein and hydrodynamics equations is required [414, 179, 181]. Further 3D codes are currently
being developed by a group in the U.S. [161] and by a E.U. Research Training Network collabora-
tion [41, 241].

8.1.5 Organization of the paper

The paper is organized as follows: In Section 8.2 we introduce the assumptions of the adopted physical
model and the equations governing the dynamics of a general relativistic fluid and the gravitational
field. Section 8.3 is devoted to describing algorithmic and numerical features of the code, such as
the setup of both the spectral and the finite difference grids, as well as the basic ideas behind the
HRSC schemes we have implemented to solve the hydrodynamics equations. In addition, a detailed
comparison of the three different solvers for the metric equations and their practical applicability is
given. In Section 8.4 we present a variety of tests of the numerical code, comparing the metric solver
based on spectral methods to two other alternative methods using finite differences. We conclude the
paper with a summary and an outlook to future applications of the code in Section 8.5. We use a
spacelike signature (−, +, +, +) and units in which c = G = 1 (unless explicitly stated otherwise).
Greek indices run from 0 to 3, Latin indices from 1 to 3, and we adopt the standard convention for
the summation over repeated indices.

8.2 Physical model and equations

8.2.1 General relativistic hydrodynamics

Flux-conservative hyperbolic formulation

Let ρ denote the rest-mass density of the fluid, uµ its four-velocity, and P its pressure. The hydrody-
namic evolution of a relativistic perfect fluid with rest-mass current Jµ = ρuµ and energy-momentum
tensor Tµν = ρhuµuν + Pgµν in a (dynamic) spacetime gµν is determined by a system of local conser-
vation equations, which read

∇µJµ = 0, ∇µTµν = 0, (8.1)
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where ∇µ denotes the covariant derivative. The quantity h appearing in the energy-momentum tensor
is the specific enthalpy, defined as h = 1 + ǫ + P/ρ, where ǫ is the specific internal energy. The
three-velocity of the fluid, as measured by an Eulerian observer at rest in a spacelike hypersurface Σt

is given by

vi =
ui

αu0
+

βi

α
, (8.2)

where α is the lapse function and βi is the shift vector (see Section 8.2.2).
Following the work laid out in [46] we now introduce the following set of conserved variables in

terms of the primitive (physical) hydrodynamic variables (ρ, vi, ǫ):

D ≡ ρW,

Si ≡ ρhW 2vi,

τ ≡ ρhW 2 − P − D.

In the above expressions W is the Lorentz factor defined as W = αu0, which satisfies the relation
W = 1/

√
1 − vivi and vi = γijv

j , where γij is the 3-metric.
Using the above variables, the local conservation laws (8.1) can be written as a first-order, flux-

conservative hyperbolic system of equations,

1√−g

[
∂
√

γU

∂t
+

∂
√−gF i

∂xi

]
= Q, (8.3)

with the state vector, flux vector, and source vector given by

U = [D, Sj , τ ],

F i =
[
Dv̂i, Sj v̂

i + δi
jP, τ v̂i + Pvi

]
,

Q =

[
0, Tµν

(
∂gνj

∂xµ
− Γλ

µνgλj

)
,

α

(
Tµ0 ∂ lnα

∂xµ
− TµνΓ 0

µν

)]
.

(8.4)

Here v̂i = vi − βi/α, and
√−g = α

√
γ, with g = det(gµν) and γ = det(γij) being the determinant of

the 4-metric and 3-metric, respectively (see Section 8.2.2). In addition, Γλ
µν are the Christoffel symbols

associated with gµν .

Equation of state

The system of hydrodynamic equations (8.3) is closed by an equation of state (EoS) which relates
the pressure to some thermodynamically independent quantities, e.g. P = P (ρ, ǫ). As in [148, 149,
432] we have implemented in the code a hybrid ideal gas EoS [262], which consists of a polytropic
pressure contribution and a thermal pressure contribution, P = Pp + Pth. This EoS, which despite
its simplicity is particularly suitable for stellar core collapse simulations, is intended to model the
degeneracy pressure of the electrons and (at supranuclear densities) the pressure due to nuclear forces
in the polytropic part, and the heating of the matter by shock waves in the thermal part. The hybrid
EoS is constructed as follows.
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For a rotating stellar core before collapse the polytropic relation between the pressure and the rest
mass density,

Pp = Kργ , (8.5)

with γ = γini = 4/3 and K = 4.897 × 1014 (in cgs units) is a fair approximation of the density and
pressure stratification [325].

In order to start the gravitational collapse of a configuration initially in equilibrium, the effective
adiabatic index γ is reduced from γini to γ1 on the initial time slice. During the infall phase of core
collapse the matter is assumed to obey a polytropic EoS (8.5), which is consistent with the ideal gas
EoS for a compressible inviscid fluid, P = (γ − 1)ρǫ.

To approximate the stiffening of the EoS for densities larger than nuclear matter density ρnuc, we
assume that the adiabatic index γ jumps from γ1 to γ2 at ρ = ρnuc. At core bounce a shock forms
and propagates out, and the matter accreted through the shock is heated, i.e. its kinetic energy is
dissipated into internal energy. This is reflected by a nonzero Pth = ρǫth(γth − 1), where ǫth = ǫ − ǫp
with ǫp = Pp/[ρ(γ − 1)], in the post-shock region. We choose γth = 1.5. This choice describes a
mixture of relativistic (γ = 4/3) and nonrelativistic (γ = 5/3) components of an ideal fluid.

Requiring that P and ǫ are continuous at the transition density ρnuc, one can construct an EoS for
which both the total pressure P and the individual contributions Pp and Pth are continuous at ρnuc,
and which holds during all stages of the collapse:

P =
γ − γth

γ − 1
Kργ1−γ

nuc ργ − (γth − 1)(γ − γ1)

(γ1 − 1)(γ2 − 1)
Kργ1−1

nuc ρ

+(γth − 1)ρǫ. (8.6)

For more details about this EoS, we refer to [148, 262].

Our implementation of the hybrid EoS allows us to suppress the contribution of the thermal
pressure Pth. In this case the EoS (8.6) analytically reduces to the polytropic relation (8.5). We
use this EoS, with different values for γ and K, in the simulations of polytropic neutron star models
presented below.

8.2.2 Metric equations

ADM metric equations

We adopt the ADM 3+1 formalism [35] to foliate the spacetime into a set of non-intersecting spacelike
hypersurfaces. The line element reads

ds2 = −α2dt2 + γij(dxi + βidt)(dxj + βjdt), (8.7)

where α is the lapse function which describes the rate of advance of time along a timelike unit vector
nµ normal to a hypersurface, βi is the spacelike shift three-vector which describes the motion of
coordinates within a surface, and γij is the spatial three-metric.

In the 3 + 1 formalism, the Einstein equations are split into evolution equations for the three-
metric γij and the extrinsic curvature Kij , and constraint equations (the Hamiltonian and momentum



252 “Mariage des maillages” (Dimmelmeier et al. 2005)

constraints) which must be fulfilled at every spacelike hypersurface:

∂tγij = −2αKij + ∇iβj + ∇jβi,

∂tKij = −∇i∇jα + α(Rij + KKij − 2KikK
k
j )

+βk∇kKij + Kik∇jβ
k + Kjk∇iβ

k

−8πα
(
Sij −

γij

2
(Sk

k − ρH)
)

,

0 = R + K2 − KijK
ij − 16πρH,

0 = ∇i(K
ij − γijK) − 8πSj .

(8.8)

In these equations ∇i is the covariant derivative with respect to the three-metric γij , Rij is the
corresponding Ricci tensor, R is the scalar curvature, and K is the trace of the extrinsic curvature
Kij . The matter fields appearing in the above equations, Sij , Sj , and ρH = ρhW 2 −P , are the spatial
components of the stress-energy tensor, the three momenta, and the total energy, respectively.

The ADM equations have been repeatedly shown over the years to be intrinsically numerically
unstable. Recently, there have been numerous attempts to reformulate above equations into forms
better suited for numerical investigations (see [421, 54, 289, 299] and references therein). These
approaches to delay or entirely suppress the excitation of constraint violating unstable modes include
the BSSN reformulation of the ADM system [331, 421, 54] (see Section 8.1.2), hyperbolic reformulations
(see [385] and references therein), or a new form with maximally constrained evolution [73]. In our
opinion a consensus seems to be emerging currently in numerical relativity, which in general establishes
that the more constraints are used in the formulation of the equations the more numerically stable
the evolution is.

Conformal flatness approximation for the spatial metric

Based on the ideas of Isenberg [260] and Wilson et al. [481], and as it was done in the work of
Dimmelmeier et al. [149], we approximate the general metric gµν by replacing the spatial three-metric
γij with the conformally flat three-metric, γij = φ4γ̂ij , where γ̂ij is the flat metric (γ̂ij = δij in
Cartesian coordinates). In general, the conformal factor φ depends on the time and space coordinates.
Therefore, at all times during a numerical simulation we assume that all off-diagonal components of
the three-metric are zero, and the diagonal elements have the common factor φ4.

In CFC the following relation between the time derivative of the conformal factor and the shift
vector holds:

∂tφ =
φ

6
∇kβ

k. (8.9)

With this the expression for the extrinsic curvature becomes time-independent and reads

Kij =
1

2α

(
∇iβj + ∇jβi −

2

3
γij∇kβ

k

)
. (8.10)

If we employ the maximal slicing condition, K = 0, then in the CFC approximation the ADM
equations (8.8) reduce to a set of five coupled elliptic (Poisson-like) nonlinear equations for the metric
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components,

∆̂φ = −2πφ5

(
ρhW 2 − P +

KijK
ij

16π

)
,

∆̂(αφ) = 2παφ5

(
ρh(3W 2 − 2)+5P +

7KijK
ij

16π

)
,

∆̂βi = 16παφ4Si + 2φ10Kij∇̂j

(
α

φ6

)
− 1

3
∇̂i∇̂kβ

k,

(8.11)

where ∇̂i and ∆̂ are the flat space Nabla and Laplace operators, respectively. We note that the way
of writing the metric equations with a Laplace operator on the left hand side can be exploited by
numerical methods specifically designed to solve such kind of equations (see Sections 8.3.4 and 8.3.4
below).

These elliptic metric equations couple to each other via their right hand sides, and in case of
the three equations for the components of βi also via the operator ∆̂ acting on the vector βi. They
do not contain explicit time derivatives, and thus the metric is calculated by a fully constrained
approach, at the cost of neglecting some evolutionary degrees of freedom in the spacetime metric.
In the astrophysical situations we plan to explore (e.g. evolution of neutron stars or core collapse of
massive stars), the equations are entirely dominated by the source terms involving the hydrodynamic
quantities ρ, P , and vi, whereas the nonlinear coupling through the remaining, purely metric, source
terms becomes only important for strong gravity. On each time slice the metric is hence solely
determined by the instantaneous hydrodynamic state, i.e. the distribution of matter in space.

Recently, Cerdá-Durán et al. [114] have extended the above CFC system of equations (and the
corresponding core collapse simulations in CFC reported in [149]) by the incorporation of additional
degrees of freedom in the approximation, which render the spacetime metric exact up to the second
post-Newtonian order. Despite the extension of the five original elliptic CFC metric equations for the
lapse, the shift vector, and the conformal factor by additional equations, the final system of equations in
the new formulation is still elliptic. Hence, the same code and numerical schemes employed in [149] and
in the present work can be used. The results obtained by Cerdá-Durán et al. [114] for a representative
subset of the core collapse models in [149] show only minute differences with respect to the CFC
results, regarding both the collapse dynamics and the gravitational waveforms. We point out that
Shibata and Sekiguchi [423] have recently considered axisymmetric core collapse of rotating polytropes
to neutron stars in full general relativity (i.e. no approximations) using the 3+1 BSSN formulation of
the Einstein equations. Interestingly, the results obtained for initial models similar to those of [149]
agree to high precision in the dynamics of the collapse and on the gravitational waveforms, which
supports the suitability and accuracy of the CFC approximation for simulations of relativistic core
collapse to neutron stars (see also Section 8.4.2).

In addition, there has been a direct comparison between the CFC approximation and perturbative
analytical approaches (post-Newtonian and effective-one-body), which shows a very good agreement
in the determination of the innermost stable circular orbit of a system of two black holes [142].

Metric equation terms with noncompact support

In general, the right hand sides of the metric equations (8.11) contain nonlinear source terms of
noncompact support. For a system with an isolated matter distribution bounded by some stellar
radius rs, the source term of each of the metric equations for a metric quantity u can be split into a
“hydrodynamic” term with compact support Sh and a purely “metric” term with noncompact support
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Sm. Where no matter is present, only the metric term remains:

∆̂u =

{
Sh(u) + Sm(u) for r ≤ rs,
Sm(u) for r > rs.

(8.12)

The source term Sm vanishes only for Kij = 0 and thus βi = 0, i.e. if the three-velocity vanishes and
the matter is static. As a consequence of this, only a spherically symmetric static matter distribution
will yield a time-independent solution to Eq. (8.12), which is equivalent to the spherically symmetric
Tolman–Oppenheimer–Volkoff (TOV) solution of hydrostatic equilibrium. In this case the vacuum
metric is given by the solution of a homogeneous Poisson equation, u = k1 + k2/r, the constants k1

and k2 being determined by boundary values e.g. at rs.
A time-dependent spherically symmetric matter interior suffices to yield a nonstatic vacuum metric

(u = u(t) everywhere). However, this is not a contradiction to Birkhoff’s theorem, as it is purely a
gauge effect. A transformation of the vacuum part of the metric from an isotropic to a Schwarzschild-
like radial coordinate leads to the static (and not conformally flat) standard Schwarzschild vacuum
spacetime.

Thus, in general, the vacuum metric solution to Eqs. (8.11) cannot be obtained analytically, and
therefore (except for TOV stars) no exact boundary values can be imposed for φ, α, and βi at
some finite radius r. We note that this property of the metric equations is no consequence of the
approximative character of conformal flatness, as in spherical symmetry the CFC renders the exact
ADM equations (8.8), but rather results from the choice of the (isotropic) radial coordinate.

8.3 Numerical methods

8.3.1 Finite difference grid

The expressions for the hydrodynamic and metric quantities outlined in Section 8.2 are in covariant
form. For a numerical implementation of these equations, however, we have to choose a suitable
coordinate system adapted to the geometry of the astrophysical situations intended to be simulated
with the code.

As we plan to investigate isolated systems with matter configurations not too strongly depart-
ing from spherical symmetry with a spacetime obeying asymptotic flatness, the formulation of the
hydrodynamic and metric equations, Eqs. (8.3) and (8.11), and their numerical implementation are
based on spherical polar coordinates (t, r, θ, ϕ). This coordinate choice facilitates the use of fixed grid
refinement in form of nonequidistant radial grid spacing. Additionally, in spherical coordinates the
boundary conditions for the system of partial differential metric equations (8.11) are simpler to impose
(at finite or infinite distance) on a spherical surface than on a cubic surface if Cartesian coordinates
were used. We have found no evidence of numerical instabilities arising at the coordinate singularities
at the origin (r = 0) or at the axis (θ = 0, π) in all simulations performed thus far with the code
(see [165, 439] for related discussions on instabilities in codes based upon spherical coordinates).

Both the discretized hydrodynamic and metric quantities are located on the Eulerian finite differ-
ence grid at cell centers (ri, θj , ϕk), where i, j, k run from 1 to nr, nθ, nϕ, respectively. The angular
grid zones in the θ- and ϕ-direction are each equally spaced, while the radial grid, which extends out
to a finite radius rfd larger than the stellar radius rs, can be chosen to be equally or logarithmically
spaced. Each cell is bounded by two interfaces in each coordinate direction. Values on ghost zone cell
centers, needed to impose boundary conditions, are obtained with the symmetry conditions described
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in [148]. We further assume equatorial plane symmetry in all simulations presented below (the code,
however, is not restricted to this symmetry condition). Expressions containing finite differences in
space on this grid are calculated with second order accuracy.

Note that the space between the surface of the star, the radius of which in general is angular
dependent, and the outer boundary of the finite difference grid is filled with an artificial atmosphere
(as done in codes similar to ours, see [181, 161, 41]). This atmosphere obeys the polytropic EoS (8.5),
and has a very low density such that its presence does not affect the dynamics of the star [148].
As an example, we observe a slight violation of conservation of rest mass and angular momentum
in simulations of axisymmetric rotational core collapse of the order of 10−4. This small violation
can be entirely attributed to the interaction of the stellar matter with the artificial atmosphere (see
Appendix 8.A.2).

8.3.2 Spectral methods and grid

Spectral methods

Our most general metric solver is based on spectral methods (see Section 8.3.4). The basic principle of
these methods has been given in Section 8.1.2. Let us now describe some details of our implementation
in the case of 3D functions in spherical coordinates. The interested reader can refer to [72] for details.
A function f can be decomposed as follows (ξ is linked with the radial coordinate r, as given below):

f(ξ, θ, ϕ) =

n̂ϕ∑

k=0

n̂θ∑

j=0

n̂r∑

i=0

cijkTi(ξ)Y
k
j (θ, ϕ), (8.13)

where Y k
j (θ, ϕ) are spherical harmonics. The angular part of the function can also be decomposed into

a Fourier series, to compute angular derivatives more easily. If f is represented by its coefficients cijk,
it is easy to obtain the coefficients of e.g. ∂f/∂r, ∆f (or the result of any linear differential operator
applied to f) thanks to the properties of Chebyshev polynomials or spherical harmonics. For instance,
to compute the coefficients of the radial derivative of f , we make use of the following recursion formula
on Chebyshev polynomials:

dTn+1(x)

dx
= 2(n + 1)Tn(x) +

n + 1

n − 1

dTn−1(x)

dx
∀n > 1. (8.14)

A grid is still needed for two reasons: firstly, to calculate these coefficients through the computation
of integrals, and secondly to evaluate non-linear operators (e.g. ∇f × ∇f), using the values of the
functions at grid points (in physical space). The spectral grid points, called collocation points are
situated at (r̂i, θ̂j , ϕ̂k), where i, j, k run from 1 to n̂r, n̂θ, n̂ϕ, respectively. They are the nodes of a
Gauss–Lobato quadrature used to compute the integrals giving the spectral coefficients. The use of
Fast Fourier Transforms (FFT) for the angular part requires equally spaced points in the angular
directions, whereas a fast Chebyshev transform (also making use of FFT) requires that the radial grid
points correspond, in ξ, to the zeros of Tn̂r

. Note that in our simulations each of the domains contains
the same number of radial and angular collocation points.

In order to be able to cover the entire space (r ∈ [0, +∞]) and to handle coordinate singularities
at the origin (r = 0), we use several grid domains:

• a nucleus spanning from r = 0 to rd, where we set r = αξ, with ξ ∈ [0, 1] and α being a constant
(we use either only even Chebyshev polynomials T2i(ξ), or only odd polynomials T2i+1(ξ));
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• an arbitrary number (including zero) of shells bounded by the inner radius rd i and outer radius
rd i+1, where we set r = αiξ + βi with ξ ∈ [−1, 1] and αi and βi being constants depending on
the shell number i;

• a compactified external domain extending from the outer boundary of the finite difference grid
at rfd to radial infinity, where we set r = 1/[αc(ξ +1)], with ξ ∈ [−1, 1] and αc being a constant.

Furthermore, we assume that the ratio fd between the outer boundary radii of two consecutive domains
is constant, which yields the relation

fd =

(
rfd

rd

)1/(nd−2)

, (8.15)

where nd is the number of domains (including the nucleus and the external compactified domain).
Thus a particular choice of nd and fixing the radius of the nucleus rd completely specifies the setup
of the spectral grid:

rd 1 = rd,...
rd i = fd × rd i−1,...

rd nd−1 = rfd,
rd nd

= ∞.

(8.16)

The setup of the spectral grid and the associated finite difference grid for a typical stellar core
collapse model is exemplified in Fig. 8.1 for n̂r = 33 grid points per spectral radial domain and
nr = 200 finite difference grid points. Particularly in the central parts of the star (upper panel) the
logarithmic radial spacing of the finite difference grid is obvious. While the finite difference grid ends
at the finite radius rfd (with the exception of four ghost zones, which are needed for the hydrodynamic
reconstruction scheme; see Section 8.3.3), the radially compactified outermost 6th domain of the
spectral grid covers the entire space to radial infinity (lower panel). The finite difference grid is fixed
in time, while the boundaries rdi of the spectral radial domains (and thus the radial collocation points)
change adaptively during the evolution (for details, we refer to Section 8.4.2). Note that the radial
collocation points of the spectral grid, which correspond to the roots of the Chebyshev polynomials
(for the Gauss–Lobato quadrature), are concentrated towards the domain boundaries.

Generally speaking, in order to achieve a comparable accuracy in the representation of functions
and their derivatives, the finite difference grid needs much more points than the spectral one. For
example, when considering the representation of some function like exp(−x2) on the interval [0, 1],
spectral methods using Chebyshev polynomials need ∼ 30 coefficients (and grid points) to reach
machine double precision (10−16) for the representation of the function and 10−13 for the representation
of its first derivative. For comparison, a third order scheme based on finite differences needs ∼ 105

points to achieve the same accuracy.

Communication between grids

Passing information from the spectral grid to the finite difference grid is technically very easy. Know-
ing the spectral coefficients of a function, this step simply requires the evaluation of the sum (8.13) at
the finite difference grid points. The drawback of this method, as it will be discussed in Section 8.4.1,
is the computational time spent. In 3D this time can even be larger than the time spent by the
spectral elliptic solver. Going from the finite difference grid to the spectral grid requires an actual
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Figure 8.1: Radial setup of the initial spectral grid (collocation points are marked by plus
symbols) and the time-independent finite difference grid (cell centers are marked by filled circles,
separated by cell interfaces symbolized by vertical dashes) for a typical core collapse simulation.
The upper panel shows the innermost 500 km containing the nucleus (ending at rd ≈ 200 km),
the first shell, and a part of the second shell of the spectral grid. In the lower panel a part of
the last regular shell (which is confined by the outer boundary of the finite difference grid at
rfd ≈ 2200 km) and the beginning of the compactified domain of the spectral grid are plotted.
The domain boundaries are indicated by vertical dotted lines.

interpolation, taking special care to avoid Gibbs phenomena that can appear in the spectral repre-
sentation of discontinuous functions. The matter terms entering in the sources of the gravitational
field equations can be discontinuous when a shock forms. Thus, it is necessary to smooth or filter
out high frequencies that would otherwise spoil the spectral representation. This introduces a numer-
ical error in the fields that should remain within the overall error of the code. The important point
to notice is that an accurate description needs not be achieved in the spectral representation of the
sources (the hydrodynamic quantities are well described on the finite difference grid), but in that of
the gravitational field, which is always continuous, as well as its first derivatives.

Technically, we interpolate from the finite difference grid to the spectral grid using a one-dimen-
sional algorithm and intermediate grids. We first perform an interpolation in the r-direction, then in
the θ-direction and finally in the ϕ-direction. We can choose between piecewise linear or parabolic
interpolations, and a scheme that globally minimizes the norm of the second derivative of the inter-
polated function [342]. The filtering of spectral coefficients is performed a posteriori by removing the
coefficients corresponding to higher frequencies. For example, in the radial direction, this is done by
canceling the cijk in Eq. (8.13) for i larger than a given threshold. In practice, best results were found
when cancelling the last third of radial coefficients. This can be linked with the so-called “two-thirds
rule” used for spectral computations of quadratically nonlinear equations [85]. Nevertheless, a dif-
ferent (higher) threshold would also give good results, in the sense that there are no high-frequency
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terms rising during the metric iteration.

8.3.3 High-resolution shock-capturing schemes

As in our previous axisymmetric code [148, 149], in the present code the numerical integration of
the system of hydrodynamic equations is performed using a Godunov-type scheme. Such schemes
are specifically designed to solve nonlinear hyperbolic systems of conservation laws (see, e.g. [469]
for general definitions and [311, 176] for specific details regarding their use in special and general
relativistic hydrodynamics). In a Godunov-type method the knowledge of the characteristic structure
of the equations is crucial to design a solution procedure based upon either exact or approximate
Riemann solvers. These solvers, which compute at every cell-interface of the numerical grid the
solution of local Riemann problems, guarantee the proper capturing of all discontinuities which may
appear in the flow.

The time update of the hydrodynamic equations (8.3) from tn to tn+1 is performed using a method
of lines in combination with a second-order (in time) conservative Runge–Kutta scheme. The basic
conservative algorithm reads:

Un+1
i,j,k = Un

i,j,k − ∆t

∆ri

(
F̂ r

i+1/2,j,k − F̂ r
i−1/2,j,k

)

− ∆t

∆θ

(
F̂ θ

i,j+1/2,k − F̂ θ
i,j−1/2,k

)

− ∆t

∆ϕ

(
F̂

ϕ
i,j,k+1/2 − F̂

ϕ
i,j,k−1/2

)

+ ∆t Qi,j,k. (8.17)

The index n represents the time level, and the time and space discretization intervals are indicated by
∆t and ∆ri, ∆θ, and ∆ϕ for the r-, θ-, and ϕ-direction, respectively. The numerical fluxes along the
three coordinate directions, F̂ r, F̂ θ, and F̂ ϕ, are computed by means of Marquina’s flux formula [157].
A family of local Riemann problems is set up at every cell-interface, whose jumps are minimized with
the use of a piecewise parabolic reconstruction procedure (PPM) which provides third-order accuracy
in space.

We note that Godunov-type schemes have also been implemented recently in 2D and 3D Cartesian
codes designed to solve the coupled system of the Einstein and hydrodynamic equations, as reported
in [179, 181, 416, 41].

8.3.4 Elliptic solvers

In the following we present the three different approaches we have implemented in our code to numer-
ically solve the system of metric equations (8.11). We compare the properties of these solvers with
special focus on issues like
- radius and order of convergence,
- scaling with resolution in various coordinate directions,
- imposition of boundary conditions,
- assumptions about the radial extension of the grid,
- computational performance,
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- parallelization issues, and
- extensibility from two to three spatial dimensions.

In order to formalize the metric equations we define a vector of unknowns

û = up = (φ, αφ, β1, β2, β3). (8.18)

Then the metric equations (8.11) can be written as

f̂(û) = f q(up) = 0, (8.19)

with f̂ = f q denoting the vector of the five metric equations for û (p, q = 1, . . . , 5). For metric
solvers 1 and 2 the metric equations are discretized at cell centers (ri, θj , ϕk) on the finite difference
grid. Correspondingly, for metric solver 3 the metric equations are evaluated at collocation points
(r̂i, θ̂j , ϕ̂k) on the spectral grid. Thus, when discretized, Eq. (8.19) transforms into the following
coupled nonlinear system of equations of dimension 5×nr ×nθ ×nϕ or 5× n̂r × n̂θ × n̂ϕ, respectively:

f̂(û) = f̂i,j,k(ûl,m,n) = f q
i,j,k(u

p
l,m,n) = 0, (8.20)

with the vector of discretized equations f̂ = f̂i,j,k = f q
i,j,k for the unknowns û = ûl,m,n = up

l,m,n.
For this system we have to find the roots. Note that, in general, each discretized metric equation
f q

i,j,k couples both to the other metric equations through the five unknowns (indices p), and to other
(neighboring) cell locations on the grid (indices l, m, n).

All three metric solvers are based on iterative methods, where the new value for the metric ûs+1

is computed from the value at the current iteration s by adding an increment ∆ûs which is weighted
with a relaxation factor fr. The tolerance measure we use to control convergence of the iteration is
the maximum increment of the solution vector on the grid the iteration is executed on, i.e.

∆ûs
max = max (∆ûs) = max (∆up s

i,j,k). (8.21)

Multidimensional Newton–Raphson solver (Solver 1)

Solver 1, which was already introduced in the core collapse simulations reported in [148, 149], uses a
multi-dimensional Newton–Raphson iteration method to find the roots of Eq. (8.20). Thus, solving
the nonlinear system is reduced to finding the solution of a linear problem of the same dimension
during each iteration. The matrix A defining the linear problem consists of the Jacobi matrix of f̂

and additional contributions originating from boundary and symmetry conditions (see [148] for further
details). As the spatial derivatives in the metric equations (which also contain mixed derivatives of
second order) are approximated by second-order central differences with a three-point stencil, A has a
band structure with 1 + 2d2 bands of blocks of size 5× 5, where d is the number of spatial dimensions
of the finite difference grid. Furthermore, matrix A is sparse and usually diagonally dominated.

A simple estimate already shows that the size n × n of the linear problem grows impractically
large in 3D. A resolution of 100 grid points in each coordinate direction results in a square (5 ×
106) × (5 × 106) matrix A. Thus, direct (exact) inversion methods, like Gauss–Jordan elimination or
exact LU decomposition, are beyond practical applicability, as these are roughly n3 processes, where
n is the dimension of the matrix. Even when exploiting the sparsity and band structure of A the
linear problem remains too large to be solved on present-day computers in a reasonable time by using
iterative methods like successive over-relaxation (SOR) or conjugate gradient (CG) methods with
appropriate preconditioning.
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Because of these computational restrictions, the use of solver 1 is restricted to 2D axisymmetric
configurations, where the matrix A has nine bands of blocks. Even in this case, for coupled spacetime
and hydrodynamic evolutions, the choice of linear solver methods is limited: The computational time
spent by the metric solver should not exceed the time needed for one hydrodynamical time step by an
excessive amount. We have found that a recursive block tridiagonal sweeping method [371] (for the
actual numerical implementation, see [148]) yields the best performance for the linear problem. Here
the three leftmost, middle, and rightmost bands are combined into three new bands of nr blocks of
size (5×nθ)× (5×nθ) and which are inverted in a forward-backward recursion along the bands using
a standard LU decomposition scheme for dense matrices. Actual execution times for this method and
the scaling with grid resolution are given in Section 8.4.2.

We point out that the recursion method provides us with a non-iterative linear solver, and the
Newton–Raphson method exhibits in general very rapid and robust convergence. Therefore, solver 1
converges rapidly to an accurate solution of the metric equations (8.19) even for strongly gravitating,
distorted configurations, irrespective of the relative strength of the “hydrodynamics” term Sh and
“metric” term Sm in the metric equations (see Eq. (8.12)). Its convergence radius is sufficiently large,
so that even the flat Minkowski metric can be used as an initial guess for the iteration, and the
relaxation factor fr can be set equal to 1. Note that in solver 1 every metric function is treated
numerically in an equal way; in particular, the equations for each of the three vector components of
the shift vector βi are solved separately.

In its current implementation, solver 1 exhibits a particular disadvantage, which will be discussed
in more detail in Section 8.4.2. As its spatial grid, on which the metric equations are discretized,
is not radially compactified, there is a need for explicit boundary conditions of the metric functions
û at the outer radial boundary of the finite difference grid. This poses a severe problem, as there
exists no general analytic solution for the vacuum spacetime surrounding an arbitrary rotating fluid
configuration in any coordinate system. Even in spherical symmetry, our choice of isotropic coordinates
yields equations with noncompact support terms, which leads to imprecise boundary conditions, as
demonstrated in Section 8.2.2. Therefore, as an approximate boundary condition for an arbitrary
matter configuration with gravitational mass Mg, we use the monopole field for a static TOV solution,

φ = 1 +
Mg

2r
, α =

1 − Mg

2r

1 +
Mg

2r

, βi = 0, (8.22)

evaluated at rfd. The influence of this approximation on the accuracy of the solution for typical
compact stars is discussed in Section 8.4.2. We emphasize that the use of a noncompactified finite
radial grid is not an inherent restriction of this solver method. However in the case of metric solver 1,
for practical reasons we have chosen to keep the original grid setup as presented in [148], where both
the metric and hydrodynamic equations are solved on the same finite difference grid.

Finally, a further drawback of solver 1 is its inefficiency regarding scalability on parallel or vector
computer architectures. The recursive nature of the linear solver part of this method prevents efficient
distribution of the numerical load onto multiple processors or a vector pipeline. In combination with
the disadvantageous scaling behavior of the linear solver with resolution (see also Table 8.3 below),
these practical constraints render any extension of solver 1 to 3D beyond feasibility.

Conventional iterative integral nonlinear Poisson solver (Solver 2)

While solver 1 makes no particular assumption about the form of the (elliptic) equations to be solved,
solver 2 exploits the fact that the metric equations (8.11) can be written in the form of a system of
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nonlinear coupled equations with a Laplace operator on the left hand side (8.12). A common method
to solve such kind of equations is to keep the right hand side S(û) fixed, solve each of the resulting
decoupled linear Poisson equations, ∆̂ûs+1 = S(ûs), and iterate until the convergence criterion (8.21)
is fulfilled.

The linear Poisson equations are transformed into integral form by using a three-dimensional
Green’s function,

ûs+1(r, θ, ϕ) =

− 1

4π

∫
r′2dr′

∫
sin θ′dθ′

∫
dϕ′ S(ûs(r′, θ′, ϕ′))

|x − x′| , (8.23)

where the spatial derivatives in S are approximated by central finite differences. The volume integral
on the right hand side of Eq. (8.23) is numerically evaluated by expanding the denominator into a series
of radial functions fl(r, r

′) and associated Legendre polynomials Pm
l (cos θ), which we cut at l = 10.

The integration in Eq. (8.23), which has to be performed at every grid point, yields a problem of
numerical size (nr ×nθ ×nϕ)2. However, the problem size can be reduced to nr ×nθ ×nϕ by recursion.
Thus, solver 2 scales linearly with the grid resolution in all spatial dimensions (see Section 8.4.2).
However, while the numerical solution of an integral equation like Eq. (8.23) is well parallelizable,
the recursive method which we employ to improve the resolution scaling performance poses a severe
obstacle. In practice only the parallelization across the expansion series index l (or possibly cyclic
reduction) can be used to distribute the computational workload over several processors.

An advantage of solver 2 is that it does not require the imposition of explicit boundary conditions
at a finite radius due to the integral form of the equations. Demanding asymptotic flatness at spatial
infinity fixes the integration constants in Eq. (8.23). However, as the metric equations contain in
general source terms with noncompact support (see Section 8.2.2), the radial integration must be
performed up to infinity to account for the source term contributions. As the discretization scheme
used in solver 2 limits the radial integration to some finite radius rfd, the metric equations are solved
only approximately if the source terms with noncompact support are nonzero. The consequences of
this fact are discussed in Section 8.4.2. As in the case of metric solver 1, the metric solver 2 could be
used with a compactified radial coordinate as well.

One major disadvantage of solver 2 is its slow convergence rate and a small convergence radius. For
simplicity, we decompose the metric vector equation for the shift vector βi into three scalar equations
for its components. If the θ-component of the shift vector does not vanish, β2 6= 0, and if the spacetime
is nonaxisymmetric, solver 2 does not converge at all (probably due to diverging terms like βθ/ sin2 θ in
the vector Laplace operator). Even when using a known solution obtained with another metric solver
as initial guess, solver 2 fails to converge. Thus, the use of solver 2 is limited to axisymmetry. Even
so, when β2 6= 0, a quite small relaxation factor fr ≈ 0.05 is required. Furthermore, as the iteration
scheme is of fix-point type, it already has a much lower convergence rate than e.g. a Newton–Raphson
scheme. Both factors result in typically several hundred iterations until convergence is reached (see
Section 8.4.2). For strong gravity, the small convergence radius restricts the initial guess to a metric
close to the actual solution of the discretized equations.

Iterative spectral nonlinear Poisson solver (Solver 3)

The basic principles of this iterative solver are similar to the ones used for solver 2: A numerical solution
of the nonlinear elliptic system of the metric differential equations is obtained by solving the associated
linear Poisson equations with a fix-point iteration procedure until convergence. However, instead of
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using finite difference scalar Poisson solvers, solver 3 is built from routines of the publicly available
Lorene library [216] and uses spectral methods to solve scalar and vector Poisson equations [228].

Before every computation of the spacetime metric, the hydrodynamic and metric fields are inter-
polated from the finite difference to the spectral grid by the methods detailed in Section 8.3.2. All
three-dimensional functions are decomposed into Chebyshev polynomials Tn(r) and spherical harmon-
ics Y m

l (θ, ϕ) in each domain. When using solver 3 the metric equations (8.8) are rewritten in order to
gain accuracy according to the following transformations. The scalar metric functions φ and α have the
same type of asymptotic behavior near spatial infinity, φ|r→∞ ∼ 1 + ∆φ(r), α|r→∞ ∼ 1 + ∆α(r), with
∆φ(r) and ∆α(r) approaching 0 as r → ∞. Therefore, to obtain a more precise numerical description
of the (usually small) deviations of φ and α from unity, we solve the equations for the logarithm of φ
and αφ, imposing that lnφ and ln(αφ) approach zero at spatial infinity. Another important difference
to the other two solvers is that the vector Poisson equation for the shift vector βi is not decomposed
into single scalar components, but instead the entire linear vector Poisson equation is solved, including
the 1

3∇̂i∇̂k operator on the left hand side. Therefore, the system of metric equation to be solved reads

∆̂ lnφ = −4πφ4

(
ρhW 2 − P +

KijK
ij

16π

)

−∇̂i lnφ ∇̂i lnφ,

∆̂ ln αφ = 2πφ4

(
ρh(3W 2 − 2) + 5P +

7KijK
ij

16π

)

−∇̂i lnαφ ∇̂i lnαφ,

∆̂βi +
1

3
∇̂i∇̂kβ

k = 16παφ4Si + 2φ10Kij∇̂j

(
α

φ6

)
.

(8.24)

During each iteration a spectral representation of the solution of the linear scalar and vector Poisson
equations associated with the above system is obtained. The Laplace operator is inverted (i.e. the
linear Poisson equation is solved) in the following way: For a given pair of indices l and m of Y m

l (θ, ϕ),
the linear scalar Poisson equation reduces to an ordinary differential equation in r. The action of the
differential operator

∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2
(8.25)

acting thus on each multipolar component (l and m) of a scalar function corresponds to a matrix
multiplication in the Chebyshev coefficient space. The corresponding matrix is inverted to obtain
a particular solution in each domain, which is then combined with homogeneous solutions (rl and
1/rl, for a given l) to satisfy regularity and boundary conditions. The matrix has a small size (about
30 × 30) and can be put into a banded form, owing to the properties of the Chebyshev polynomials,
which facilitates its fast inversion. For more details about this procedure, and how the vector Poisson
equation is treated, the interested reader is addressed to [228]. Note also that when solving the shift
vector equation, βi is decomposed into Cartesian components defined on the spherical polar grid
(see [228]).

The spatial differentials in the source terms on the right hand sides of the metric equations are
approximated by second-order central differences in solvers 1 and 2, while they are obtained by spectral
methods in solver 3 (see Section 8.3.2). When using ∼ 30 collocation points, very high precision
(∼ 10−13) can be achieved in the evaluation of these derivatives. Another advantage of metric solver 3
is that a compactified radial coordinate u = 1/r enables us to solve for the entire space, and to impose
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exact boundary conditions at spatial infinity, u = 0. This ensures both asymptotic flatness and fully
accounts for the effects of the source terms in the metric equations with noncompact support. Solver 3
uses the same fix-point iteration method as solver 2, but does not suffer from the convergence problem
encountered with that solver. Due to the direct solution of the vector Poisson equation for the shift
vector βi, it converges to the correct solution in all investigated models (including highly distorted
3D matter configurations with velocity perturbations, see Section 8.4.2). Furthermore, this can be
achieved with the maximum possible relaxation factor, fr = 1, starting from the flat metric as initial
guess.

However, the strongest reason in favor of solver 3 is its straightforward extension to 3D. As
mentioned previously, both metric solvers 1 and 2 are limited to axisymmetric situations. The spectral
elliptic solvers provided by the Lorene library are already intrinsically three-dimensional. Indeed,
even in axisymmetry the spectral grid of solver 3 requires n̂ϕ = 4 grid points in the ϕ-direction order
to correctly represent the Cartesian components of the shift vector.

There is an additional computational overhead due to the communication between the finite dif-
ference and the spectral grids. These computational costs may actually become a dominant part when
calculating the metric (as will be shown in Section 8.4.1). The interpolation methods also have to
be chosen carefully to obtain the desired accuracy. Furthermore, spectral methods may suffer from
Gibbs phenomena if the source terms of the Poisson-like equations contain discontinuities. For the
particular type of simulations we are aiming at, discontinuities are present (supernova shock front,
discontinuity at the transition from the stellar matter distribution to the artificial atmosphere at the
boundary of the star). This can result in high-frequency spurious oscillations of the metric solution, if
too few radial domains are used, or if the boundaries of the spectral domains are not chosen properly.
As mentioned before, a simple way to reduce the oscillations is to filter out part of the high-frequency
spectral coefficients.

As the C++ routines of the Lorene library in the current release are optimized for neither vector
nor parallel computers, solver 3 cannot yet exploit these architectures. However, we were able to
improve the computational performance by coarse-grain parallelizing the routines which interpolate
the metric solution in the spectral representation to the finite difference grid.

8.3.5 Extraction of gravitational waves

In a conformally flat spacetime the dynamical gravitational wave degrees of freedom are not pre-
sent [148]. Therefore, in order to extract information regarding the gravitational radiation emitted in
core collapse events and in rotating neutron star evolutions, we have implemented in the code the 3D
generalization of the axisymmetric Newtonian quadrupole formula used in [147, 148, 149]. Note that
we use spherical polar components for the tensors of the radiation field.

Whereas in axisymmetry there exists only one independent component of the quadrupole gravita-
tional radiation field hTT

ij in the transverse traceless gauge,

hTT
ij (r, θ) =

1

r
A+(θ)e+, (8.26)

in three dimensions we have

hTT
ij (r, θ, ϕ) =

1

r
[A+(θ, ϕ)e+ + A×(θ, ϕ)e×] , (8.27)
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with the unit vectors e+ and e× defined as

e+ = eθ ⊗ eθ − eϕ ⊗ eϕ, (8.28)

e× = eθ ⊗ eϕ + eϕ ⊗ eθ. (8.29)

The amplitudes A+ and A× are linear combinations of the second time derivative of some com-
ponents of the quadrupole moment tensor Iij , which for simplicity we evaluate at ϕ = 0 on the polar
axis and in the equatorial plane, respectively:

Ap
+ = Ï11 − Ï22,

Ap
× = 2Ï12,

at θ = 0 (pole), (8.30)

Ae
+ = Ï33 − Ï22,

Ae
× = −2Ï13,

at θ = π/2 (equator). (8.31)

A direct numerical calculation of the quadrupole moment in the standard quadrupole formulation,

Iij =

∫
dV ρ∗

[
xixj −

1

3
δij

(
x2

1 + x2
2 + x2

3

)]
, (8.32)

results in high frequency noise completely dominating the wave signal due to the presence of the second
time derivatives in Eq. (8.31). Therefore, we make use of the time-differentiated quadrupole moment
in the first moment of momentum density formulation,

İij =

∫
dV ρ∗

[
vixj + vjxi −

2

3
δij (v1x1 + v2x2 + v3x3)

]
, (8.33)

and stress formulation,

Ïij =

∫
dV ρ∗ [2vivj − xi∂jΦ − xj∂iΦ], (8.34)

of the quadrupole formula [174, 63].
In the above equations, xi and vi are the coordinates and velocities in Cartesian coordinates,

respectively. When evaluating Eq. (8.34) numerically, we transform vi to spherical polar coordinates.
In the quadrupole moment, we use ρ∗ = ρWφ6 instead of ρ as in [147, 148, 149], as this quantity is
evolved by the continuity equation (note that both quantities have the same Newtonian limit). This
also allows a direct comparison with the results presented in [422], which we show in Section 8.4.2.
For a discussion about the ambiguities arising from the spatial derivatives of the Newtonian potential
Φ in Eq. (8.34) in a general relativistic framework and their solution (which we also employ in this
work), we refer to [149].

The total energy emitted by gravitational waves can be expressed either as a time integral,

Egw =
2

15

∫
dt

[
−

...
I 11

...
I 22 −

...
I 11

...
I 33 −

...
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...
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+
...
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2

11 +
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I

2

22 +
...
I

2

33 +3
( ...

I
2

12 +
...
I

2

13 +
...
I

2

23

)]
, (8.35)

or, equivalently, as a frequency integral,

Egw =
1

15

∫
ν2dν

[
− ˆ̈I11

ˆ̈I22 − ˆ̈I11
ˆ̈I33 − ˆ̈I22

ˆ̈I33

+ˆ̈I2
11 + ˆ̈I2

22 + ˆ̈I2
33 + 3

(
ˆ̈I12 + ˆ̈I2

13 + ˆ̈I2
23

)]
, (8.36)
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where ˆ̈Iij(ν) is the Fourier transform of Ïij(t). We point out that the above general expressions reduce
to the following ones in axisymmetry:

Ap
+ = 0, Ap

× = 0, Ae
+ = Ï , Ae

× = 0, (8.37)

Egw =
2

15

∫
dt

...
I

2
=

1

15

∫
ν2dν ˆ̈I2, (8.38)

with I = I33 − I22 being the only nonzero independent component of the quadrupole tensor, and ˆ̈I2

being the Fourier transform of Ï2. The quadrupole wave amplitude AE2
20 used in [499, 147, 149] is

related to I according to AE2
20 = 8

√
π/15 Ï.

We have tested the equivalence between the waveforms obtained by the axisymmetric code pre-
sented in [147, 148, 149] and those by the current three-dimensional code using the corresponding
axisymmetric model. In all investigated cases, they agree with excellent precision.

8.4 Code tests and applications

We turn now to an assessment of the numerical code with a variety of tests and applications. We recall
that we do not attempt in the present paper to investigate any realistic astrophysical scenario, which
is deferred to subsequent publications. Instead, we focus here on discussing standard tests for general
relativistic three-dimensional hydrodynamics code, which were all passed by our code. In particular,
we show that the code exhibits long-term stability when evolving strongly gravitating systems like
rotational core collapse and equilibrium configurations of (highly perturbed) rotating relativistic stars.
Each separate constituent methods of the code (HRSC schemes for the hydrodynamics equations
and elliptic solvers based on spectral methods for the gravitational field equations) has already been
thoroughly tested and successfully applied in the past (see e.g. [176, 311, 228] and references therein).
Therefore, we mainly demonstrate here that the coupled numerical schemes work together as desired.

8.4.1 Interpolation efficiency and accuracy

The interpolation procedure from the finite difference grid to the spectral grid has been described
in Section 8.3.2. Among the three possible algorithms we have implemented in the code, the most
efficient turned out to be the one based on a piecewise parabolic interpolation (see Table 8.1). It
is as fast as the piecewise linear interpolation, and more accurate than the algorithm based on the
minimization of the second derivative of the interpolated function. Table 8.1 shows, for a particular
example of an interpolated test function ft(r, θ, ϕ) = exp

[
−r2(1 + sin2 θ cos2 ϕ)

]
, the relative accuracy

∆fint (in the L0 norm) achieved by this interpolation, as well as the CPU time spent on a Pentium IV
Xeon processor at 2.2 GHz. The spectral grid consists of two domains (nucleus + shell) with n̂r = 17,
n̂θ = 17, and n̂ϕ = 16. The outer radius of the nucleus is located at 0.5, and the outer boundary of
the shell is at 1.5 (corresponding to the radius of the finite difference grid rfd).

This test demonstrates that the piecewise parabolic interpolation is indeed third-order accurate,
and that the time spent scales roughly linearly with the number of points of the finite difference grid in
any direction. We have made other tests which show that the interpolation accuracy is independent of
n̂, and that it scales in time like O

(
n̂3

)
+O

(
n3

)
, where n̂ and n are the number of points used in each

dimension by the spectral and the finite difference grid, respectively. The interpolation is exact, up
to machine precision, for functions which can be expressed as polynomials of degree ≤ 2 with respect
to all three coordinates.
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Table 8.1: Execution time tfd→sp and accuracy ∆ffd→sp for the interpolation of a test function
ft(r, θ, ϕ) (see text) from the finite difference grid to the spectral grid, listed for different finite
difference grid resolutions nr ×nθ ×nϕ and interpolation types. The interpolation methods are
piecewise linear (type 1), piecewise parabolic (type 2), and globally minimizing the norm of the
second derivative of the interpolated function [342] (type 0). The spectral grid has a resolution
of n̂r = 17, n̂θ = 17, and n̂ϕ = 16 grid points.

nr × nθ × nϕ Type tfd→sp [s] ∆ffd→sp [L0 norm]

400 × 200 × 800 2 5.13 5.0 × 10−8

400 × 200 × 800 1 5.12 7.0 × 10−6

400 × 200 × 800 0 9.44 1.8 × 10−6

400 × 200 × 400 2 2.92 3.1 × 10−7

400 × 200 × 200 2 1.43 1.6 × 10−6

400 × 200 × 100 2 0.77 1.7 × 10−5

400 × 200 × 10 2 0.09 1.3 × 10−2

400 × 100 × 800 2 2.55 3.1 × 10−7

400 × 50 × 800 2 1.60 1.8 × 10−6

400 × 5 × 800 2 0.32 2.0 × 10−3

200 × 200 × 800 2 3.61 2.7 × 10−7

100 × 200 × 800 2 1.81 2.1 × 10−6

50 × 200 × 800 2 1.40 1.6 × 10−5

5 × 200 × 800 2 0.99 1.4 × 10−2

The direct spectral summation from the spectral to the finite difference grid is a very precise
way of evaluating a function: For smooth functions, the relative error decreases like exp(−n̂) (infinite
order scheme). This property is fulfilled in our code, as shown in Table 8.2 for the same test function
ft(r, θ, ϕ) and the same domain setup as for Table 8.1 (again the timings are for a Pentium IV
Xeon processor at 2.2 GHz). Double precision accuracy is reached with a reasonable number of points
(n̂r = 33, n̂θ = 17, and n̂ϕ = 64). According to Table 8.2 the CPU cost scales linearly with the number
of coefficients n̂ in any direction. We have also confirmed that it scales linearly with the number of finite
difference grid points n in any direction. The drawback of this most straightforward procedure is that
it requires O

(
n̂3n3

)
operations, which is much more expensive than the interpolation from the finite

difference grid to the spectral one, and even more expensive than the iterative procedure providing the
solution of system (8.24). Nevertheless, it is computationally not prohibitive since the overall accuracy
of the code does not depend on n̂ (which can thus remain small). A way to reduce the execution time
is to use a partial summation algorithm (see e.g. [85]), which needs only O

(
n̂n3

)
+O

(
n̂2n2

)
+O

(
n̂3n

)

operations, at the additional cost of increased central memory requirement. Another alternative is
to truncate the spectral sum, staying at an accuracy level comparable to that of finite difference
differential operators.
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Table 8.2: Execution time tsp→fd and accuracy ∆fsp→fd for the evaluation of a test function
ft(r, θ, ϕ) (see text) on the finite difference grid from its representation in spectral coefficients,
listed for different numbers of spectral grid points n̂r × n̂θ × n̂ϕ. The finite difference grid has
a resolution of nr = 100, nθ = 50, and nϕ = 30 grid points.

n̂r × n̂θ × n̂ϕ tsp→fd [s] ∆fsp→fd [L0 norm]

33 × 17 × 64 75.8 1.5 × 10−15

33 × 17 × 32 38.4 5.5 × 10−9

33 × 17 × 16 19.6 2.6 × 10−4

33 × 17 × 8 10.3 2.8 × 10−2

33 × 9 × 64 40.8 6.4 × 10−9

33 × 5 × 64 23.4 3.2 × 10−4

17 × 17 × 64 41.2 1.9 × 10−13

9 × 17 × 64 24.6 9.2 × 10−7

5 × 17 × 64 16.7 1.9 × 10−3

8.4.2 Solver comparison in 2D

Convergence properties

The theoretical considerations about the convergence properties of the three implemented metric
solvers (as outlined in Section 8.3.4) are checked by solving the spacetime metric for a 2D axisymmetric
rotating neutron star model in equilibrium (labeled model RNS), which we have constructed with the
method described in Komatsu et al. [283]. This model has a central density ρc = 7.905×1014 g cm−3,
obeys a polytropic EoS with γ = 2 and K = 1.455× 105 (in cgs units), and rotates rigidly at the mass
shedding limit, which corresponds to a polar-to-equatorial axis ratio of 0.65. These model parameters
are equivalent to those used for neutron star models in [178, 181].

To the initial equilibrium model we add an r- and θ-dependent density and velocity perturbation,

ρ = ρini

[
1 + 0.02 sin2

(
π

r

rs

) (
1 + sin2(2θ)

)]
,

vr = 0.05 sin2

(
π

r

rs

) (
1 + sin2(2θ)

)
,

vθ = 0.05 sin2

(
π

r

rs

)
sin2(2θ),

vϕ = vϕ ini + 0.05 sin2

(
π

r

rs

) (
1 + sin2(2θ)

)
,

(8.39)

where rs is the (θ-dependent) stellar radius, and vr =
√

v1v1, vθ =
√

v2v2, and vϕ =
√

v3v3. The
metric equations (Eqs. (8.11) for solvers 1 and 2, and Eqs. (8.24) in the case of solver 3) are then
solved using the three implemented metric solvers. The perturbation of vr and vθ ensures that the
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Figure 8.2: Comparison of the convergence behavior for the three metric solvers in 2D. For
solver 1 (filled circles), the maximum increment ∆ûs

max per iteration s decreases to the thresh-
old ∆ûs

thr = 10−15 (lower horizontal dotted line) within less than 10 iterations, while solver 3
(asterisks) needs more than 40 iterations to reach its (less restrictive) threshold (upper hori-
zontal dotted line) of 10−6. The very low relaxation factor needed for solver 2 (filled squares)
results in a remarkably slow convergence, requiring more than 700 iterations. The solid lines
mark the approximate linear decrease of log ∆ûs

max.

metric equations yield the general case of a shift vector with three nonzero components, which cannot
be obtained with an initial model in equilibrium.

We point out that by adding the perturbations specified in Eq. (8.39) and calculating the metric
for these perturbed initial data, we add a small inconsistency to the initial value problem. As the
Lorentz factor W in the right hand sides of the metric equations contains metric contributions (which
are needed for computing the covariant velocity components), it would have to be iterated with the
metric solution until convergence. However, as the perturbation amplitude is small, and as we do not
evolve the perturbed initial data, we neglect this small inconsistency.

The most relevant quantity related to convergence properties of the metric solver is the maximum
increment ∆ûs

max of all metric components on the grid (see Fig. 8.2). As expected solver 1 exhibits
the typical quadratic decline of a Newton–Raphson solver to its threshold value ∆ûs

thr = 10−15. As
the methods implemented in solvers 2 and 3 correspond to a fix-point iteration, the decline of their
metric increment is significantly slower. Therefore, for the Poisson-based solvers, we typically use a
less restrictive threshold ∆ûs

thr = 10−6. While the spectral Poisson solver 3 allows for a relaxation
factor of 1 and thus for a still quite rapid convergence, the conventional Poisson solver 2 requires more
than 700 iterations due to its much smaller relaxation factor imposed by the β2-equation.

It is worth stressing that all three solvers show rather robust convergence, if one keeps in mind
that the initial guess is the flat spacetime metric. If the metric is changing dynamically during an
evolution, the metric values from the previous computation can be used as new starting values, which
reduces the number of iterations by about a factor of two with respect to those reported in Fig. 8.2.

Besides the convergence rate, the execution time tm required for a single metric computation and its
dependence on the grid resolution is also of paramount relevance for the practical usefulness of a solver.
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Table 8.3: Metric solver execution time tm for different finite difference grid resolutions nr ×nθ

for the three metric solvers in 2D applied to the perturbed rotating neutron star model RNS.
The ratios anr

(anθ
) between execution times for a given nr (nθ) and for half that resolution

exhibit the behavior expected from theoretical considerations. The spectral grid has a resolution
of n̂r = 33, n̂θ = 17, and n̂ϕ = 4 grid points.

Solver 1 Solver 2 Solver 3
nr × nθ tm [s] anr

anθ
tm [s] anr

anθ
tm [s] anr

anθ

50 × 16 1.8 2.8 20.7
100 × 16 3.7 2.0 5.9 2.1 20.6 1.0
200 × 16 7.4 2.0 12.9 2.2 20.8 1.0

50 × 32 12.5 6.9 5.9 2.1 20.8 1.0
100 × 32 25.4 2.0 6.9 12.3 2.1 2.1 20.5 1.0 1.0
200 × 32 50.8 2.0 6.9 27.1 2.2 2.1 21.7 1.1 1.0

50 × 64 109.7 8.8 12.4 2.1 20.9 1.0
100 × 64 224.2 2.0 8.8 – 21.5 1.0 1.1
200 × 64 445.2 2.0 8.8 – 21.7 1.0 1.1

These times for one metric computation of the perturbed RNS stellar model on a finite difference grid
with various r- and θ-resolutions on an IBM RS/6000 Power4 processor are summarized in Table 8.3.
As theoretically expected, both solver 1 and 2 show a linear scaling of tm with the number of radial
grid points nr, i.e. the ratio rnr = tm(nr)/tm(nr/2) is approximately 2. While the integration method
of solver 2 shows linear dependence also for the number of meridional grid zones nθ, the inversion of
the dense nθ × nθ matrices during the radial sweeps in solver 1 is roughly a n3

θ process. Thus, the
theoretical value of rnθ

= 8 for that solver is well met by the results shown in Table 8.3. We note that
for even larger values of nθ, specific processor properties like cache-miss problems can even worsen
the already cubic scaling of solver 1, while for nθ & 64 solver 2 fails to converge altogether. On the
other hand for solver 3 tm is approximately independent of the number of finite difference grid points
in either coordinate direction, as the number of spectral collocation points is fixed. A dependence on
nr and nθ can only enter via the interpolation procedure between the two grids, the time for which is,
however, entirely negligible in 2D.

The break even point for the three solvers corresponds roughly to a resolution of 100 × 32 grid
points at tm ∼ 20 s. We emphasize that this value of tm is much larger than the time needed for one
hydrodynamic step at the same resolution, which is roughly th ∼ 0.1 s. From the results reported in
Table 8.3 it becomes evident that due to the independence of tm on the finite difference grid resolution
in the spectral metric solver 3, this method is far superior to the other two solvers for simulations
requiring a large number of grid points in general, and particularly in θ-direction.
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Radial fall-off of the metric components

When comparing in Section 8.3.4 the theoretical foundations of the three alternative metric solvers
implemented in the code, we already raised the issue of the existence of source terms with noncompact
support in the metric equations (8.11) (see Section 8.2.2). Neither the Newton–Raphson-based solver 1,
which requires explicit boundary conditions at the finite radius rfd (which are in general not exactly
known and possibly time-dependent), nor the conventional iterative Poisson solver 2, which integrates
the Poisson-like metric equations only up to the same finite radius rfd, are able to fully account for
the nonlinear source terms, even if the radial boundary of the finite difference grid is in the vacuum
region outside the star, rfd > rs.

Hence, both solvers yield a numerical solution of the exact metric equations only in very few
trivial cases, like e.g. the solution for the metric of a spherically symmetric static matter distribution
(TOV solution), when the metric equations reduce to Poisson-like equations with compact support.
However, due to the radial compactification of the spectral grid, which allows for the Poisson equations
to be numerically integrated out to spacelike infinity, the spectral solver 3 can consistently handle all
noncompact support source terms in the metric equations in a non-approximative way. This property
holds even when the metric quantities are mapped from the spectral grid onto the finite difference
grid, the latter extending only to rfd. Thus, we expect that only solver 3 captures the correct radial
fall-off behavior of the metric quantities outside the matter distribution.

In the following we illustrate the effects of noncompact support terms in the metric equations on
the numerical solution using the three different solvers. Fig. 8.3 shows the radial equatorial profiles of
the rotational shift vector component βϕ =

√
γ33β

3 for the rapidly rotating neutron star initial model
(RNS) specified in Section 8.4.2, obtained with the three alternative metric solvers. While we restrict
our discussion to the particular metric quantity βϕ e we notice that the radial fall-off behavior and the
dependence on the solver method is equivalent for all other metric components.

In the upper panel of Fig. 8.3 the equatorial stellar boundary rs e is very close to the radial outer
boundary of the finite difference grid, rs e = 0.9 rfd (both indicated by vertical dotted lines). The star
and the exterior atmosphere are resolved using nr s = 90 radial grid points for the star and nr a = 10
radial grid points for the atmosphere (along the equator), respectively, and nθ = 30 meridional points.
The spectral solver 3 uses n̂r = 33 radial and n̂θ = 17 meridional grid points.

If the boundary value for the metric at rfd is exact, solver 1 always yields the correct solution,
irrespective of the source terms not having compact support. For stationary solutions like rotating
neutron stars these exact values can in principle be provided by the initial data solver. However,
for instance in a dynamical situation, exact values cannot be provided, and we are forced to use
approximate boundary conditions, which we choose according to Eq. (8.22). As the approximate
boundary value for solver 1, βϕ(rfd) = 0, is far from the exact value, the corresponding profile of the
shift vector (dashed line) strongly deviates from the correct βϕ e obtained by the initial data solver
(solid line). Note that the exact solution is given only for r ≤ rs e, due to limitations of the initial solver
method [283]. As shown in the lower panel of the figure, with increasing distance of the finite difference
grid boundary from the stellar boundary (rfd = 2.0 rs e with nr s = nr a = 90), the approximation for
βϕ e(rfd) improves noticeably, and so does the matching of βϕ e with the correct solution.

On the other hand, as the integral approach of solvers 2 and 3 requires no specific boundary
conditions at a finite radius (contrary to solver 1), the numerical solution for βϕ e agrees well with the
correct solution even for an integration boundary rfd close to the stellar boundary rs e (dashed-dotted
and dotted lines in Fig. 8.3, respectively). For rfd ≫ rs e, when the influence of the source terms with
noncompact support is increasingly picked up by the radial integral, the solutions supplied by solver 2
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Figure 8.3: Equatorial profile of the shift vector component βϕ e obtained by different metric
solvers compared with the correct profile from the initial data solver (solid line) for the rotating
neutron star model RNS. Due to its approximate boundary value, the profile from solver 1
(dashed line) shows large deviation from the correct solution, particularly for a grid boundary
rfd close to the stellar equatorial radius rs e (upper panel). As solver 2 (dashed-dotted line)
needs no explicit boundary conditions, its solution matches well with the correct solution, with
improving agreement as rfd is at larger distance from rs e (lower panel). The compactified radial
grid of solver 3 (dotted line) fully accounts for non-compact support terms, and thus agrees
very well with the correct solution, independent of the location of rfd. The radii rs e and rfd are
indicated by vertical dotted lines.

rapidly approach the correct one. The terms with noncompact support usually do not contribute
strongly to the solution of the metric equations (except in cases of very strong gravity and extremely
rapid contraction or rotation). Thus, solver 2 is superior to solver 1 when approximate boundary
values must be used, Eq. (8.22). Solver 3, on the other hand, has the key advantage over solver 2 of
using very accurate spectral methods for solving the Poisson equation over the entire spatial volume
due to its compactified radial coordinate. Hence, irrespective of the distance of rfd from rs e, it yields
the same results on the finite difference grid, onto which the results are mapped from the spectral
grid.

The (small) difference between the results for βϕ e from solver 3 and from the initial data solver
is partly due to the accuracy of the numerical schemes and the mapping between different grids,
and particularly a result of the CFC approximation of the field equations employed by the evolution
code (note that the initial data are generated from a numerical solution of the exact Einstein metric
equations). In the case of rapidly rotating neutron star models we have found that the truncation error
and the error arising from the mapping of the initial data to the evolution code is typically more than
one order of magnitude smaller than the error which can be attributed to the CFC approximation, if
a grid with a resolution nr ∼ 100, nθ ∼ 30 and n̂r = 33, n̂θ = 17 is used. For estimates of the quality
of the CFC approximation in such cases, see [148] and references therein.
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We again note that, in principle, the use of a compactified radial grid is not confined to the spectral
solver 3. A finite difference grid extending to spatial infinity could be used for solvers 1 and 2 as well.
However, in that case either the exterior atmosphere would also have to be extended to the entire grid
too (generating unnecessary computations), or only the relevant portion of the grid containing the
star would have to be evolved in time (creating an additional boundary). When using solver 3, there
is a clearcut split between the finite difference grid and the spectral grid. Thus, the hydrodynamic
quantities can be defined on a grid with an atmosphere of only small size, while the metric in the
compactified domain can be computed very accurately with only few radial collocation points due to
the exponential convergence of spectral methods in this smooth region. Additionally, the Lorene

library provides the use of a compactified radial domain as an already implemented option at no extra
cost.

Axisymmetric core collapse to a neutron star –
Construction of the spectral grid domains

As all three metric solvers yield equally precise numerical solutions of the spacetime metric in 2D,
they give nearly identical results when applied to simulations of rotational core collapse, as shown in
Fig. 8.4. For the results presented in this figure we have chosen the stellar core collapse model labeled
A3B2G4 in [149] (model SCC in the following), which rotates differentially and moderately fast, and
has an initial central density ρc = 1010 g cm−3. The initial adiabatic index is reduced from γi = 4/3
to γ1 = 1.3 during contraction, and is increased to γ2 = 2.5 beyond supranuclear matter densities,
ρ > ρnuc = 2.0 × 1014 g cm−3. The details of the EoS for this model are given by Eq. (8.6). As the
metric calculation is computationally very expensive, it is done only every 100/10/50 hydrodynamic
time steps before/during/after core bounce, and extrapolated in between (for details on the satisfactory
accuracy of this procedure see [148]). The number of zones used in the finite difference grid is nr = 200
and nθ = 30, with logarithmic spacing in the r-direction and a central resolution of 500 m, and an
equidistant spacing in the θ-direction. Again, the grid resolution of the spectral solver 3 is n̂r = 33
and n̂θ = 17.

In the upper panel of Fig. 8.4 we plot the time evolution of the central conformal factor φc, which
rises steeply when the central density increases to supranuclear densities, reaches a maximum at the
time of core bounce tb (vertical dotted line), and subsequently approaches a new equilibrium value
with decreasing ringdown oscillations. This new state, which is reached asymptotically, signals the
formation of a pulsating compact remnant which can be identified with the nascent proto-neutron
star. Each of the three curves in this upper panel is the result of using one of the three available
metric solver (see caption for details). The lower panel of the figure demonstrates that the relative
differences found in the dynamical evolution of our representative core collapse model are negligibly
small when using either metric solver, which proves the applicability of any of the metric solvers in
2D.

However, in such a highly dynamical situation, where the relevant radial scales vary by a factor of
about 100, solver 3 requires a special treatment of the radial domain setup of the spectral grid defined
in Section 8.3.2. During the infall phase of a core collapse simulation the contracting core must be
suffiently resolved by the radial grid, and thus we adjust the radius of the nucleus rd dynamically
before core bounce. (Note that this is no contradiction to the assumption fd = const. in Eq. (8.15), as
fd may change between subsequent metric calculations during the evolution.) Initially the value of rd

is given by half the stellar radius. As the evolution proceeds it is set equal to the radial location of the
sonic point in the equatorial plane (once unambiguously detected). Alternatively rd can be determined
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Figure 8.4: Time evolution of the central conformal factor φc (upper panel) for the core collapse
model SCC, using metric solver 1 (solid line), 2 (dashed line), and 3 (dashed-dotted line),
respectively. All three solvers yield similar results. The small relative differences of less than
10−3 in φc (lower panel) obtained with solvers 1 and 3 (solid line) and solver 2 and 3 (dashed
line) prove that numerical variations of the metric from each solver are of the order of the small
overall discretization error of the entire evolution code. The time of bounce tb is indicated by
the vertical dotted line.

by the radius enclosing a shell of a fixed fraction of the total rest mass of the star (typically 10%),
whereby rd moves inward during the collapse, too. In either case rd is held fixed when some minimal
radial threshold rdmin is crossed, which we set equal to the radius of some given radial grid point (e.g.
the 40th grid point at r40). This ensures that there is always a sufficient number of grid points on
the finite difference grid, such that the interpolation to the spectral grid is well behaved. For nd = 6
domains, both approaches yield equally accurate results, the relative difference between the values
of φc being less than 10−4 throughout the evolution of the collapse model SCC (see lower panel of
Fig. 8.5).

At least for core collapse simulations, the appropriate choice of the radial spectral domain setup
parameters nd and rd(t) is crucial, as exemplified in Fig. 8.6. The reduction of rd with time must
follow the contraction of the core to a sufficiently small radius, while rdmin must retain enough grid
points for the nucleus. Furthermore, when splitting the spectral grid into several radial domains, well-
behaved differential operators (in particular, the Poisson operator) are only obtained if, for a shell -type
domain, the criterion of thin shell-type domains, fd . 2, is fulfilled. This restriction for the ratio fd

between the outer and the inner radii originates from the requirement to keep the condition number
of the matrix representing (for a given multipolar momentum l) the radial Poisson operator (8.25),
which is a very fast growing function of fd, lower than ∼ 103.

In particular Fig. 8.6 shows that if rd is not properly adjusted or if rd min is too large, the central
conformal factor deviates strongly from the correct value (upper panel). In addition, if the number
of domains is too small while keeping the radial resolution n̂r = 33 fixed, the conformal factor inside
the core shows large amplitude oscillations after core bounce, due to a too large value of fd (lower
panel). If fd . 2 is violated because of too few domains in a collapse situation, such oscillations are
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Figure 8.5: Two different methods for determining the domain radii of the spectral grid bound-
ary. The upper panel shows the time evolution of the domain radius parameter rd for the core
collapse model SCC, where rd is either set by the sonic point method (solid line; sonic point
first detected at t ∼ 23 ms) or by the rest mass fraction method (dashed line). The boundary of
the finite difference grid rfd, the stellar equatorial radius rs e, the minimal domain radius rd min

(set to r40), and the approximate location of shock formation rsh are indicated by horizontal
dotted lines. The relative difference between the values of φc from simulations using the two
methods (lower panel) is less than 10−4 throughout the evolution. The time of bounce tb is
indicated by the vertical dotted line.

even present if the radial resolution n̂r is increased.

On the other hand, in quasi-stationary situations with no large dynamical radial range (e.g. os-
cillations of neutron stars), one can safely reduce nd from 6 to 3 and keep rd fixed throughout the
evolution. The optimal number of domains nd is thus determined by balancing radial resolution and
the requirement of thin shell-type domains against computational costs.

Axisymmetric core collapse to a neutron star –
Comparison with fully general relativistic simulations

Only recently, fully general relativistic simulations of axisymmetric rotational core collapse have be-
come available [423]. We now estimate the quality of the CFC approximation adopted in our code by
simulating one of the core collapse models presented in [423] and comparing the results.

In their simulations, Shibata and Sekiguchi [423] make use of the Cartoon method [11] which
reduces the dimensionality of a code based on 3D Cartesian coordinates to 2D in the case of axisym-
metric configurations. Using this approach, and solving the full set of BSSN metric equations, these
authors present a series of rotational core collapse models with parameters close (but not exactly
equal) to the ones simulated by Dimmelmeier et al. [149]. As an additional difference, ρ∗ = ρWφ6 is
employed by [423] in the gravitational wave extraction with the first moment of momentum density
formula, while in [149] the wave extraction is performed with the stress formula using the density
ρ (see Section 8.3.5 for details). Furthermore, in the simulations reported in [423], the equidistant
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Figure 8.6: Importance of the correct spectral domain setup for highly dynamic simulations,
shown for the core collapse model SCC. If the domain radius parameter is not reasonably
adjusted (upper panel), e.g. rd is held fixed at 10% of the initial stellar equatorial radius
(dashed line), or if the minimal domain radius is too large, rdmin = r100 (dashed-dotted line),
the central conformal factor φc deviates strongly from the correct value (solid line; c.f. Fig. 8.4).
If the number of domains is too small (lower panel), e.g. nd = 3 (dashed line) instead of nd = 6
(solid line), the metric inside the star (here the equatorial conformal factor φr100 e at the 100th
radial grid point) shows strong oscillations after core bounce. The time of bounce tb is indicated
by the vertical dotted line.

Cartesian finite difference grid is repeatedly remapped during the collapse, so that the grid spacing
in the center increases from initially ∼ 3 km to ∼ 300 m during core bounce. As the outer boundary
moves in accordingly, matter leaves the computational grid, resulting in a mass loss of about 3%.

In their paper, Shibata and Sekiguchi investigated a core collapse model which is identical to our
model SCC (A3B2G4 in [149]) with the exception of a slightly smaller rotation length parameter
Â = A/rs e = 0.25 (compared to Â = 0.32 in [149]) in the initial equilibrium model. They found that
the evolution of this model (labeled SCCSS hereafter) computed with their fully general relativisitc
code agrees qualitatively well with the evolution of our model SCC simulated with our CFC code.
However, it produces an increased gravitational wave amplitude of about 20% at the peak during core
bounce, and up to a factor 2 in the ringdown. Furthermore, the damping time of the ringdown signal
of model SCCSS as shown in [423] is significantly longer compared to that of model SCC presented
in [149].

Shibata and Sekiguchi offer several possible explanations for this noticeable disagreement, the most
plausible ones being the different functional forms of the rest mass density used in the wave extraction
method, and the different formulations (stress formulation (8.34) versus first moment of momentum
density formulation (8.33)). By comparing waveforms obtained from evolutions of oscillating neutron
stars (as presented in [422]), both using the quadrupole formula and by directly reading off metric
components, they find that the quadrupole formula underestimates the wave amplitude of model
SCCSS by ∼ 10%. Extrapolating these results they arrive at the estimate that the waveforms presented
in [149] are accurate at best to within ∼ 20%. Shibata and Sekiguchi claim that other differences,
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Figure 8.7: Influence of the density used in the wave extraction equations (upper panel) and
of small differences in the initial model (lower panel) on the gravitational waveforms from
rotational core collapse. If ρ∗ = ρhW 2 is used in the quadrupole formula (solid line) instead of
ρ (dashed line), the wave amplitude Ae

+ increases by about 20% at core bounce (upper panel). A
change from model SCC (solid line) to model SCCSS (dashed line), which corresponds solely to a
difference in the initial configuration, results in a qualitatively different waveform, in particular
during the ringdown phase (lower panel). The times of bounce tb are indicated by the vertical
dotted lines.

namely the CFC approximation versus the BSSN formulation, different grid setups, coordinate choices
and slicing conditions, or the small discrepancy of Â in the initial model, have only negligible impact
on the waveform.

To test this conjecture, we have simulated the evolution of model SCC with our new version of the
CFC code in 2D, and extracted the wave amplitude Ae

+ using the first moment of momentum density
formulation (8.33) with ρ, and also alternatively substituting ρ by ρ∗. As our results show (see upper
panel of Fig. 8.7), the use of ρ∗ results in a small increase of Ae

+ by about 20% during the bounce
and the ringdown phase, limiting possible deviations due to the difference in the quadrupole formula
stated in [423] to about 20%. However, the results depicted in Fig. 8.7 exclude that the doubling of
Ae

+ observed by [423] for the ringdown signal is due to the wave extraction method. On the contrary,
comparing the waveforms for model SCC and SCCSS (see lower panel of Fig. 8.7), both computed
with our CFC method, shows that the strong qualitative difference found by Shibata and Sekiguchi
is clearly due to the differences in the core collapse initial model, notably the small decrease of the
differential rotation length scale Â in model SCCSS. This gives rise to an approximately 50% higher
peak value of the amplitude during bounce, and a strong increase of the post bounce wave amplitude,
as also observed by Shibata and Sekiguchi (compare with Fig. 13 (b) in [423]).

Furthermore, from the evolution of the central density computed with our code (see Fig. 8.8), it is
evident that model SCCSS exhibits significantly stronger ringdown oscillations than model SCC with
a somewhat longer damping timescale, which is also in good agreement with the results in [423] (see
their Fig. 7 (b)). Clearly the small difference in the rotation length parameter Â of the initial model
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Figure 8.8: Influence of differences in the initial model on the evolution of the central density
ρc for rotational core collapse. Changing from the collapse model SCC (solid line) to SCCSS

(dashed line) only slightly shifts the time of bounce tb (indicated by the vertical dotted line),
but leads to much stronger post-bounce ring down oscillations. Nuclear matter density ρnuc is
indicated by the horizontal dotted line.

has a major impact on the post-bounce dynamics of the dense core, which is in turn reflected in the
gravitational wave signal.

We have also simulated the evolution of models SCC and SCCSS using a larger number of radial
and meridional grid points (nr = 250 and nθ = 60 with a central radial resolution ∆rc = 250 m)
as compared to the standard grid setup with nr = 200, nθ = 30, and ∆rc = 500 m (in either case
the spectral grid resolution is n̂r = 33 and n̂θ = 17). Neither improving the resolution of the finite
difference grid nor discarding a significant mass fraction in the outer parts of the star (to mimic the
mass loss introduced by the regridding method in [423]) have a significant impact on the collapse
dynamics or the waveform for both initial models. When simulating the same collapse model, the
observed small differences to Shibata and Sekiguchi’s results in e.g. the central density or the waveform
are most likely due to the use of the CFC approximation for the spacetime metric employed in our
code. Nevertheless, for core collapse simulations, the results obtained using either CFC or the full
Einstein equations agree remarkably well.

8.4.3 Applications of the spectral solver 3 in 3D

Computation of a nonaxisymmetric spacetime metric

While the previous tests were all restricted to 2D (and thus solvers 1 and 2 could as well be used), the
genuine 3D properties of the spectral metric solver 3 can be fully exploited and tested when applied
to the computation of the metric for a nonaxisymmetric configuration. For this purpose we consider
now the uniformly rotating neutron star initial model RNS (see Section 8.4.2) to which we add a
nonaxisymmetric perturbation. This is done by generalizing the expressions in Eq. (8.39) through the
multiplication of a ϕ-dependent term of the form (1 + sin2 ϕ). The effect of such a perturbation on
representative quantities is depicted in Fig. 8.9. The metric equations (8.24) are then integrated using
solver 3. Convergence is reached after about 50 iterations (threshold value ∆ûs

thr = 10−6), and the
solution for the metric is interpolated from the spectral to the finite difference grid.

To exclude convergence to an incorrect solution and errors within the interpolation routine, we
compare the left and right hand sides, lhsu and rhsu, of selected metric components u on the finite
difference grid, in Fig. 8.10. We note that in this figure, along each of the profile directions, the two
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Figure 8.9: Nonaxisymmetric density and velocity perturbation of the rapidly rotating neutron
star equilibrium model RNS. By applying the perturbations described in the text, the original
profiles (dashed lines) of the density ρ along the azimuthal direction ϕ (upper panel), the radial
velocity vr along the meridional direction θ (center panel), and the rotation velocity vϕ along
the radial direction r (lower panel) become strongly distorted (solid lines). The ϕ-dependence
of ρ in the upper panel shows the nonaxisymmetric character of the perturbation.

other coordinates are kept fixed (r = r50, θ = π/4, and ϕ = 0, respectively). The left and right hand
sides of the metric equations (8.24) for the conformal factor φ and the shift vector components β1

and β3, when evaluated on the finite difference grid, match very accurately along all three coordinate
directions. The largest deviations are found near the rotation axis (θ = 0) for β1.

The accuracy of the metric calculation can be better quantified by plotting the relative difference
of the left and right hand sides, ∆rel u = |lhsu/rhsu−1|, rather than lhsu and rhsu alone. This is shown
for the metric quantities φ, β1, and β3 in the insets of Fig. 8.10. Along any of the plotted profiles, the
spectral solver yields a solution for which the relative difference measure is better than 10−2. As lhsu

and rhsu contain second spatial derivatives of the metric, evaluated by finite differencing, this is an
accurate numerical result. We note that some of the metric components are close to zero or change
sign. Hence, the relative difference may become large or develop a pole at some locations, as can be
seen in the insets of Fig. 8.10.

Under idealized conditions (i.e. without discontinuities in the source terms of the metric equations,
no artificial atmosphere, only laminar matter flows, uniform grid spacing of the finite difference grid,
and perturbations which are regular at the grid boundaries), such a test case also offers an opportunity
to examine the order of convergence of the metric solver 3 on the spectral and finite difference grid,
respectively. To this end we perform a metric calculation using increasingly finer resolutions on the two
grids. By varying the number of spectral collocation points in all three spatial directions while keeping
the number of finite difference grid points fixed (at high resolution), we observe an exponential decrease
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Figure 8.10: Left (solid line) and right (dashed line) hand sides (computed on the finite differ-
ence grid) of the equation for the metric components φ along the azimuthal direction ϕ (upper
panel), β1 along the meridional direction θ (center panel), and β3 along the radial direction
(lower panel). Even for strong nonaxisymmetric perturbations of the rotating neutron star
model RNS, the metric solver 3 yields a highly accurate matching, such that the lines almost
lie on top of one another. The insets show the relative difference ∆rel u between the left and
right hand sides of the equation for the same metric components. The relative differences are
. 10−2, except where they exhibit a pole.

of the relative differences ∆rel u between the left and right hand sides of the equation for the various
metric components u. Correspondingly, the metric solution evaluated on the finite difference grid
exhibits second order convergence with grid resolution for a fixed (and high) spectral grid resolution.
Furthermore, the (at least) second order accurate time integration scheme of the code in combination
with the PPM reconstruction of the Riemann solver also guarantees second order convergence during
time evolution. For fixed time steps we actually observe this theoretical convergence order globally
and even locally (except close to the grid boundaries, where symmetry conditions and ghost zone
extrapolation spoil local convergence).

In the three-dimensional case the computational load of the interpolation from the spectral grid to
the finite difference grid after every metric calculation on the spectral grid becomes significant. The
time spent in the interpolation between grids can, in fact, even surpass the computational costs of the
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Table 8.4: Dependence of the metric solver execution time tm on the finite difference grid
resolution nr × nθ × nϕ and the spectral grid azimuthal resolution n̂ϕ using the metric solver 3
in 3D for the nonaxisymmetrically perturbed rotating neutron star model RNS. For typical finite
difference grid point numbers, the ratio rnϕ

between execution times for a given nϕ and for half
that resolution is smaller than 2, i.e. the increase of tm is less than linear. Furthermore, when
doubling both the radial and meridional grid zones, a sublinear increase in the corresponding
ratio rnr,θ

< 4 is observed. Doubling the spectral resolution n̂ϕ increases tm by rn̂ϕ
∼ 2. For

comparison, the values of tm for the corresponding axisymmetric model are given at the bottom.

n̂ϕ = 6 n̂ϕ = 12
nr × nθ × nϕ tm [s] rnϕ

rnr,θ
tm [s] rnϕ

rnr,θ
rn̂ϕ

100 × 32 × 8 37.2 71.5 2.0
100 × 32 × 16 39.9 1.1 77.8 1.1 2.0
100 × 32 × 32 47.4 1.2 90.6 1.2 1.9
100 × 32 × 64 62.3 1.3 116.1 1.3 1.9

200 × 64 × 8 48.3 1.3 90.7 1.3 1.9
200 × 64 × 16 62.5 1.3 1.6 116.6 1.3 1.5 1.9
200 × 64 × 32 92.0 1.5 1.9 166.2 1.4 1.8 1.8
200 × 64 × 64 149.9 1.6 2.4 269.5 1.6 2.3 1.8

n̂ϕ = 4
nr × nθ × nϕ tm [s]

100 × 32 × 1 20.5
200 × 32 × 1 21.7

spectral metric solution itself (see Section 8.4.1). As a consequence, the independence of the metric
execution time tm on the number of finite difference grid points found in the axisymmetric case (as
shown in Table 8.3) cannot be maintained. Table 8.4 reports the summary of runtime results for a
single metric computation of the above neutron star model on an IBM RS/6000 Power4 processor.
These results indicate an (albeit sublinear) increase of tm with the number of finite difference grid
points. As expected, a doubling of the spectral grid resolution e.g. in the ϕ-direction (while keeping
n̂r = 33 and n̂θ = 17 fixed) results in a proportional increase of tm. The runtime scaling results
reported in Table 8.4 also demonstrate that the different coordinate directions contribute equally to
the computational costs.

It is worth pointing out that the other two metric solvers we have available in the code fail to
compute the metric for the nonaxisymmetric neutron star configuration considered in this section due
to the known limitations (excessive computing time for solver 1, convergence problems for solver 2).

Stability of symmetric configurations against perturbations

An important requirement for any hydrodynamics code is the preservation of the symmetry of an
initially symmetric configuration during time evolution. In a practical application this means that if
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a small perturbation is added to symmetric and stable initial data, the perturbation amplitude must
not grow in time. Due to the choice of spherical polar coordinates (r, θ, ϕ), our code is particularly
well suited to test the preservation of the symmetry of spherically symmetric and axisymmetric initial
data. Additionally, this coordinate choice implies that when simulating axisymmetric or spherically
symmetric problems, either one or two dimensions can be trivially suppressed, respectively, which
results in considerable savings of computational time.

Next, we present results from the evolution of both a spherically symmetric neutron star model
(labeled SNS) and the axisymmetric rapidly rotating neutron star model RNS. Model SNS has the
same central density and EoS as model RNS described in Section 8.4.2. To each equilibrium model
SNS and RNS we respectively add an axisymmnetric (r, θ)- and a nonaxisymmetric (r, θ, ϕ)-dependent
three-velocity perturbation of the form

vr = 0.02 sin2

(
π

r

rs

) (
1 + a sin2(2θ)

)
,

vθ = 0.02 sin2

(
π

r

rs

)
a sin2(2θ),

(8.40)

and

vr = 0.02 sin2

(
π

r

rs

) (
1 + sin2(2θ)

) (
1 + a sin2 ϕ

)
,

vθ = 0.02 sin2

(
π

r

rs

)
sin2(2θ)

(
1 + a sin2 ϕ

)
, (8.41)

vϕ = vϕ ini + 0.02 sin2

(
π

r

rs

)(
1 + sin2(2θ)

)(
1 + a sin2 ϕ

)
,

respectively, where a is the perturbation amplitude. Model SNS is then evolved in time using the code
in axisymmetric 2D mode, and model RNS using the fully 3D capabilities of the code. The metric is
calculated every 100 (300) time steps in 2D (3D) and extrapolated in between. The number of finite
difference grid zones is nr = 80, nθ = 16, nϕ = 1 in the 2D case and nr = 80, nθ = 16, nϕ = 12 in the
3D case. Correspondingly, for the spectral grid we use n̂r = 25, n̂θ = 13, n̂ϕ = 4 in 2D, and n̂r = 25,
n̂θ = 13, n̂ϕ = 6 in 3D.

The results of the evolution of the symmetry violating perturbations in both models are depicted
in Fig. 8.11. The upper panels correspond to model SNS which is evolved up to 5 ms, while the bottom
panels correspond to model RNS which is only evolved up to 1 ms. The left and right panels differ
by the value of the initial amplitude a of the velocity perturbation. We observe that the perturbation
amplitude, measured as the relative difference ∆q of an arbitrary matter or metric quantity q evaluated
at two points of constant r (for model SNS) and constant r, θ (for model RNS), remains practically
unchanged for many hydrodynamic time scales. Note that the spikes in ∆q appearing in Fig. 8.11
are the poles associated with a vanishing q. Fig. 8.11 also shows that the amplitude of the symmetry
violation ∆q approximately scales with the amplitude a of the initial velocity perturbation (indicated
by horizontal dotted lines).

In the course of many hydrodynamic time scales, the perturbations (which are of small amplitude,
a ≪ 1) will be finally damped due to the intrinsic numerical viscosity of the schemes implemented in
the code. However, if the rotation rate β of a rotating neutron star were high enough such that β & βs

or even β & βd, perturbations of the form given by Eq. (8.41) could trigger the onset of physically
growing modes, leading to bar mode instabilities.
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Figure 8.11: Time evolution of a symmetry violating perturbation. The upper two panels cor-
respond to the spherically symmetric model SNS, and the lower two panels to the axisymmetric
model RNS. The relative variation in density ∆ρ (solid line), radial velocity ∆vr (dashed line),
rotational velocity ∆vϕ (dotted line), and conformal factor ∆φ (dashed-dotted line) show a
remarkable constancy in time (note that ∆vϕ is nonzero only for the rotating model RNS). The
symmetry violating variation of the different fields scale with the initial perturbation amplitude
(horizontal dotted lines; left panels: a = 10−3; right panels: a = 10−6).

Evolution of an axisymmetric uniformly rotating neutron star in 3D

The ability to handle long-term evolutions of rapidly rotating relativistic equilibrium configurations
is a difficult test for any numerical code. To demonstrate the capabilities of our code to pass this
stringent test we evolve the rotating neutron star initial model RNS in 3D until t = 10 ms, which
corresponds to about 10 hydrodynamic time scales and rotation periods. The simulation is performed
with a resolution for the finite difference grid of nr = 100, nθ = 30, nϕ = 8, and n̂r = 33, n̂θ = 17,
n̂ϕ = 6 for the spectral grid. During the evolution, the metric is calculated every 100 time steps and
extrapolated in between.

The preservation of the radial profile of the rotation velocity vϕ e along the equator over a long
evolution time is shown in Fig. 8.12. Depicted is the initial equilibrium solution (solid line) as a
function of the radial coordinate (in the equatorial plane) and the final configuration (dashed line),
after an evolution time of 10 ms (about 10 rotational periods). The figure shows that vϕ remains
close to its initial value in the interior of the star, showing the strongest (but still small) deviations
near the stellar surface (at the interface to the artificial atmosphere). This local decrease of vϕ due to
interaction of stellar matter with the atmosphere and its depencence on the order of the reconstruction
scheme has also been observed in other studies (see e.g. [178]).

It is important to emphasize that the accurate preservation of the rotational profile is achieved
because of the use of third-order cell-reconstruction schemes for the hydrodynamics equations, such as
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Figure 8.12: Radial profile of the equatorial rotation velocity vϕ e for the unperturbed axisym-
metric rapidly rotating neutron star model RNS evolved in 3D. The profile of vϕ e at t = 10 ms
(dashed line) closely reproduces the initial profile (solid line). The stellar equatorial radius rs e

and the boundary of the finite difference grid rfd are indicated by vertical dotted lines.

PPM, as first shown by [178]. Despite the comparably coarse resolution of the finite difference grid and
the use of the CFC approximation for the gravitational field equations, our code captures the profile
of vϕ e at the stellar boundary about as accurately as codes solving the full Einstein metric equations
coupled to the hydrodynamics equations [181], or codes restricted to hydrodynamic evolutions in a
fixed curved spacetime (i.e. using the so-called Cowling approximation) [178].

Long-term evolutions of rotating neutron stars as the one presented here can be effectively used
for extracting the oscillation frequencies of the various pulsation eigenmodes of the star. This topic
has been traditionally studied using perturbation theory (see e.g. [282] and references therein). In
recent years fully nonlinear hydrodynamical codes have helped to drive progress in the field. They
have provided the quasi-radial mode-frequencies of rapidly rotating relativistic stars, both uniformly
and differentially rotating, which is a problem still not amenable to perturbation techniques (see
e.g. [178, 180, 181, 443, 152]).

In order to test our code against existing results we show next an example of the procedure to
compute mode-frequencies using the model RNS. The frequencies can in principle be extracted from a
Fourier transform of the time evolution of various pulsating quantities when the oscillations are trig-
gered by numerical truncation errors. However, the results significantly improve when a perturbation
of some specific parity is added to the initial equilibrium model. To excite small amplitude quasi-radial
oscillations, we hence apply an l = 0 radial velocity perturbation to the equilibrium configuration of
the form

vr = a sin2

(
π

r

rs

)
, (8.42)

with an amplitude a = −0.01.

Due to this perturbation, various metric and hydrodynamic quantities exhibit very regular periodic
oscillations around their equilibrium state, as shown for the radial velocity vr in Fig. 8.13. The
pulsations, which show no noticeable numerical damping during the entire duration of the simulation
(10 ms), are extracted at half the stellar equatorial radius. The same oscillation pattern is obtained
when instead of using the 3D code (solid line in the figure) the model is evolved using the code in
axisymmetric mode (dashed line in Fig. 8.13 with finite difference grid size of nr = 160, nθ = 60).
The latter, axisymmetric setup is currently being used in a comprehensive parameter study of the
oscillation frequencies of rotating neutron star models [152]. Note that Fig. 8.13 also demonstrates
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Figure 8.13: Time evolution of the radial velocity at half the stellar equatorial radius vr he

for the perturbed rapidly rotating neutron star model RNS. The radial velocity shows regular
oscillations with neither a noticeable drift nor damping when the 3D code is used in low resolu-
tion (solid line) as well as for the 2D code with high resolution (dashed line). For comparison,
the dashed-dotted line shows vr he when no explicit perturbation is added. In this case the
oscillations are triggered by truncation errors and (mostly) by the error resulting from using
the CFC approximation in the evolution code.

that the oscillation amplitude scales linearly with the initial perturbation amplitude a (at least if
a ≪ 1), which was chosen as a = −0.005 in the 2D simulations. In the radial velocity, neither an
offset nor a noticeable drift with time can be observed. This is in agreement with previous results
using alternative formulations and different numerical codes [178, 181].

Time evolution data like the one shown in Fig. 8.13 can be used to extract the eigenmode frequen-
cies. A Fourier transformation of different metric and hydrodynamic quantities at various locations
in the star yields identical (discrete) frequencies. Table 8.5 summarizes the frequencies fF and fH1

for the quasi-radial fundamental mode and its first harmonic overtone, respectively. Both frequencies
obtained with the current 3D code differ only by a few percent from those computed with the code in
2D [152] or the Cactus code, which is based on a Cartesian grid and uses the BSSN formulation for
the Einstein equations [181].

Additionally, we have investigated the influence of grid resolution and finite evolution time on
the accuracy of the frequency extraction. We have found that the differences in the frequencies
between the 2D and 3D simulations presented in Table 8.5 can be almost entirely attributed to the
twice as long evolution time of the 2D simulation (20 ms), for which the Fourier transformation
renders more accurate frequencies. For practical evolution times of several tens of milliseconds and
for grid resolutions better than nr ∼ 100 and nθ ∼ 30, the extracted oscillation frequencies are almost
independent of the number of grid points used.

Note also that the mode-frequencies agree well even though we have used different perturbation
amplitudes a in the 3D and 2D simulations (while in the Cactus run an l = 0 rest mass density
perturbation with an amplitude a = 0.02 was used). Table 8.5 hence proves that our code is able to
simulate rotating neutron stars in a fully three-dimensional context for sufficiently long time scales to
successfully extract oscillation frequencies.

Evolution of a nonaxisymmetric uniformly rotating neutron star in 3D

Contrary to the small amplitude nonaxisymmetric perturbations employed in Section 8.4.3, we turn
now to assess the ability of the numerical code to manage long-term stable evolutions of strongly
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Table 8.5: Comparison of the oscillation frequencies of two perturbed equilibrium neutron star
models SNS and RNS with different axis ratios rs p/rs e obtained with the current code (both
in 2D and 3D) and with the Cactus code [181]. The frequencies for the fundamental mode
fF and for the first harmonic fH1 computed with the current code show a relative difference
with respect to the Cactus code (in parentheses) of at most 2%. Due to the coarse spatial
resolution used, the 3D code results were only calculated to 3 significant figures.

SNS RNS
rs p/rs e = 1.00 rs p/rs e = 0.65

Code fF [kHz] fH1 [kHz] fF [kHz] fH1 [kHz]

current (3D) 1.40 (3.4) 3.95 (0.2) 1.20 (0.4) 3.68 (1.0)
current (2D) 1.463(0.9) 3.951 (0.2) 1.219(2.0) 3.659 (1.6)
Cactus 1.450 3.958 1.195 3.717

gravitating systems with large departures from axisymmetry. This is an essential test for future
astrophysical applications of the code as e.g. the numerical investigation of bar mode instabilities in
rotating neutron stars.

For this purpose we construct a uniformly rotating neutron star model with the same parameters
as model RNS, but with only half the central density. The finite difference grid extends out to
rfd = 80 km, with 60 equidistant radial grid points resolving the neutron star out to rs e = 18.6 km.
The atmosphere is covered by 80 logarithmically spaced radial grid points. The number of angular
zones used in the finite difference grid is nθ = 24 and nϕ = 32, respectively, while the spectral grid
has n̂r = 17, n̂θ = 13, and n̂ϕ = 12 grid points in 3 radial domains.

On top of the equilibrium neutron star model we add a strongly nonaxisymmetric (i.e. ϕ-dependent)
perturbation of the rest-mass density

ρ = ρini + a ρc sin2

[
π

(
r

2rs

)2
]

sin10 ϕ for r ≤ 2rs, (8.43)

with an amplitude a = 0.1, which yields an l = m = 2 bar-like structure. The rotation velocity of
the uniformly rotating unperturbed neutron star is extrapolated into the areas filled with matter by
the perturbation. The initial configuration with the perturbation added is shown in the left panel of
Fig. 8.14.

We have chosen this particular (albeit unphysically strong) perturbation and velocity field in order
to prevent both, an immediate accretion of the added matter bars on to the neutron star or an ejection.
This allows us to follow the rotation of the neutron star for a time comparable to its rotation period
(which is about 1 ms for the unperturbed neutron star). The density and rotation velocity plots in
Fig. 8.14 after t = 0.5 ms (center panel) and t = 1.0 ms (right panel) prove this property of the chosen
perturbation. These plots also demonstrate that the corotating bar structures slowly disappear. The
innermost parts are being gradually accreted by the neutron star, which leads to a significant initial
rise in the central density, as shown in Fig. 8.15. At later times the more massive neutron star oscillates
with a period of tosc ∼ 1.0 ms around a new quasi-equilibrium state, which possesses a central density
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Figure 8.14: Evolution of a strongly distorted nonaxisymmetric rotating neutron star model.
The color coded distribution of log ρ on the equatorial plane shows how the initial perturbation
(left panel) is partly accreted by the neutron star, and partly stretched into spiral arms (center
panel). After about one rotation period of the neutron star, the trailing spiral arms have grown
considerably in size (right panel). The rotation velocity vϕ is indicated by white arrows. Note
that the atmosphere (color coded in black) has a density of much less than 107 g cm−3, and
that only the innermost 60 km of the computational domain are shown.

of more than 50% above the initial equilibrium central density. Despite this strong interaction of the
bar perturbation with the neutron star, the rotation profile inside the neutron star remains uniform
throughout the evolution, although the rotation velocity nearly doubles during the oscillation maxima.
This behavior is most likely due to the particular choice of a uniform rotation profile for the initial
bar perturbation.

For the outer parts of the initial bar, the increasing distance from the neutron star and the suf-
ficiently high specific angular momentum prevents their accretion onto the neutron star. Thus the
matter in this region of the bar drifts to larger radii during the evolution. As on the dynamical
timescales considered of one rotation period there is no efficient transport mechanism of local angu-
lar momentum by viscous effects (which act on much longer timescales), the evolution leads to the
development of spiral arms which are clearly visible in the middle and right panels of Fig. 8.14. The
outer parts of these arms are centrifugally expelled from the finite difference grid, crossing the outer
boundary at t ∼ 0.84 ms. By the end of the simulation, at t = 4 ms, there is neither significant
backscattering of matter from the outermost boundary of the radial grid, nor there are numerical
artifacts visible at the leading or trailing edges of the spiral arms. This proves that our numerical
treatment of the radial boundary conditions and of the artificial low density atmosphere surrounding
the star have the desired behavior.

Fig. 8.15 shows that already after an evolution time of ∼ 1 ms, the evolution of the spiral arms
has no further significant impact in the dynamics of the neutron star, as then the slowly decaying
oscillation around the final equilibrium state exhibits a rather regular ring-down pattern. Plotted in
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Figure 8.15: Time evolution of the central density ρc for distorted nonaxisymmetric rotating
neutron star models. If the distortion is strong (a = 0.1, solid line), matter accretion from
the rotating bars results in a steep initial increase of ρc, which slowly settles down to a new
equilibrium state (indicated by the horizontal dotted line). For a small perturbation (a = 0.01,
dashed line), the evolution of ρc follows very closely that of an unperturbed model (dashed-
dotted line).

this figure is also the time evolution of the central density for a model with an amplitude a = 0.01 of
the initial perturbation given by Eq. (8.43) (dashed line). In addition, the dashed-dotted line shows
the corresponding time evolution of ρc for an unperturbed model (the small amplitude oscillations are
in this case triggered by the truncation errors of the numerical schemes and by the use of the CFC
approximation in the evolution code). The similarity in the behavior of ρc in these cases demonstrates
that for perturbations with an amplitude a . 0.01, the dynamics of the central neutron star is virtually
unaffected by the initial bar and by the spiral arms forming at later times. However, we observe that
also for small values of a spiral arms develop which are stable over many rotation periods.

Apparently, strong nonaxisymmetric perturbations of the form (8.43) give rise to significant grav-
itational wave emission. The waveforms of the nonzero gravitational wave amplitudes Ae

+, Ap
+, and

Ap
× (as shown in the upper, center, and lower panel of Fig. 8.16, respectively) exhibit peak values of

up to ∼ 15 × 103 cm for the model with a perturbation amplitude a = 0.1 (solid lines). In Fig. 8.16
we also present the waveforms for the model with a bar perturbation of amplitude a = 0.01 (dashed
lines). Their amplitudes are roughly a factor 10 smaller than those of the corresponding waveforms of
the model with a = 0.1. Thus we can infer that the gravitational radiation amplitude approximately
scales with a.

We emphasize that owing to the particular form of the perturbation (8.43), the ×-mode of the grav-
itational radiation is zero at the equator, Ae

× = 0. We also note that if instead of the nonaxisymmetric
perturbation in Eq. (8.43) we use an axisymmetric one,

ρ = ρini + a ρc ini sin2

[
π

(
r

2rs

)2
]

for r ≤ 2rs, (8.44)

then the ×-mode of gravitational radiation vanishes completely, and only the +-mode is present
(dashed-dotted line in the upper panel of Fig. 8.16). Additionally, in axisymmetry the +-mode on the
pole is always zero, Ap

+ = 0.
We point out that the waveform pattern for the model with the a = 0.1 bar perturbation in

Fig. 8.16 does not solely reflect the oscillation and ring-down structure of the central neutron star, as
visible in the time evolution of ρc in Fig. 8.15. For instance the +-mode at the equator (upper panel)
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Figure 8.16: Gravitational wave signal for distorted nonaxisymmetric rotating neutron star
model. If the distortion is strong (a = 0.1, solid lines), the nonzero gravitational wave ampli-
tudes Ae

+ (upper panel), Ap
+ (center panel), and Ap

× (lower panel) reach peak values of up to
∼ 15, 000 cm. The amplitudes reduce significantly for a = 0.01 (dashed lines). If an axisym-
metric perturbation with a = 0.1 is applied (dashed-dotted line), only the Ae

+ gravitational
wave mode is present.

decays on a much longer time scale than the corresponding ring-down time of ρc. On the other hand,
the waveforms for the two polarizations of the radiation at the pole exhibit their peaks during the first
oscillation of ρc and then decay rapidly (center and lower panel). However, after an evolution time
of ∼ 2 ms their amplitudes increase again. From this behavior we deduce that initially the waveform
signal is dominated by the gravitational wave emission from the oscillating neutron star. As this
contribution decays during the ring-down, the wave emission from spiral arms becomes increasingly
important. As they expand into the atmosphere the radial weight arm in the quadrupole formula
compensates for the relatively low density of the spiral arms, and the radiation emitted in this region
becomes visible in the signal. We cannot clearly attribute the late-time increase in the waveform
amplitude to the onset of a bar mode instability, because the rotation parameter β of our model
clearly falls short of the approximate threshold for dynamical growth of bar modes: β ∼ 0.14 ≪ βd.
We plan to investigate this issue more thoroughly in the future.

The maximum amplitude A ∼ 15 × 103 cm of the wave signal for a = 0.1 corresponds to a
dimensionless gravitational wave amplitude h ∼ 5 × 10−19 at a distance of r = 10 kpc to the source.
Thus, in this case of a strongly nonaxisymmetric artificial perturbation, the typical wave amplitudes
have a value of roughly one order of magnitude above the ones of waveforms obtained from the
simplified models of rotational supernova core collapse in axisymmetry by Dimmelmeier et al. [149].
For the waveforms plotted in Fig. 8.16 we utilize the stress formula (8.34) with ρ∗ as density. The use
of this formula efficiently reduces the numerical noise in the signal as compared with the first moment
of momentum density formula and particularly with the standard quadrupole formula.
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We consider the grid resolution used in this test simulation to be the minimal one required for
obtaining reasonably converged results. By repeating the same model with different grid resolutions
we are able to estimate that the waveform amplitudes are correctly computed within ∼ 30% accuracy.

8.5 Conclusions

In this paper we have presented a new three-dimensional general relativistic hydrodynamics code
which is primarily intended for applications of stellar core collapse to a neutron star or a black hole,
as well as for studies of rapidly rotating relativistic stars which may oscillate in their quasi-normal
modes of pulsation, emitting gravitational radiation, or which may be subject to nonaxisymmetric
instabilities. The main novelty of this code compared to other existing numerical relativistic codes
is that it combines very accurate state-of-the-art numerical methods specifically tailored to solve the
general relativistic hydrodynamics equations on the one hand, and the gravitational field equations
on the other hand. More precisely, the hydrodynamic equations, formulated in conservation form,
are solved using high-resolution shock-capturing schemes based upon approximate Riemann solvers
and third-order cell-reconstruction interpolation procedures, while the elliptic metric equations are
solved using an iterative nonlinear solver based on spectral methods. Furthermore, the present code
also departs noticeably from other three-dimensional codes in the coordinate system used in the
formulation of the equations and in the discretization. In our approach both the metric and the
hydrodynamics equations are formulated and solved numerically using spherical polar coordinates.
In the present investigation we have adopted the so-called conformal flatness approximation of the
Einstein equations, which reduces them to a set of five elliptic nonlinear equations, particularly suited
for the use of spectral methods. Recently, constrained formulations of the full Einstein equations in
which elliptic equations have a preeminence over hyperbolic equations have been reported, and appear
to be amenable to the current code.

The main purpose of the paper has been to assess the code by demonstrating that the combination
of the finite difference grid and the spectral grid, on which the hydrodynamics and metric equations
are respectively solved, can be successfully accomplished. This approach, which we call Mariage des
Maillages (French for grid wedding), results in high accuracy of the metric solver and, in practice,
has allowed for fully three-dimensional applications using computationally affordable resources, along
with ensuring long term numerical stability of the evolution. To facilitate the Mariage des Maillages,
i.e. the combination of the finite difference grid for the hydrodynamic solver and the spectral grid for
the metric solver, a sophisticated interpolation and grid communication scheme has been used. In
addition, we have compared our novel approach to two other, finite difference based, methods to solve
the metric equations, which we already employed in earlier axisymmetric investigations [148, 149].

We have presented a variety of tests in two and three dimensions, involving neutron star spacetimes
and stellar core collapse. Axisymmetric simulations have also been performed to compare core collapse
to neutron stars using the CFC approximation and full general relativity, for which only very recently
results have become available [423]. This comparison has shown the suitability of the conformally flat
approximation for such mildly relativistic scenarios. Furthermore, the code has succeeded in simulating
the highly perturbed nonaxisymmetric configuration of a uniformly rotating neutron star for several
dynamical times. This simulation has also been used to assess the 3D gravitational waveform extraction
capabilities of the code. In summary the numerical experiments reported in the paper demonstrate
the ability of the code to handle spacetimes with and without symmetries in strong gravity. In future
work we plan to apply this code to simulations of stellar core collapse to neutron stars or black holes
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in three dimensions, and particularly to studies of the nonlinear development of bar mode instabilities
in rapidly rotating neutron stars.

APPENDIX

8.A Differences to previous 2D CFC simulations

8.A.1 Compact form of the Euler equation sources

In the axisymmetric CFC code presented in [148, 149] the source terms Qj for the hydrodynamic
momentum equations (Euler equations) were evaluated on the finite difference grid using a formulation
containing time derivatives and explicit Christoffel symbols (see Equation (8.4)):

Qj = Tµν

(
∂gνj

∂xµ
− Γλ

µνgλj

)
. (8.45)

Using the relation between the Christoffel symbols and the derivatives of the spacetime metric,

Γλ
µν =

1

2
gλδ

(
∂gδν

∂xµ
+

∂gδµ

∂xν
− ∂gµν

∂xδ

)
, (8.46)

the sources Qj can be written in a more compact form as

Qj =
1

2
Tµν ∂gµν

∂xj
. (8.47)

In this formulation, only spatial derivatives of the metric are needed, and the numerical evaluation
of Qj involves significantly fewer terms, making a numerical implementation both faster and more
accurate. For these reasons, we have preferred the use of Equation (8.47) to Equation (8.45) in the
code presented in this paper.

8.A.2 Exact numerical conservation of the hydrodynamic equations

As emphasized in Section 5.4 in [148], the conserved hydrodynamic quantity in the system of conserva-
tion equations (8.3) is not simply the state vector U but rather

√
γU with

√
γ = φ6r2 sin θ. Therefore,

if only the state vector U is evolved, this gives rise to an additional source term Q̂ which contains
time derivatives of the conformal factor φ. These generally time-dependent source terms result in a
variation of the volume-integrated state vector with time, and thus in a violation of exact numerical
rest mass and angular momentum conservation of several percent, even though the “physical” sources
vanish, Q = 0 (see Figs. 9 and 10 in Ref. [148]).

It is not possible to evolve
√

γU in a straightforward way and then consistently solve the elliptic
metric equations (8.11) on the new time slice. This is due to the fact that the sources for these
equations contain the pressure P , which can only be extracted from U but not from

√
γU . However,

one can make use of the time evolution equation for the conformal factor, Eq. (8.9), to obtain an
auxiliary value for φ and thus for

√
γ on the new time slice. With this the state vector U can be

consistently calculated from
√

γU after the time evolution step to the new time slice, which in turn
is used in the sources of the metric equations (8.11). These are subsequently solved on the new time
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slice. With the help of this reformulation of the hydrodynamic time evolution problem in the current
code (in combination with the compact time-independent form for the sources in the Euler equations,
Eq. (8.47)), we are able to achieve exact numerical conservation of the total rest mass and angular
momentum up to machine roundoff errors, provided that there is no artificial atmosphere and no mass
flow across the outer radial grid boundary.

8.A.3 Shift vector boundary conditions

The results for the evolution of the central density ρc and the waveform for the core collapse model
SCC (A3B2G4 in [149]) presented in this paper slightly differ from those reported in the previous
paper by Dimmelmeier et al. [149]. This is partly due to the improvements related to evaluating the
Euler equation source terms in compact form and using exact numerical conservation in the new code,
as discussed above. However, the main reason for the small discrepancy is that in the simulations
in [149] a symmetric boundary condition for the shift vector component β2 across the equatorial plane
was chosen. This leads to a nonzero value for β2 at θ = π/2 close to and after core bounce, i.e.
when meridional motions set in. As a consequence of this, the deviation is stronger for models where
rotation plays a significant role in the collapse dynamics.

The physically accurate antisymmetric equatorial boundary condition for β2 which is used in the
present code, systematically yields lower post-bounce values for ρc in regular collapse type models
compared to the simulations presented in [149], with a difference of 11% on average. For models
which show multiple bounce behavior, we obtain a lower ρc also at core bounce.

Accordingly, the waveform amplitudes and frequencies of the gravitational radiation are altered by
a small amount (-11% for |AE2

20 |max and -18% for ν). Despite of these small quantitative changes, the
qualitative statements related to the influence of general relativistic effects in rotational core collapse
made by Dimmelmeier et al. [149] remain unaffected, even when the antisymmetric boundary condition
is used. We particularly emphasize that the change in the boundary condition for β2 plays no role when
comparing our results with the fully general relativistic simulations by Shibata and Sekiguchi [423]
discussed in Section 8.4.2.

We note that for all core collapse models presented in the parameter study by Dimmelmeier et
al. [149], results obtained with the new boundary condition for β2 can be found in the revised waveform
catalogue [197].
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9.1 Introduction

In the 3 + 1 formalism of general relativity, the Einstein equations are decomposed into a set of
four constraint equations and six evolution equations [486, 55]. Solving the (elliptic-type) constraint
equations at each time-step in multidimensional simulations is in general not feasible as it is com-
putationally expensive for most numerical techniques. Hence, a free-evolution approach, i.e., solving
the constraint equations only for the initial data and performing the evolutions without enforcing the
constraints, is generally favoured over a fully constrained scheme (solving the constraints at each time
step) in three-dimensional numerical simulations. While mathematically the constraints are preserved
by the evolution equations, in practice small constraint violations due to numerical errors typically
grow quickly to a significant level that make the solution unphysical and plague the simulations.
Although numerous techniques to control the growth of constraint violations have been developed
(e.g., [99, 296, 278, 255, 468, 202]), it is not clear yet to what extent they can control the constraint
violations successfully in general.

Fully constrained-evolution scheme has been used in the past only in spherically symmetric or
axisymmetric problems (e.g., [440, 117, 4, 118]). The main advantage of a fully constrained scheme is
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that the constraints are fulfilled to within the discretisation errors, and the constraint-violating modes
do not exist by construction. Recently, a new formulation for 3+1 numerical relativity based on a fully
constrained-evolution scheme is proposed by Bonazzola et al. [73]. The chosen coordinate conditions
(maximal slicing and Dirac gauge, see Sec. 9.2.3), together with the use of spherical components of
tensor fields, reduce the ten Einstein equations to a system of five quasi-linear elliptic equations, which
are solved by efficient multi-domain spectral methods, and two quasi-linear scalar wave equations [73].
The Dirac gauge is used to fix the remaining three degrees of freedom. The stability of the proposed
scheme has been demonstrated for a three-dimensional pure gravitational wave spacetime [73].

In the proposed constrained scheme, the coordinates are fixed by the Dirac gauge on each hy-
persurface (with maximal slicing condition), including the initial one. This implies that initial data
must be prepared in the same coordinate choices in order to perform dynamical evolutions. As an
advantage of this gauge-fixing, stationary solutions of the Einstein equations can be computed within
the same framework simply by setting the time derivative terms to zero in the equations. The aim of
the present work is to construct rotating-star initial data for this new formulation of 3 + 1 numerical
relativity. For this purpose, we have developed a numerical code to calculate stationary axisymmetric
rotating star models based on the Dirac gauge and maximal slicing.

The purpose of this paper is to present the formulation of the problem and the tests that have
been done to validate our numerical code. The numerical code can be used to provide initial rotating
star models for hydrodynamics simulations in full general relativity within the new formulation. Our
emphasis here is put on the comparison of the accuracy between our code and a well-established code
LORENE-rotstar [67, 217, 216]. In particular, we demonstrate that our numerical code can compute
rapidly rotating neutron star and strange star models to high accuracy. Unless otherwise noted, we
use units such that G = c = 1. Latin (Greek) indices go from 1 to 3 (0 to 3).

9.2 Formulation

9.2.1 The 3 + 1 decomposition

In this section, we give a brief description of the 3+1 formulation of the Einstein equations in order to
define our notations (see, e.g., [486, 55] for details). In the 3 + 1 formalism, the spacetime is foliated
by a family of spacelike hypersurfaces Σt, labelled by the time coordinate t. Introducing a coordinate
system (xi) on each hypersurface, the line element may be written as

ds2 = −N2dt2 + γij(dxi + βidt)(dxj + βjdt), (9.1)

where N is the lapse function, βi is the shift vector, and γij is the 3-metric induced by the spacetime
metric gαβ onto each hypersurface Σt

γαβ := gαβ + nαnβ . (9.2)

Here nα := −N∇αt is the unit normal to Σt, where ∇α is the covariant derivative associated with the
spacetime metric gαβ . The stress-energy tensor Tαβ is decomposed as

Tαβ = Enαnβ + nαJβ + Jαnβ + Sαβ , (9.3)

where E := Tαβnαnβ, Jα := −γ µ
α Tµνn

ν , and Sαβ := γ µ
α γ ν

β Tµν are the energy density, momentum
density, and the stress tensor, as measured by the observers of 4-velocity nα (the so-called Eulerian
observers Oe).
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The evolution of the 3-metric γij is governed by

∂

∂t
γij − Lβγij = −2NKij , (9.4)

where L is the Lie derivative operator and Kij is the extrinsic curvature of Σt. The evolution equation
for Kij is

∂

∂t
Kij − LβKij = −DiDjN + N{Rij − 2KijK

ij + KKij

+4π[(S − E)γij − 2Sij ]}, (9.5)

where Di is the covariant derivative associated with the 3-metric γij , Rij is the Ricci tensor associated
with this 3-metric, K := Ki

i is the trace of the extrinsic curvature, and S := Si
i. In the 3+1

formulation, the full set of Einstein equations is equivalent to the above evolution equations, together
with the Hamiltonian constraint

R + K2 − KijK
ij = 16πE, (9.6)

and the momentum constraint

DjK
j

i − DiK = 8πJi, (9.7)

where R := Ri
i is the three-dimensional Ricci scalar.

9.2.2 The matter sources: uniformly rotating fluid

We assume that the matter consists of a perfect fluid with a stress-energy tensor

Tαβ = (e + P )uαuβ + Pgαβ , (9.8)

where uα is the 4-velocity of the fluid; e and P are respectively the energy density and pressure, as
measured by the the fluid comoving observer Of . Defining the Lorentz factor linking the two observers
Oe and Of by

Γ := −nαuα = Nut, (9.9)

the energy density E in Eq. (9.3) can be written as

E = Γ2(e + P ) − P. (9.10)

The momentum density J i is

J i = (E + P )vi, (9.11)

where the fluid 3-velocity vi is related to the spatial components of the fluid 4-velocity ui by

ui = Γ

(
vi − βi

N

)
. (9.12)

Note that the Lorentz factor can be expressed as Γ = (1−v2)−1/2, where v := (viv
i)1/2 is the “physical”

fluid speed as measured by the Eulerian observer Oe. The stress tensor Sij is given by

Sij = (E + P )vivj + Pγij . (9.13)
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Up to this point, we have not made any assumptions on the spacetime and fluid flow. Now, we
consider that the spacetime is stationary, axisymmetric, and asymptotically flat. These assumptions
imply the existence of two Killing vector fields: ~ζ, which is timelike at spatial infinity; ~χ, which is
spacelike everywhere and with closed orbits. Furthermore, the Killing vectors commute [107], and
hence we can choose an adapted coordinate system (t, x1, x2, ϕ), such that ~ζ = ∂/∂t and ~χ = ∂/∂ϕ
are the coordinate vector fields (see also [67]). We choose the remaining two coordinates to be of
spherical type (i.e., x1 = r and x2 = θ).

We also impose the so-called circularity condition on the stress-energy tensor:

Tα
βζβ = µζα + νχα, (9.14)

Tα
βχβ = λζα + σχα. (9.15)

This condition is equivalent to the absence of meridional convective currents, and implies that the
fluid 4-velocity is given by

~u = ut

(
∂

∂t
+ Ω

∂

∂ϕ

)
, (9.16)

where Ω := uϕ/ut is the fluid coordinate angular velocity, and can be interpreted as the fluid angular
velocity as seen by an inertial observer at rest at infinity. A theorem of Carter [106] shows that the
circularity condition implies that the line element can be written as

ds2 = −N2dt2 + γϕϕ(dϕ + βϕdt)2 + γrrdr2 + 2γrθdrdθ + γθθdθ2. (9.17)

Notice that only the ϕ-component of the shift vector is nonzero and we have not specified the gauge
choice at this point. The so-called quasi-isotropic gauge (see Sec. 9.3.3) corresponds to γrθ = 0, γθθ =
r2γrr, while the Dirac gauge relates the metric components by differential equations (see Eq. (9.26)).

The equation of stationary motion follows from the projection of the conservation equation

∇αTαβ = 0

normal to the 4-velocity uα. In this paper, we focus on the case of uniformly rotating star (i.e., Ω is a
constant). We also assume that the fluid is barotropic. In this case, the equation of stationary motion
can be integrated analytically and is given by (see, e.g., [67])

H + lnN − ln Γ = const., (9.18)

where H is the log-enthalpy defined by

H :=

∫
dP

e + P
. (9.19)

9.2.3 The metric equations

Here we summarise the full set of Einstein equations in the constrained-evolution scheme based on the
Dirac gauge and maximal slicing. We refer the reader to Ref. [73] for details and derivations. First,
we define a conformal metric γ̃ij by

γ̃ij := Ψ−4γij , (9.20)
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with the conformal factor Ψ defined by

Ψ :=

(
det γij

det fij

)1/12

, (9.21)

where fij is a flat 3-metric, given by the asymptotic condition on γij . The four constraint equations
(9.6) and (9.7), together with the maximal slicing condition K = 0, result in two scalar equations for
the lapse and conformal factor; and one vectorial elliptic equations for the shift vector.

The lapse function N is given by

∆N = Ψ4N
[
4π(E + S) + ÃklA

kl
]
− hklDkDlN − 2D̃kΦD̃kN, (9.22)

where Di is the covariant derivative associated with the flat metric fij and its contravariant component
is defined by Di := f ijDj ; ∆ := f ijDiDj is the flat-space Laplacian operator; D̃i is the covariant
derivative associated with the conformal metric γ̃ij and its contravariant component is D̃i := γ̃ijD̃j

(with the inverse conformal metric γ̃ij defined by γ̃ikγ̃
kj = δ j

i ). The quantity Φ is defined by Φ := lnΨ.
The traceless part of the conformal extrinsic curvature Aij is defined by

Aij := Ψ4

(
Kij − 1

3
γijK

)
, (9.23)

while the tensor field Ãij is defined by

Ãij := γ̃ikγ̃jlA
kl = Ψ−4

(
Kij −

1

3
γijK

)
. (9.24)

The tensor field hij on the right-hand side (RHS) of Eq. (9.22) is the deviation of the inverse conformal
metric from the inverse flat metric defined by

hij := γ̃ij − f ij . (9.25)

In the proposed constrained scheme, the Dirac gauge condition is given by

Djh
ij = 0. (9.26)

Next, the conformal factor Ψ (or equivalently Q := Ψ2N) is determined from

∆Q = −hklDkDlQ + Ψ6

[
N

(
4πS +

3

4
ÃklA

kl

)]

+2Ψ2

[
N

(
R̃∗

8
+ D̃kΦD̃kΦ

)
+ D̃kΦD̃kN

]
, (9.27)

where the quantity R̃∗ on the RHS is given by

R̃∗ :=
1

4
γ̃klDkh

mnDlγ̃mn − 1

2
γ̃klDkh

mnDnγ̃ml. (9.28)

The elliptic equation for the shift vector is

∆βi +
1

3
Di(Djβ

j) = 16πNΨ4J i + 2AijDjN − 12NAijDjΦ − 2N∆i
klA

kl

−hklDkDlβ
i − 1

3
hikDkDlβ

l, (9.29)
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where the tensor field ∆k
ij is defined by

∆k
ij :=

1

2
γ̃kl (Diγ̃lj + Dj γ̃il −Dlγ̃ij) . (9.30)

Now we turn to the dynamical part of the Einstein equations. In the proposed constrained scheme,
one solves for the tensor field hij instead of γ̃ij . The evolution equation in this formulation is given by
a flat-space (second-order) wave equation for hij (see Eq. (85) of Ref. [73]). As mentioned in Sec. 9.1,
one advantage of using the Dirac gauge to fix the coordinates on each slice Σt is that stationary
solutions of the Einstein equations can be computed within the same scheme, simply by setting the
time-derivative terms to zeros in the equations. This is possible because of the existence of the Killing
vector ~ζ = ∂/∂t as discussed in Sec. 9.2.2. This reduces the wave equation for hij to the following
tensorial Poisson-like equation:

∆hij =
Ψ4

N2

{
LβLβhij +

4

3
Dkβ

kLβhij +
N

Ψ6
DkQ

(
Dihjk + Djhik −Dkhij

)
− 2NSij

−2

3
Dkβ

k(Lβ)ij + 2(LβN)Aij +
2

3

[
Lβ(Dkβ

k) +
2

3
(Dkβ

k)2
]

hij

−Lβ(Lβ)ij
}

, (9.31)

where the notation (Lβ)ij stands for the conformal Killing operator associated with the flat metric
acting on the shift vector βi:

(Lβ)ij := Diβj + Djβi − 2

3
Dkβ

kf ij . (9.32)

The tensor field Sij on the RHS of Eq. (9.31) is given by

Sij = Ψ−4
{

N
(
R̃ij

∗ + 8D̃iΦD̃jΦ
)

+ 4
(
D̃iΦD̃jN + D̃jΦD̃iN

)

−1

3

[
N

([
R̃∗ + 8D̃kΦD̃kΦ

]
γ̃ij

)
+ 8D̃kΦD̃kNγ̃ij

]}

+2N

[
γ̃klA

ikAjl − 4π

(
Ψ4Sij − 1

3
Sγ̃ij

)]

−Ψ−6

[
γ̃ikγ̃jlDkDlQ +

1

2

(
hikDkh

lj + hkjDkh
il − hklDkh

ij
)
DlQ

−1

3

(
γ̃klDkDlQγ̃ij

)]
, (9.33)

with

R̃ij
∗ =

1

2

[
hklDkDlh

ij −Dlh
ikDkh

jl − γ̃klγ̃
mnDmhikDnhjl

+γ̃nlDkh
mn

(
γ̃ikDmhjl + γ̃jkDmhil

)
+

1

2
γ̃ikγ̃jlDkh

mnDlγ̃mn

]
. (9.34)

Furthermore, after setting the time-derivative term of hij to zero, the conformal extrinsic curvature
Aij as defined in Eq. (9.23) is deduced from (see Eq. (92) of [73])

Aij =
1

2N

[
(Lβ)ij − Lβhij − 2

3
Dkβ

khij

]
. (9.35)
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In summary, to calculate stationary axisymmetric uniformly rotating star models in the framework
of the constrained scheme [73] based on the Dirac gauge and maximal slicing, one needs to solve for two
scalar elliptic equations (9.22) and (9.27) respectively for N and Ψ, a vectorial Poisson-like equation
(9.29) for βi, and a tensorial elliptic equation (9.31) for hij , together with the first integral of motion
Eq. (9.18) for the matter. The numerical procedure on how to solve this system of equations is
described in Sec. 9.3.1.

9.2.4 Global quantities

We list here various global quantities relevant to axisymmetric rotating-star spacetimes. These gauge
invariant quantities are useful to estimate the accuracy of our numerical code as they provide a direct
comparison between our code and a different code, which uses a different gauge condition, as presented
in Sec. 9.3.3.

Given a baryon current nuα, where n is the number density in the fluid frame, the baryon mass
of the star is expressed as

Mb = mB

∫
[−nα (nuα)] dV = mB

∫
ΓndV, (9.36)

where mB is the baryon rest mass, dV =
√

γd3x is the proper 3-volume element (with γ being the
determinant of the 3-metric), and we have used Eq. (9.9) in the second equality. As we follow Ref. [73]
to expand all tensor fields onto the spherical basis (eî) = ( ∂

∂r , 1
r

∂
∂θ , 1

r sin θ
∂

∂ϕ), which is orthonormal with

respect to the flat metric, the proper volume element is written explicitly as dV =
√

γ̂r2 sin θdrdθdϕ.
Notice that we denote by γ̂ the determinant of the 3-metric expanded onto the basis (eî). Here and

afterward we denote by (r̂, θ̂, ϕ̂) indices of specific components on the orthonormal basis (eî).
The gravitational mass Mg is given by the Komar integral (see Eq. (11.2.10) of [479])

Mg = 2

∫ (
Tαβ − 1

2
T λ

λgαβ

)
nαζβdV, (9.37)

where ζα is the timelike Killing vector discussed in Sec. 9.2.2. Explicitly, we have

Mg =

∫ [
N(E + S) − 2Jϕ̂βϕ̂

]
dV, (9.38)

The total angular momentum J is given by (see Problem 6 of [479])

J = −
∫

TαβnαχβdV =

∫
Jϕ̂r sin θdV, (9.39)

where χα is the axial Killing vector of the spacetime. The rotational kinetic energy for a uniformly
rotating star is T = 1

2ΩJ . The gravitational potential energy is

W = Mp + T − Mg, (9.40)

where Mp is the proper mass of the star defined by

Mp =

∫
[−nα (euα)] dV =

∫
ΓedV. (9.41)
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Note that W is defined to be positive.

Furthermore, two relativistic virial identities (the so-called GRV2 and GRV3) have been proved to
be useful for checking the consistency and accuracy of numerical solutions of rotating relativistic star
models. The three-dimensional virial identity GRV3 [220] is a relativistic generalisation of the Newto-
nian virial identity, valid for any stationary and asymptotically flat spacetime. The two-dimensional
virial identity GRV2 [76] is valid for any asymptotically flat spacetime (without any symmetry as-
sumption). The two virial identities are integral relations between the matter and metric fields (see
[220, 76] for expressions). In practice, we define the quantities GRV 2 := |1−λ2| and GRV 3 := |1−λ3|
as the error indicators for the virial identities, where λ2 and λ3 are defined via the integral relations,
such that exact solutions of the Einstein equations satisfy GRV 2 = GRV 3 = 0 (see [344]). Note that
these identities are not imposed during the numerical calculation, and hence are useful indicators for
checking the accuracy of numerical results.

9.3 Numerical results

9.3.1 Numerical procedure

To calculate stationary axisymmetric rotating stars within the Dirac gauge and maximal slicing, we
solve the nonlinear elliptic equations described in Sec. 9.2.3 iteratively by means of multi-domain
spectral methods [69, 72] in spherical coordinates. The code is constructed upon the LORENE C++
library [216]. We use three spherical numerical domains to cover the whole hypersurface Σt. Specif-
ically, we use one domain to cover the whole star and one domain for the space around the star
(typically to about twice the stellar radius). The last domain covers the space out to spatial infinity
by means of a compactification u = 1/r [67].

In each domain, we use Nθ collocation points in the polar direction and Nϕ = 1 point in
the azimuthal direction for the spectral method. For the radial direction, we can choose to have
different numbers of collocation points in different domains. In Sec. 9.3.3, we use the notation
Nr = (Nr1, Nr2, Nr3), where Nr1 denotes the number of points in the first domain etc, to specify
the grid structure in the radial direction.

The numerical iteration procedure is briefly described here. For a given equation of state, we choose
Ω and the central value of the log-enthalpy H (see Eq. (9.19)) as the physical parameters that specify
the rotating star model. First we start with an initial guess by setting all the metric quantities to their
flat spacetime values, together with a spherically symmetric distribution for the matter sources. The
iteration procedure begins by solving Eqs. (9.22) and (9.29) respectively for the corresponding lapse
and shift. Thus, we obtain the only nonzero component of the 3-velocity vϕ̂ = (Ωr sin θ + βϕ̂)/N (see
Eq. (9.12)), and hence the Lorentz factor Γ. Next we use the first integral of motion (Eq. (9.18)) to
obtain H, from which we deduce the pressure P and the energy density e through the EOS. Finally,
we solve Eqs. (9.27) and (9.31) respectively for Q and hij . The iteration procedure continues until
the relative difference in H throughout the whole star between two consecutive steps is smaller than
some prescribed value.

The resolutions of the scalar Poisson equations for N and Q, and the vectorial elliptic equation
for βi have been described in details in [228]. The technique for solving the tensorial Poisson equa-
tion (9.31) is described in 9.A.



9.3 Numerical results 301

9.3.2 Equation of state

In Sec. 9.3.3, we present various tests that have been done to validate our numerical code. For this
purpose, we use a polytropic EOS in the following form to construct rotating neutron star models:

P = κnγ , (9.42)

where κ and γ are constants. The number density n is related to the energy density e by

e = mBn +
κ

γ − 1
nγ , (9.43)

where the baryon mass mB = 1.66 × 10−24 g. In particular, we take γ = 2 and κ = 0.03ρnucc
2/n2

nuc,
where ρnuc = 1.66 × 1014 g cm−3 and nnuc = 0.1 fm−3. For this EOS, the log-enthalpy is given
analytically by

H = ln

[
1 +

κγ

mB(γ − 1)
nγ−1

]
. (9.44)

We also use the simplest MIT bag model EOS, with noninteracting massless quarks, to construct
rapidly rotating strange stars. The EOS is given in the following form (see, e.g., [217])

P =
1

3
an4/3 − B,

e = an4/3 + B, (9.45)

where B is the MIT bag constant and the parameter a = 9π2/3~c/4 = 952.371 MeV fm. We choose B =
60 MeV fm−3 in this work. The stellar surface is characterised by the properties of strange matter at
zero pressure: the number density n0 = 0.28665 fm−3 and the mass density ρ0 = 4.2785×1014 g cm−3.
The log-enthalpy is related to n simply by H = ln(n/n0)

1/3. The MIT bag model EOS is useful to test
our numerical code in the highly relativistic regime, since strange stars can reach higher compactness
ratios and rotation rates than ordinary neutron stars.

9.3.3 Tests of the numerical code

To test our numerical code, we start with a non-rotating star modelled by the polytropic EOS described
in Sec. 9.3.2. The central value of the log-enthalpy is H0 = 0.2308 (or equivalently the energy density
e0 = 4.889ρnucc

2) and the baryon mass of the star is Mb = 1.6M⊙. The star has a gravitational mass
Mg = 1.4866M⊙ and a compactness ratio Mg/R = 0.147, where R is the circumferential radius. In
the numerical calculations, we use a parameter ǫH (typically set to be 10−10 or smaller) to control the
iteration procedure and the precision of the numerical models: the iteration (see Sec. 9.3.1) is stopped
if the relative difference in H throughout the whole star between two consecutive steps is smaller than
ǫH . In Fig. 9.1, we show the convergence of the relative difference in H towards zero with the number
of iterations using radial collocation points Nr = (33, 33, 17). We see that a precision of 10−15 is
achieved for the numerical result within 40 iteration steps. After that, the accuracy is limited by the
round-off errors. The solution also satisfies the virial identities to the level of 10−15.

Next, we test the convergence property of the numerical code with respect to increasing number
of radial collocation points using the same model. In particular, we vary the number of points in the
first numerical domain (i.e., inside the star), while keeping the points in the other two domains fixed
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Figure 9.1: Convergence towards zero of the relative difference in H throughout the star between
two consecutive steps for a non-rotating polytropic star model (see text).
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Figure 9.2: Convergence towards zero of GRV 2 and GRV 3 with the number of collocation
points Nr1 inside the star for the same model as shown in Fig. 9.1.

to Nr2 = 33 and Nr3 = 17, and we choose ǫH = 10−15 in this test. In Fig. 9.2, we plot log(GRV 2)
and log(GRV 3) together against the number of points Nr1 in the first domain. It is seen clearly that
both GRV 2 and GRV 3 converge exponentially towards zero with the number of points, as expected
for spectral methods. The accuracy is limited by the round-off errors for Nr1 > 30.

Starting from the above non-rotating polytropic model, we then construct a sequence of increasing
uniformly rotating configurations at fixed baryon mass Mb = 1.6M⊙, up to the mass-shedding limit.
The accuracy of the numerical models are estimated by comparing the results to those obtained by a
separated code LORENE-rotstar [67, 217], which uses the so-called quasi-isotropic gauge to construct
rotating relativistic stars. LORENE-rotstar is a well-established code which has been tested exten-
sively and compared with a few different numerical codes [344]. A comparison of some of the gauge
invariant quantities for the sequence between our code and LORENE-rotstar is given in Table 9.1.
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Table 9.1: Comparison between our numerical code based on the Dirac gauge (first row for
each given frequency) and a well-established code LORENE-rotstar (second row), which uses
a quasi-isotropic gauge for the coordinates, for a sequence of γ = 2 polytropic neutron star
models with fixed baryon mass Mb = 1.6M⊙. Listed are the rotation frequency f , gravitational
mass Mg, total angular momentum parameter J/M2

g , ratio of the rotational kinetic energy to
the potential energy T/W , equatorial circumferential radius Req, and errors indicators in the
virial identities GRV 2 and GRV 3.

f (Hz) Mg(M⊙) J/M2
g T/W Req (km) GRV 2 GRV 3

0 1.486610961 0 0 14.91222928 7e-9 2e-9
1.486610965 0 0 14.91222929 9e-9 1e-9

100 1.486837016 0.066036124 0.00107222950 14.9609161 3e-9 3e-8
1.486837013 0.066036126 0.00107222954 14.9609165 3e-8 5e-8

200 1.487539907 0.13421663 0.004395974 15.113935 2e-7 5e-7
1.487539902 0.13421665 0.004395975 15.113937 3e-7 7e-7

300 1.4888008 0.2072617 0.010340091 15.395905 3e-7 6e-7
1.4888007 0.2072618 0.010340095 15.395908 2e-8 6e-7

400 1.49080352 0.289551 0.01973704 15.865576 1e-6 3e-6
1.49080359 0.289550 0.01973701 15.865574 7e-7 4e-6

500 1.493991 0.390430 0.0345952 16.67896 4e-6 8e-6
1.493990 0.390432 0.0345954 16.67900 6e-6 1e-5

550 1.4964095 0.455303 0.0457202 17.35894 2e-5 2e-5
1.4964092 0.455307 0.0457206 17.35898 1e-5 2e-5

600 1.500054 0.54397 0.062368 18.5382 5e-6 2e-6
1.500055 0.54398 0.062369 18.5383 3e-6 3e-6

640 ≈ fk 1.506928 0.695855 0.0929183 22.1467 2e-5 5e-5
1.506929 0.695857 0.0929188 22.1469 1e-5 6e-5

The parameters used to obtain the numerical results are Nr = (33, 17, 17), Nθ = 17, and ǫH = 10−10

for both codes. In the table, for each value of the rotation frequency f , we display the results obtained
from our numerical code based on the Dirac gauge in the first row. Below this are the results obtained
from LORENE-rotstar. Table 9.1 shows that the two sets of results agree to high accuracy. In partic-
ular, the overall discrepancy between the two different codes is consistent with the errors in the virial
identities, which increase with the rotation frequency. Note that the errors in the virial identities for
the non-rotating configuration listed in the table is about 10−9 instead of 10−15 as shown in Fig. 9.2.
This is due to our choice of using ǫH = 10−10 in this test.

We note, however, that the numerical error no longer decreases exponentially with the number of
grid points as in the non-rotating case, but as a power-law (see Fig. 9.3), due to the discontinuities in
the derivative of the matter fields at the stellar surface. The non-rotating model is free from any such
phenomenon because the stellar surface is at the boundary between two spherical numerical domains.
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Figure 9.3: Convergence behaviours of GRV 2 and GRV 3 for the f = 400 Hz rotating star
model listed in Table 9.1. Note that the plot is in log-log scale. The best-fit to the data points
shows that GRV 2 (GRV 3) decreases as N−4.3

r1 (N−3.9
r1 ).

For rotating models, because of the flattening of the stars, the stellar surface no longer coincides
with the boundary of the domains, and hence the spectral method loses its exponential-convergence
property. Such difficulty associated with rotating stars can be handled by the adaptation of the
numerical domains to the stellar surface as developed in [69]. We plan to improve our numerical code
by implementing this surface-adaptation technique in the near future1. Nevertheless, even without a
surface-adaptation technique, Table 9.1 shows that both numerical codes still agree to high accuracy
and achieve a precision of 10−5 for a configuration rotating near the mass-shedding limit (i.e., the f =
640 ≈ fk Hz configuration in Table 9.1, where fk is the Kepler frequency). To visualise the gravitational
field generated by a rotating star, we plot in Figs. 9.4-9.7 the non-vanishing components for the metric

field hij (namely, hr̂r̂, hr̂θ̂, hθ̂θ̂, and hϕ̂ϕ̂) for the rotating star model with f = 640 Hz. In these figures,
we show the iso-contours of the fields in the meridional plane, where solid (dashed) lines indicate
positive (negative) values of the fields. The thick solid lines represent the stellar surface. Finally, the
dot-dashed circles represent the boundary between the first two spherical numerical domains. The
figures show clearly that the gravitational field is dominated by the quadrupole moment.

To further calibrate our numerical code against LORENE-rotstar, we now compare the two codes
using a very relativistic and rapidly rotating strange star model. The matter is described by the
MIT bag model as described in Sec. 9.3.2. This configuration, shown in Fig. 9.8, has a baryon mass
Mb = 2.2M⊙ and compactness ratio Mg/Req = 0.204 (with the gravitational mass Mg = 1.719M⊙

and the circumferential equatorial radius Req = 12.425 km). The rotation frequency is f = 1000 Hz.
In Table 9.2, we show the values of various physical quantities obtained from both numerical codes,
together with the relative difference between them. As in the case of the polytropic EOS model, the
discrepancy of the two numerical codes is consistent with the errors in GRV 2 and GRV 3. Note also
that, even with a strong density discontinuity at the strange star surface, our numerical model still

1Such numerical technique is already available in LORENE-rotstar as described in [217]. However, in order
to compare to our numerical code, the results obtained from LORENE-rotstar as listed in Table 9.1 are based
on fixed spherical numerical domains.
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Figure 9.4: Iso-contours of the metric component hr̂r̂ in the meridional plane for the f = 640
Hz rotating polytropic model given in Table 9.1. The solid (dashed) lines indicate positive
(negative) values of the field. The thick solid line represents the stellar surface. The dot-
dashed circle is the boundary between the first two spherical numerical domains.

achieves a precision of 10−3.

9.4 Conclusion

In this paper we have developed a computer code (LORENE-rotstar dirac) to construct relativistic
rotating stars within the framework of a new constrained-evolution formulation of the 3 + 1 Einstein
equations based on the Dirac gauge and maximal slicing [73]. As the Dirac gauge fixes the spatial
coordinates on each time slices, including the initial one, this formulation can be used to compute
stationary solutions of the Einstein equations simply by setting the time derivative terms in various
equations to zeros. The system reduces to two scalar elliptic equations for the lapse function N and
conformal factor Ψ (equivalently for Q := Ψ2N), a vectorial elliptic equation for the shift vector βi,
and a tensorial elliptic equation for a tensor field hij . We couple this system of equations to the
first integral of motion for the matter, and solve the equations iteratively using multi-domain spectral
method.

We have demonstrated that this formulation can be used to compute stationary rotating equilib-
rium configurations to high accuracy. In particular, we used the polytropic EOS and MIT bag model
to calculate rotating neutron star and strange star models respectively. We compared our code to a
well-established code LORENE-rotstar, which uses a quasi-isotropic gauge to fix the coordinates, and
found that the global quantities of the numerical models obtained from the two codes agree to high
accuracy. The discrepancy between the two codes is consistent to the errors in the virial identities.

Finally, we remark that the proposed constrained-evolution scheme [73] is particular well suited to
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Figure 9.5: Same as Fig. 9.4 but for the component hr̂θ̂.

Figure 9.6: Same as Fig. 9.4 but for the component hθ̂θ̂.
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Figure 9.7: Same as Fig. 9.7 but for the component hϕ̂ϕ̂.

Figure 9.8: Meridional plane cross section of a rapidly rotating strange star. The star has a
baryon mass Mb = 2.3M⊙, gravitational mass Mg = 1.787M⊙, and rotation frequency f = 1000
Hz. The lines are iso-contours of the log-enthalpy H. The thick solid line represents the stellar
surface. Outside the star, H is defined by the first integral of motion Eq. (9.18).
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Table 9.2: Comparison between our numerical code (LORENE-rotstar dirac) and LORENE-
rotstar for a rapidly rotating strange star model. The star has a baryon mass Mb = 2.2M⊙,
gravitational mass Mg = 1.719M⊙, and rotation frequency f = 1000 Hz.

rotstar dirac rotstar rel. diff.
Mg(M⊙) 1.7194 1.7198 2e-4
J/M2

g 0.5940 0.5945 8e-4
T/W 0.0888 0.0890 2e-3

Req (km) 12.425 12.433 7e-4
GRV 2 7e-4 2e-4
GRV 3 1e-3 6e-4

the conformally-flat relativistic hydrodynamics code, with a metric solver based on spectral methods
and spherical coordinates, developed by Dimmelmeier et al. in the so-called Mariage des Maillages
(MDM) project [151]. The numerical code that we described in this paper can be used to gener-
ate rotating-star initial data for hydrodynamics simulations in full general relativity within the new
constrained-evolution scheme [73] for the MDM project.

APPENDIX

9.A Resolution of the Poisson equations for hij

Here we describe the numerical strategy used to solve the tensorial Poisson equation (9.31), imposing
that the solution hij satisfies the gauge condition (9.26) and be such that the conformal metric has a
unitary determinant:

det
(
γ̃ îĵ = f îĵ + hîĵ

)
= 1. (9.46)

Note that this relation follows directly from the definition of the conformal factor in the proposed
constrained scheme (see Eqs. (9.20) and (9.21)), together with the condition det fîĵ = 1 in the or-
thonormal basis (eî) (see Sec. 9.2.4). In Ref. [73], one would solve two (scalar) Poisson equations: for
hr̂r̂ and the potential µ (see Eq. (9.53)); the other four components are deduced from the three gauge
conditions and the non-linear relation (9.46) through an iteration. The drawback of this method is
that some components of hij are calculated as second radial derivatives of hr̂r̂ and µ. Since the source
of Eq. (9.31) contains second-order radial derivatives of hij , one needs to calculate fourth-order radial
derivatives of hr̂r̂ and µ, which are solutions of scalar-like Poisson equations with matter terms on
the RHS. In the case of neutron stars, it is quite often that radial density profiles have a discon-
tinuous derivative at the surface of the star. Therefore, hr̂r̂ and µ admit discontinuous third-order
radial derivatives and their fourth-order derivatives cannot be represented at all by means of spectral
methods. A solution could be to use adaptive mapping: the boundary between two spectral domains
coincides with the (non-spherical) surface of the star (see [69]). Still, the evaluation of a fourth-order
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radial derivative introduces too much numerical noise, even using spectral methods. We have therefore
chosen to use a different approach, detailed hereafter.

Instead of using directly all the spherical components of the tensor hij , we use only the r̂r̂-
component, the trace h = fijh

ij and the four potentials η, µ, W and X defined as follow, in the
orthonormal basis (eî):

hr̂θ̂ =
1

r

(
∂η

∂θ
− 1

sin θ

∂µ

∂ϕ

)
, (9.47)

hr̂ϕ̂ =
1

r

(
1

sin θ

∂η

∂ϕ
+

∂µ

∂θ

)
, (9.48)

and

P =
∂2W

∂θ2
− 1

tan θ

∂W

∂θ
− 1

sin2 θ

∂2W

∂ϕ2
− 2

∂

∂θ

(
1

sin θ

∂X

∂ϕ

)
, (9.49)

hθ̂ϕ̂ =
∂2X

∂θ2
− 1

tan θ

∂X

∂θ
− 1

sin2 θ

∂2X

∂ϕ
+ 2

∂

∂θ

(
1

sin θ

∂W

∂ϕ

)
; (9.50)

with P = (hθ̂θ̂ − hϕ̂ϕ̂)/2. These equations can be inverted to compute the potentials in terms of the
angular part of the Laplace operator

∆θϕ =
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
, (9.51)

giving

∆θϕη = r

(
∂hr̂θ̂

∂θ
+

hr̂θ̂

tan θ
+

1

sin θ

∂hr̂ϕ̂

∂ϕ

)
, (9.52)

∆θϕµ = r

(
∂hr̂ϕ̂

∂θ
+

hr̂ϕ̂

tan θ
− 1

sin θ

∂hr̂θ̂

∂ϕ

)
, (9.53)

∆θϕ (∆θϕ + 2)W =
∂2P

∂θ2
+

3

tan θ

∂P

∂θ
− 1

sin2 θ

∂2P

∂ϕ2
− 2P

+
2

sin θ

∂

∂ϕ

(
∂hθ̂ϕ̂

∂θ
+

hθ̂ϕ̂

tan θ

)
, (9.54)

∆θϕ (∆θϕ + 2) X =
∂2hθ̂ϕ̂

∂θ2
+

3

tan θ

∂hθ̂ϕ̂

∂θ
− 1

sin2 θ

∂2hθ̂ϕ̂

∂ϕ2
− 2hθ̂ϕ̂

− 2

sin θ

∂

∂ϕ

(
∂P

∂θ
+

P

tan θ

)
. (9.55)

These quantities η, µ, W, X are interesting for, at least, two reasons: first they can be expanded
onto a basis of scalar spherical harmonics Y m

ℓ (θ, ϕ), which are often used in the framework of spectral
methods, for they are eigenfunctions of the angular Laplace operator (9.51). Furthermore, the three
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gauge conditions (9.26) can be reformulated in terms of these potentials:

∂hr̂r̂

∂r
+

3hr̂r̂

r
+

1

r2
∆θϕη − h

r
= 0, (9.56)

∂η

∂r
+

2η

r
+ (∆θϕ + 2)W +

1

2

(
h − hr̂r̂

)
= 0, (9.57)

∂µ

∂r
+

2µ

r
+ (∆θϕ + 2) X = 0. (9.58)

When decomposing the fields on a basis of spherical harmonics, these relations reduce to a system of
ordinary differential equations with respect to r, which is solved by spectral methods in a similar way
to the Poisson equation [228].

The numerical algorithm is then:

1. transform the source term of Eq. (9.31) to the Cartesian basis,

2. solve the resulting six decoupled scalar Poisson equations for hij ,

3. transform hij back to the spherical basis and compute the potentials W and X,

4. do an iteration on h, first solving the system (9.56)-(9.58) with h, W and X as sources and then
calculating the new value of h from the non-linear equation (9.46).

Since the system is overdetermined (four additional relations to satisfy), the integrability condition
is that the source of the tensor Poisson equation (9.31) be divergence-free. We do not impose this
condition during the main iteration of the code, since this is not true for intermediate solutions of the
metric and matter fields. We only check that this is satisfied, up to the accuracy of the code, at the end
of the iteration, and we have found that this was true at the error level given by the virial identities
(see Sec. 9.2.4). The potentials W and X have been chosen among the six degrees of freedom of hij

because none of their radial derivatives appear in the gauge conditions (9.56)-(9.58), hence, we do not
calculate any radial derivative of these quantities to get the other components of hij . Another reason
for this choice is that, when considering a more general case of dynamically evolving spacetime, these
two potentials are asymptotically related to the two gravitational wave polarisation modes: P → h+

and hθϕ → h× in our asymptotically transverse-traceless gauge1. Note that in our case of stationary
and axisymmetric spacetime, we have µ = X = 0, which simplifies the resolution.

1The condition (9.46) implies that h = 0 to the linear order
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10.1 Introduction

The aim of this work is to calculate fully relativistic stationary models of superfluid neutrons stars
including all non-dissipative couplings between the two fluids induced by the equation of state (EOS),
in particular the entrainment effect. In addition to studying the stationary properties of relativistic
superfluid neutron stars, these models can serve as the unperturbed initial state in a dynamical study
of neutron star oscillations, neutron star collapse to a black hole, or as a starting point in studying
pulsar glitch-models.

Neutron stars are fascinating astrophysical objects: on one hand they represent a formidable “lab-
oratory” of fundamental physics, as the composition and equation of state of their inner core still lies
beyond the reach of experimental and theoretical physics. On the other hand, the advent of increas-
ingly sensitive gravitational wave detectors promises to open a new observational window on neutron
stars, which will allow us to gain new insights into these still rather poorly understood objects. Grav-
itational wave astronomy could represent the first opportunity to observe neutron star oscillations,
providing a new view on their inner dynamics. Considering the success of classical terrestrial seismol-
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ogy and astero-seismology of the sun and of main-sequence stars, one could expect this to result in
substantial progress in our understanding of the dynamics and composition of neutron stars.

Additionally, observing quasi-permanent quadrupolar deformations (“mountains”) on neutron
stars via gravitational waves1 will give valuable complementary information about their rotational
behavior, which is currently only observable via their electromagnetic pulses.

Most theoretical studies of neutron star dynamics have relied on rather simplistic single-fluid mod-
els. In this work we attempt a more realistic description of neutron stars by taking their superfluidity
into account via the use of a two-fluid model. Neutrons and protons in neutron stars are predicted to
be superfluid (e.g. see [45, 433]), and this feature forms a fundamental ingredient in the current (albeit
rudimentary) understanding of the glitch phenomenon observed in pulsars (e.g. see [301, 111, 20]).
Due to the superfluidity and therefore lack of viscosity of the neutrons in the crust and in the outer
core, they can flow freely through the other components. The remaining constituents (i.e. crust-nuclei,
electrons, muons and protons) are assumed to be “locked” together on short timescales by viscosity
and the magnetic field. Thereby they form another fluid, which in the following will be referred to
as “protons” for simplicity. These assumptions characterize the so-called two-fluid model of neutron
stars. These two fluids are strongly coupled by the strong nuclear force acting between protons and
neutrons, and therefore a hydrodynamic two-fluid framework incorporating these couplings is required
for their description. This framework will be presented in the next section. Recently it was pointed
out that such a two-fluid system can be subject to a two-stream instability if the relative velocity of
the two fluids is above a critical velocity [21]. This could therefore be relevant in neutron stars and
might be related to the glitch phenomenon[20], which provides another motivation for studying the
properties of such two-fluid systems.

In this paper we study the stationary structure of such two-fluid models, in which the two fluids
are restricted to uniform rotation around a common axis, but allowing for two different rotation rates.
This neutron star model was first studied quantitatively by [376] in the Newtonian context using a
generalized Chandrasekhar-Milne slow-rotation approximation, and neglecting the direct interactions
between the two fluids. [22] used Hartle’s variant of the slow-rotation approximation to study this
model in general relativity. [377] further extended the Newtonian study to fully include all (non-
dissipative) couplings via entrainment and the nuclear “symmetry-energy”, and they found an analytic
solution for a subclass of two-fluid equations of state (which generalizes the P ∝ ρ2-type polytropes).
More recently, [488] have devised an alternative approach in the Newtonian case, by treating only the
relative rotation between the two fluids as small, while allowing for fast rotation of the neutron star
as a whole. Furthermore, [124] has recently used the relativistic slow-rotation approximation to study
the properties of the first available fully relativistic two-fluid EOS incorporating entrainment, which
was derived by [125].

Here we present a generally relativistic numerical code for solving the full two-fluid model without
approximations. A preliminary progress-report on the development of this code, and some early results
were presented in [378].

While our model and code allow in principle for any given two-fluid equation of state (EOS), for
the sake of simplicity and a better numerical convergence we restrict ourselves in this paper to the
use of a (rather general) class of two-fluid “polytropes”. This choice is also motivated by the lack of
a useful two-fluid neutron star equation of state in the literature, especially concerning the aspect of
entrainment. Even though [125] have a fully relativistic model that includes entrainment, it has not
yet been developed to the point that it will produce a tabular equation of state that could be used in

1Note that this search has already begun, see [1] for a discussion and first results
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our code. We expect the qualitative features of our model to be well represented by the analytic EOS
used in this work.

The plan of this paper is as follows: In section 10.2 we introduce the formalism and notation of
covariant two-fluid hydrodynamics. In section 10.3 we discuss the specialization to an axisymmetric
and stationary system, and we introduce the 3+1 framework for Einstein’s equations. In section 10.4
we describe the numerical procedure for solving the resulting elliptical system of equations. The tests
performed on the numerical code are discussed in section 10.5, and our numerical results are presented
in section 10.6. A discussion of this work is given in section 10.7. In appendix 10.A we derive a new
analytic Newtonian slow-rotation solution, which is used for extensive comparisons of our numerical
results.

10.2 Canonical Two–Fluid Hydrodynamics

The general relativistic framework for describing a coupled two-fluid system has been developed by
Carter, Langlois and coworkers [110, 126, 112, 287], based on an elegant variational principle. The
same relativistic two-fluid model was used by [22] in their slow-rotation description of superfluid
neutron stars.

We consider a system consisting of two fluids, namely neutrons and “protons”, which we label
by n and p respectively. The kinematics of the two fluids is described by the two conserved particle
4-currents nα

n and nα
p , i.e.

∇αnα
n = 0 , and ∇αnα

p = 0 . (10.1)

The dynamics of the system is governed by a Lagrangian density of the form Λ(nα
n , nα

p). Due to the
requirement of covariance, the scalar density Λ can only depend on scalars, and we can form exactly
three independent scalar combinations out of nα

n and nα
p , for example

n2
n ≡ − 1

c2
gαβnα

nnβ
n ,

n2
p ≡ − 1

c2
gαβnα

pnβ
p , (10.2)

x2 ≡ − 1

c2
gαβnα

nnβ
p ,

where gαβ is the spacetime metric, so the Lagrangian density can be written as

Λ(nα
n , nα

p) = −E(n2
n, n

2
p, x

2) , (10.3)

where E is a thermodynamic potential representing the total energy density of the two–fluid sys-
tem, or “equation of state”. Introducing the 4–velocities uα

n , uα
p of the two fluids, which satisfy the

normalization conditions

gαβ uα
n uβ

n = −c2 , and gαβ uα
p uβ

p = −c2 , (10.4)

the particle 4–currents can be written as

nα
n = nn uα

n , and nα
p = np uα

p , (10.5)
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in terms of the neutron- and proton densities nn and np respectively. Variation of the Lagrangian
density (10.3) with respect to the particle currents nα

n and nα
p defines the conjugate momenta pn

α and
pp

α, namely

dΛ = pn
α dnα

n + pp
α dnα

p . (10.6)

Due to the covariance constraint (10.3) we can further express the conjugate momenta in terms of the
currents as

pn
α = Knn nnα + Knp npα ,

pp
α = Kpn nnα + Kpp npα , (10.7)

where the symmetric “entrainment matrix” KXY is given by the partial derivatives of E(n2
n, n

2
p, x

2),
namely1

Knn =
2

c2

∂E
∂n2

n

, Kpp =
2

c2

∂E
∂n2

p

, Knp =
1

c2

∂E
∂x2

. (10.8)

The equations of motion for the two fluids can be obtained from an elegant variational principle devel-
oped by [109]. In the absence of direct dissipative forces acting between the two fluids (e.g. see [287]),
the equations of motion can be expressed as2

nα
n∇[αpn

β] = 0 , and nα
p∇[αpp

β] = 0 . (10.9)

The energy–momentum tensor Tαβ of the two–fluid system, which is equally derived from the varia-
tional principle, has the form

Tα
β = nα

n pn
β + nα

p pp
β + Ψgα

β . (10.10)

If the equations of motion (10.1) and (10.9) are satisfied, the stress-energy tensor automatically satisfies
∇αTαβ = 0, which is a Noether-type identity of the variational principle. The generalised pressure Ψ
of the two–fluid system is defined by the thermodynamical identity

E + Ψ = −nα
n pn

α − nα
p pp

α , (10.11)

which can be considered as the Legendre-transform of Λ. Using the entrainment relation (10.7), we
can rewrite this as

E + Ψ

c2
= Knn n2

n + 2Knp x2 + Kpp n2
p . (10.12)

Instead of x2 defined in (10.2), we will use a physically more intuitive quantity as the third independent
scalar, namely the “relative speed” ∆. We define the relative speed ∆ as the norm of the neutron
velocity ua

n as seen in the frame of the protons uα
p , and vice versa. The corresponding relative Lorentz

factor Γ∆ is therefore given by

Γ∆ = − 1

c2
uα

nuβ
p gαβ =

x2

nnnp
=

(
1 − ∆2

c2

)−1/2

, (10.13)

1The corresponding notation in [22] is nα
n → nα, nα

p → pα, uα
n → uα, uα

p → vα, Knp → A, Knn → B, and
Kpp → C.

2the square brackets denote averaged index antisymmetrization, i.e. 2 v[a,b] = vab − vba.
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and the relative speed ∆ is expressible in terms of x as

∆2 = c2

[
1 −

(nnnp

x2

)2
]

. (10.14)

In the case of comoving fluids (i.e. uα
n = uα

p), we see from (10.2) that x2 = nn np, and so ∆ = 0 as
expected.

We can now equivalently consider the equation of state E as a function of the form E(nn, np, ∆
2),

for which the first law of thermodynamics reads as

dE = µndnn + µpdnp + α d∆2 , (10.15)

closely analogous to the Newtonian formulation [377]. The conjugate quantities defined in this equation
are the entrainment α and the neutron- and proton chemical potentials µn and µp (sometimes also
referred to as specific enthalpies, which is equivalent in the zero-temperature case). It is often useful
to characterize the entrainment by the dimensionless entrainment numbers εX , which we define as

εX ≡ 2α

mX nX

, (10.16)

where mX is the particle rest-mass of the respective fluid, and the fluid-index isX = n, p (no summation
overX ).

The conjugate variables of (10.15) can be expressed in terms of the kinematic scalars and the
entrainment matrix KXY as

µn =
c2

nn

(
Knnn2

n + Knpx2
)

= −uα
npn

α ,

µp =
c2

np

(
Kppn2

p + Knpx2
)

= −uα
ppp

α , (10.17)

α =
1

2
KnpnnnpΓ

3
∆ .

Using (10.14), the inverse relations can be obtained as

Knn =
µn

nnc2
− 2α

n2
nΓ

2
∆

Kpp =
µp

npc2
− 2α

n2
pΓ

2
∆

(10.18)

Knp =
2α

nnnpΓ3
∆

,

which reduces exactly to the corresponding relations in the Newtonian limit [377], where Γ∆ → 1 and
µX → mX c2 + µ̂X . In terms of these quantities, the generalised pressure Ψ (10.11) can also be written
as

Ψ = −E + nn µn + np µp . (10.19)
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10.3 Stationary axisymmetric configurations

10.3.1 The metric

Here and in the following we choose units such that G = c = 1 for simplicity. We consider spacetimes
that are stationary, axisymmetric, and asymptotically flat. The symmetries of stationarity and ax-
isymmetry are associated with the existence of two Killing vector fields, one timelike at spatial infinity,
tα, and one spacelike everywhere and with closed orbits, ϕα.

It was shown by [107] that under these assumptions the Killing vectors commute, and one can
choose an adapted coordinate system (t, x1, x2, ϕ), such that tα∂α = ∂/∂t and ϕα∂a = ∂/∂ϕ, ie.

tα = (1, 0, 0, 0) , and ϕα = (0, 0, 0, 1) . (10.20)

We choose the remaining two coordinates to be of spherical type, ie. x1 = r, x2 = θ, and following
[217], we fix the gauge to be of maximal-slicing quasi-isotropic type (MSQI), for which the line element
reads as

ds2 = gαβ dxαdxβ = −(N2 − NϕNϕ) dt2 − 2Nϕ dϕ dt

+A2
(
dr2 + r2dθ2

)
+ B2r2 sin2θ dϕ2 , (10.21)

where the functions N , Nϕ, A and B depend on r and θ only, and Nϕ ≡ gϕϕNϕ.

10.3.2 Fluid dynamics

We assume the flow of the two fluids to be purely axial (i.e. no convective meridional currents), so we
can write the unit 4–velocities of the two fluids as

uα
n = ut

n ζα
n and uα

p = ut
p ζα

p , (10.22)

where the helical vectors ζα
n and ζα

p are expressible in terms of the Killing vectors as

ζα
n = tα + Ωnϕ

α , and ζα
p = tα + Ωpϕ

α , (10.23)

and the two rotation rates Ωn and Ωp are scalar functions which can only depend on r and θ.
Using Cartan’s formula for the Lie derivative of a 1–form pβ with respect to a vector–field ξα,

namely

Lξ pα = 2ξβ∇[βpα] + ∇α

(
ξβpβ

)
, (10.24)

we can rewrite the equations of motion (10.9) as

LζX pXα −∇α

(
ζβ
X pXβ

)
= 0 . (10.25)

Linearity of the Lie derivative together with (10.23) and (10.24) allows us to rewrite this as

Lt pXα + ΩXLϕ pXα + ϕβpXβ ∇αΩX −∇α

(
ζβ
X pXβ

)
= 0 . (10.26)

Stationarity and axisymmetry imply that the first two terms vanish, and so the equations of motion
for neutrons and protons are reduced to

pn
ϕ∇αΩn = ∇α

(
ζβ
n pn

β

)
, pp

ϕ∇αΩp = ∇α

(
ζβ
p pp

β

)
. (10.27)
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In the general case of differential rotation, the integrability condition of these equations are therefore

pn
ϕ = pn

ϕ(Ωn) , and pp
ϕ = pp

ϕ(Ωp) , (10.28)

and the first integrals of motion are obtained as

pn
t + Ωnp

n
ϕ −

∫ Ωn

pn
ϕ(Ω′)dΩ′ = constn , (10.29)

pp
t + Ωpp

p
ϕ −

∫ Ωp

pp
ϕ(Ω′)dΩ′ = constp . (10.30)

In the special case of uniform rotation, ie. ∇αΩX = 0, these first integrals reduce to

pn
t + Ωnp

n
ϕ = constn , and pp

t + Ωpp
p
ϕ = constp , (10.31)

which are equivalent to the expressions obtained by [22]. We can further express these first integrals
in terms of the chemical potentials µn, µp of (10.17), namely

pn
t + Ωnp

n
ϕ = ζα

n pn
α = − 1

ut
n

µn = constn , (10.32)

pp
t + Ωpp

p
ϕ = ζα

p pp
α = − 1

ut
p

µp = constp . (10.33)

10.3.3 The 3 + 1 decomposition

We introduce the vector n
α as the unit normal to the spacelike hypersurfaces Σt defined by t = const.,

namely

nα ≡ −N∇αt , (10.34)

which defines the so–called Eulerian observers O0 following [435]. The induced metric hαβ on the
spacelike hypersurfaces Σt is given by the projection

hαβ ≡ gαβ + nαnβ . (10.35)

The corresponding 3 + 1 decomposition of the energy–momentum tensor Tαβ reads as1

Tαβ = Sαβ + 2n
(αJβ) + En

α
n

β , (10.36)

where

E = n
αTαβn

β , Jα = −hγ
αTγβn

β , Sαβ = hγ
αTγνh

ν
β , (10.37)

which can be interpreted as the energy, momentum and stress tensor as measured by the Eulerian
observers. In the MSQI gauge (10.21), we can explicitly express these quantities as

E = N2T tt , Ji = NT t
i , Si

j = T i
j − N iT t

j . (10.38)

1Round brackets denote symmetrization, i.e. 2 v(a,b) = vab + vba.
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The Einstein equations in this formulation result in a set of four elliptic equations for the metric
potentials (see [67] and [217] for details), namely

∆3ν = 4πA2(E + Si
i) + A2KijK

ij − ∂ν ∂(ν + β), (10.39)

∆̃3Ñ
ϕ = −16πNA2J̃ϕ − r sin θ ∂Nϕ∂(3β − ν) , (10.40)

∆2[(NB − 1)r sin θ] = 8πNA2Br sin θ
(
Sr

r + Sθ
θ

)
, (10.41)

∆2 (ν + α) = 8πA2Sϕ
ϕ +

3

2
A2KijK

ij − (∂ν)2 , (10.42)

where we defined Ñϕ ≡ r sin θ Nϕ and J̃ϕ ≡ r sin θ Jϕ. ∆3 and ∆2 are the flat three- and two-
dimensional Laplace operators, whereas ∆̃3 = ∆3 − (r2 sin2 θ)−1. We further used the notation

ν ≡ lnN , α ≡ lnA , β ≡ lnB , (10.43)

and we define ∂α∂β as the flat-space scalar product of two gradients, i.e.

∂α∂β ≡ ∂rα∂rβ +
1

r2
∂θα∂θβ . (10.44)

The only non-zero components of the extrinsic curvature Kij in our spherical coordinate basis are
given by

Krϕ = −gϕϕ

2N
∂rN

ϕ , Kθϕ = −gϕϕ

2N
∂θN

ϕ . (10.45)

We note that the gravitational mass M, which is defined as the (negative) coefficient of the term 1/r
in an asymptotic expansion of the “gravitational potential” log N , can be expressed explicitly (see
[67]) as

M =

∫
A2B

[
N(E + Si

i) + 2B2ÑϕJ̃ϕ
]

r2 sin θ dr dθ dϕ , (10.46)

Here and in the following we will use M to denote the gravitational mass, while M will stand for the
baryon mass. The total angular momentum J is given by

J =

∫ [
A2B3 r sin θJ̃ϕ

]
r2 sin θ dr dθ dϕ . (10.47)

The 2D- and 3D virial identities, which have been derived by Bonazzola and Gourgoulhon [220, 76],
can serve as a useful check of consistency and precision of the numerical results. The 2D virial identity
(referred to as GRV2), which derives from the Poisson-equation (10.42), has the form

∫ [
8πA2Sϕ

ϕ +
3

2
A2KijK

ij − (∂ν)2
]

r dr dθ = 0 , (10.48)

while the 3D virial identity (GRV3), which reduces to the usual virial theorem in the Newtonian limit,
can be written as

∫
4πA2BSi

i dV +

∫
B

[
3

4
A2KijK

ij − (∂ν)2

+
1

2
∂α∂β

]
dV +

∫
1

2r

(
B − A2

B

)
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×
[
∂r (α − β/2) +

1

r tan θ
∂θ (α − β/2)

]
= 0 . (10.49)

Both of these virial theorems (10.48) and (10.49) can be written as the sum of an integral over a
“material” term Imat (the first term in (10.48) and (10.49) respectively), and an integral over pure
field-quantities Ifields (the remaining terms). Therefore it will be convenient to consider the following
dimensionless quantity to numerically characterize the respective virial violations:

GRV ≡ Imat + Ifields

Imat
. (10.50)

10.3.4 The matter sources

Let us write Γn and Γp for the two Lorentz factors linking the Eulerian observers O0 to the comoving
fluid observers On (defined by uα

n) and Op (defined by uα
p), namely

Γn ≡ −nαuα
n = Nut

n , and Γp ≡ −nαuα
p = Nut

p . (10.51)

The “physical” fluid velocities Un and Up of the two fluids1 in the ϕ direction, as measured by O0, are
given by

Un =
1

Γn
ϕ̂αuα

n , and Up =
1

Γp
ϕ̂αuα

p , (10.52)

where ϕ̂α is the spatial unit vector in the ϕ direction, ie.

ϕ̂α =
1

√
gϕϕ

ϕα , such that hαβ ϕ̂αϕ̂β = 1 . (10.53)

Using (10.22) and (10.51), we obtain

Un =

√
gϕϕ

N
(Ωn − Nϕ) , Up =

√
gϕϕ

N
(Ωp − Nϕ) , (10.54)

and the Lorentz factors can be expressed equivalently as

Γn =
(
1 − U2

n

)−1/2
, and Γp =

(
1 − U2

p

)−1/2
. (10.55)

The “crossed” scalar x2, defined in (10.2), can be expressed in terms of the respective scalar particle
densities nn, np and the 3–velocities Un and Up, as

x2 = nnnp
1 − UnUp√

(1 − U2
n)(1 − U2

p)
, (10.56)

and using (10.14), we can write the relative velocity ∆ as

∆2 =
(Un − Up)

2

(1 − UnUp)2
. (10.57)

Using expressions (10.32),(10.33) and (10.51), the first integrals can be cast into the form

N

Γn
µn = constn , and

N

Γp
µp = constp . (10.58)

1In [22] these were denoted −ωn and −ωp respectively.
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In closer analogy with [67, 217], we can alternatively write these first integrals as

Hn + ν − ln Γn = Cn , (10.59)

Hp + ν − ln Γp = Cp , (10.60)

where we introduced the abbreviations

Hn ≡ ln(µn/mn) , and Hp ≡ ln(µp/mp) . (10.61)

The components of the 3 + 1 decomposition (10.36) of the energy–momentum tensor (10.10) are
explicitly found as

E = −Ψ + (Γ2
nKnnn2

n + Γ2
pKppn2

p

+2ΓnΓpKnpnnnp) , (10.62)
√

gϕϕ Jϕ = Γ2
nKnnn2

nUn + Γ2
pKppn2

pUp

+ΓnΓpKnpnnnp(Un + Up) , (10.63)

Sr
r = Sθ

θ = Ψ , (10.64)

Sϕ
ϕ = Ψ +

(
Γ2

nKnnn2
nU

2
n + Γ2

pKppn2
pU

2
p

+2ΓnΓpKnpnnnpUnUp) , (10.65)

One can check the consistency of this result with the single fluid case of [67], considering the special
case of both fluids moving together.

10.4 Numerical procedure

10.4.1 Iteration scheme

The numerical solution of the stationary axisymmetric configurations described in the previous sec-
tions proceeds in a very similar manner to the single-fluid case, which is described in more detail in
[67, 217]. The central iteration scheme is nearly identical:

Initialization: Start from a simple “guess” for a spherically symmetric matter distribution n
(0)
n and

n
(0)
p of the two fluids, and use a flat metric.

Step 1: Calculate the matter source-terms E, Jϕ and Si
j from (10.62)– (10.65).

Step 2: Solve the equations (10.39)–(10.42) for the corresponding metric using the pseudo-spectral
elliptic solver in LORENE, the numerical relativity package used here[216].

Step 3: Use the first integrals (10.58) to obtain the chemical potentials µn and µp.

Step 4: Calculate the new density fields nn and np by inverting the relations (10.17) for the given
equation of state.

Step 5: Continue at Step 1 until the desired convergence is achieved.
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In general we are using three spherical-type numerical domains to cover the hypersurface Σt: the
innermost domain covers the whole star. An intermediate domain is used for the vicinity of the
star to about twice the stellar radius, and an outer domain covers the space out to infinity, using
a compactification of the type u = 1/r (see [67] for details). For the inner domain we have the
choice of either using a simple spherical grid containing the whole star, or we can use an adaptive-grid
algorithm, in order to adapt the domain-boundary to the stellar surface. Contrary to the single-fluid
case (e.g. see [217]), however, the adaptive-grid approach is much less effective in increasing precision
and convergence. The reason for this is simply that only one of the two fluid-surfaces can be matched
up with a domain boundary, and therefore the (weak) Gibbs phenomenon due to the inner fluid surface
(representing at least a discontinuity in the derivative) is not completely avoidable.

Another important difference in the case of two-fluids compared to single-fluid stars is the way we
determine the location of the fluid surfaces. In a single fluid star, the surface can always be found by
the vanishing of the pressure, which usually translates into a simple condition in terms of the vanishing
of the chemical potential µ. In the two-fluid case, however, this is not generally possible (especially
for the “inner” fluid), due to the coupling of the fluids. Therefore we need to define the fluid surfaces
directly in terms of the vanishing of the respective density fields. Contrary to the chemical potential,
the density can have a vanishing or diverging gradient at the surface, and a precise determination of
the surface can therefore be numerically difficult.1

A related numerical problem specific to two-fluid configurations appears when the surfaces of the
two fluids are very close to each other. In this case, the 1-fluid region in between the two surfaces will
be poorly resolved by the grid covering the star, and therefore the determination of the outer surface
will have a low numerical precision. As will be seen later, this problem can be cured to some extent
by adding another domain, which covers just a thin shell below and up to the outer fluid surface. In
this case one observes a drastic improvement in the precision of finding the outer surface, which can
be quantified by comparison with the analytic slow-rotation solution.

We note that this numerical code can be used equally well for Newtonian configurations, simply by
replacing the matter-sources by their Newtonian limits, and forcing the spatial metric to be flat. The
central iteration scheme remains unchanged, and we can relate the lapse N to the Newtonian gravi-
tational potential, namely by the relation ν = lnN = Φ/c2, where Φ is the Newtonian gravitational
potential. The Newtonian limit of the matter source-term in Eq. (10.39) is

E + Si
i

c2
= ρ + O(c−2) , (10.66)

where ρ is the total (rest-)mass-density, so that this component of the Einstein equations reduces to the
Newtonian Poisson equation, while the remaining Einstein equations (10.40)–(10.42) become trivial
in this limit. In a similar manner, the first integrals are seen to reduce exactly to their Newtonian
counterparts [377].

The parameters of the numerical scheme that will be used for the rest of the paper are the following:
the required convergence of the iteration scheme is 10−10, and we use 17 points in the θ direction, and
33 grid-points in the radial direction in the innermost domain (containing the star), 33 radial points
in the intermediate domain and 17 radial points in the compactified outer domain.

1We note that [488] chose to avoid this difficulty by defining the “fluid surfaces” by the vanishing of the re-
spective chemical potentials. These “surfaces”, however, do generally not coincide with the surfaces of vanishing
density (contrary to the single-fluid case), as can be seen from (10.17).
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10.4.2 The polytropic 2-fluid equation of state

The numerical scheme described in the previous section can be used for any invertible 2-fluid equation
of state (EOS). The current implementation of our code, however, only covers a “polytropic” subclass
of 2-fluid EOS, which generalizes the types of EOS used in previous studies, e.g. [380, 377, 22, 488],
and which has the general form

E = (mnnn + mpnp) c2 +
1

2
κnn

γ1 +
1

2
κpn

γ2
p

+κnpn
γ3
n nγ4

p + κ
∆
nγ5

n nγ6
p ∆2 . (10.67)

As discussed in the introduction, we expect this polytropic EOS-class to be quite general, and to allow
one to study the qualitative features of a broad range of different superfluid neutron star models. For
example, general features of the Kepler limit (cf. Fig. 10.5) are seen to be in qualitative agreement
with the mean field results of [124].

The two fluids in (10.67) are coupled via a “symmetry energy”-type term proportional to κnp and
an entrainment term proportional to κ

∆
∆2. The resulting expressions for the chemical potentials and

the entrainment α are directly obtainable from (10.15).

In general this class of 2-fluid EOS requires a numerical inversion in the iteration scheme described
in section 10.4.1, in order to obtain the densities nn, np from the chemical potentials µn, µp at a given
relative speed ∆. For testing purposes and for comparison to the Newtonian and relativistic slow-
rotation results, we will in the following be mostly interested in a further subclass of the above EOS,
namely the special 2-fluid polytropes described by

E =
1

2
κnn

2
n +

1

2
κpn

2
p + κnpnnnp + κ

∆
nnnp∆

2 , (10.68)

which are a 2-fluid generalization of the 1-fluid polytrope P ∝ n2. This special EOS class still exhibits
all the coupling-types (entrainment + symmetry energy) of the general EOS, but allows an analytic
inversion, namely

µn − mnc
2 = κnnn + (κnp + κ

∆
∆2)np , (10.69)

µp − mpc
2 = κpnp + (κnp + κ

∆
∆2)nn , (10.70)

and the entrainment is found as

α = κ
∆
nnnp . (10.71)

The generalized pressure Ψ in (10.19) is expressible as

Ψ =
1

2
κnn

2 +
1

2
κpn

2
p + κnpnnnp + κ

∆
nnnp∆

2 . (10.72)

Contrary to the two-fluid EOS used in the Newtonian slow-rotation study [377], which exhibits the
somewhat unphysical feature of constant entrainment numbers, as discussed in appendix 10.A, this
EOS results in a much more physical behavior of the entrainment. Namely, using (10.16), we find

εn =
2κ

∆

mn
np , and εp =

2κ
∆

mp
nn , (10.73)
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which ensures that the entrainment effect automatically vanishes when one of the two fluid-densities
goes to zero. Such a linear behavior of entrainment also happens to be in quite good qualitative
agreement with the theoretical predictions of nuclear physics, e.g. see1 [116, 433, 45]

Using the method developed in [377] for the EOS (10.68), we can find an analytic solution in
the Newtonian slow-rotation approach, which is presented in appendix 10.A. This allows us to run
extensive tests by comparing our numerical code to the analytic solution in the Newtonian case. The
results of this comparison are presented in section 10.5.3.

10.5 Tests of the numerical code

10.5.1 Comparison to 1-fluid results

As a first consistency check we use the two-fluid code for strictly co-rotating configurations with a
common outer surface, and compare the results to those of the well-tested single-fluid code [67, 217].
For this purpose we study a stellar sequence of fixed central density and vary the rotation rate. We
define the “natural scale” of the rotation-rate as

Ω0 ≡
√

4πG ρ(0) , (10.74)

where ρ(0) is the central rest-mass density, i.e. ρ(0) = mnnn(0) + mpnp(0). The Kepler rotation rate
ΩK is typically found at about ΩK ∼ 0.1 Ω0 for the configurations considered here. The results of the
comparison with the single-fluid case are shown in Fig. 10.1. Here we plot the relative differences,
defined as

∆Q ≡ |Q2f − Q1f |
Q1f

, (10.75)

of a global quantity Q in the two-fluid case (Q2f) and in the single-fluid case (Q1f). The first column,
figures 10.1 (a) and (c), shows the comparison of 1-fluid and 2-fluid results using a fixed spherical grid
for the inner domain in the two-fluid case. The single-fluid code on the other hand always uses an
adaptive grid for the stellar surface. We notice that toward higher rotation rates the relative errors
increase. These errors can be entirely ascribed to the lack of grid adaption in the two-fluid case: by
using an adaptive grid for the inner domain also in the two-fluid case, we find a consistent agreement
of better than 10−9, as can be seen in the second column in figure 10.1 (b) and (d). We note, however,
that this improvement of using an adaptive grid is restricted to cases where the two-fluids share a
common outer surface, while it is of much less use in the general two-fluid case as mentioned earlier.
We can therefore conclude that the two-fluid code reproduces results consistent with the single-fluid
code in cases where the two fluids co-rotate.

10.5.2 Virial theorem violation

In the next step we consider the more general case where the two fluids have different rotation rates.
We fix the relative rotation rate, defined as

R ≡ Ωn − Ωp

Ωp
, (10.76)

1These references give the neutron and proton effective masses mX∗, which are related to the entrainment
via εX = (mX − mX∗)/mX , see [377] for details.
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Figure 10.1: Relative differences ∆Q in the total baryon mass M , and the equatorial and
polar radii Req and Rpol. The first row is the Newtonian case, while the second row shows the
relativistic results. In the first column, the two-fluid code used a fixed spherical inner domain,
while in the second column the inner domain-grid is adapted to the stellar surface (which is
the default in the single-fluid case).
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to be R = 1.51 and vary Ωn. As mentioned before, in these general situations the use of an adaptive
grid does not substantially improve the precision and has therefore been omitted. We consider the
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Figure 10.2: GRV2 and GRV3 for (a) 1 domain and (b) 2 domains covering the star. Only the
Newtonian case is shown, as the relativistic results are very similar.

internal consistency check provided by the virial identities GRV2 and GRV3 defined in (10.50), the
result of which is shown in Fig. 10.2. We note that in the case (a), where one inner domain is used
to cover the star, even at low rotation rates the result falls somewhat short of the convergence-goal of
10−10, which we required in the iteration scheme. This lack of precision at small rotation rates can be
understood as follows: due to the difference in rotation rates, the two fluids do not share a common
outer surface, and there will necessarily be a 1-fluid region close to the outer surface. However, this
1-fluid region will be very thin compared to the dimensions of the star, and will therefore be poorly
resolved in terms of the numerical grid. We can improve this by choosing a second domain to cover just
a thin layer (of about 1% of the radius) below the outer surface, resolved by some 33 radial grid-points.
The effect of this “trick” is rather impressive and can be seen in the in Fig. 10.2 (b). While this gain in
precision is not very important by itself, it underlines the consistency of the results and shows that the
source of these errors is understood. The decrease in precision when approaching the Kepler rotation
can be ascribed to the appearance of singularities on the equator (see Fig. 10.5) corresponding to the
mass-shedding limit, and therefore the presence of the Gibbs phenomenon. Nevertheless, one should
note that this phenomenon happens also in the one-fluid case, the precision of the code at the Kepler
limit being of the same order as here [217].

10.5.3 Comparison to Newtonian slow-rotation results

We can use the analytic Newtonian solution of the slow-rotation approximation (derived in ap-
pendix 10.A) for a systematic comparison with the numerical code run in “Newtonian mode”. As
described in section 10.4.1, the majority of the Newtonian code is shared by the relativistic one, so
that these tests nevertheless provide a useful validation of the overall numerical code.

We denote the numerical solution of a quantity as QL(ΩX ), and the analytic slow-rotation solution
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as Qsr(ΩX), and we define the relative difference as

⋄Q ≡ QL − Qsr

Q(0)
. (10.77)

At fixed relative rotation rate R, the slow-rotation solution can be written as

Qsr(Ωn) = Q(0) + Q(2) Ω2
n . (10.78)

Ideally we would like to compare only up to the Ω2 component of the numerical solution, but obviously
we do not know its Taylor-expansion in orders of Ω. Nevertheless the numerical solution can generally
be written as

QL(Ωn) = Q
(0)
L + Q

(2)
L Ω2

n + Q
(4)
L Ω4

n + ... , (10.79)

so that the relative difference (10.77) can be expanded as

⋄Q =
Q

(0)
L − Q(0)

Q(0)
+

Q
(2)
L − Q(2)

Q(0)
Ω2

n +
Q

(4)
L

Q(0)
Ω4

n + ... . (10.80)

If the numerical solution agreed perfectly with the analytic solution (up to order Ω2), the first two
terms would be zero, and the leading order of the difference would be Ω4

n. In practice, however, there
will be contributions on all orders, and we will try to quantify these respective errors. If in some
region of Ωn, one of these terms dominates in the series, then a log-log plot of ⋄Q(Ωn) in this region
would look like

y = log(aΩm
n ) = log a + m log Ωn , (10.81)

i.e. a straight line with steepness m and an offset log a. Conversely, if the log-log plot of ⋄Q contains
sections of straight lines, we can infer the leading power of Ωn and its coefficient.

The results of these comparisons are shown in figure 10.3. The neutron-star model used here is
characterized by the following choice of EOS-parameters:

κn = 0.02 , κp = 0.12 , κnp = 0.01 , κ
∆

= 0.02 , (10.82)

and the (fixed) central chemical potentials

µn(0) = µp(0) = 0.2 mb c2 , (10.83)

where mb = 1.66× 10−27 kg is the baryon mass and c is the speed of light. The resulting neutron-star
model in the static case has a total mass of M = 1.50 M⊙ (where M⊙ is the solar mass), a radius of
R = 11.1 km, a central baryon number density n(0) = 1.04 fm−3, proton fraction xp ≡ np/n = 0.083
and an entrainment value of εp(0) = 0.38 (defined in (10.16)). We note that in the Newtonian case
there is no distinction between the gravitational mass M and the baryon mass M .

In Fig. 10.3 we show the relative differences ⋄Q for the radii Rn and Rp at the equator. We
also plotted the straight lines corresponding to a pure Ω4 and Ω2 behavior, in order to facilitate the
interpretation of these results.

In the first figure 10.3 (a) we see that for small rotation rates (Ωn/Ω0 < 10−3) the error in the
equatorial proton radius Rp(eq) reaches a “plateau” at about ∼ 10−9, which corresponds to numerical
errors and the finite convergence-condition of the iteration scheme, while for higher rotation rates, the
quartic error starts to dominate. The same behavior is observed for the other global quantities, e.g. Mn
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Figure 10.3: Relative difference ⋄Q(Ωn) between the numerical code in “Newtonian mode” and
the slow-rotation analytic solution of appendix 10.A, for the equatorial radii Rn and Rp. In (a)
we used the normal “physical” EOS-inversion, while (b) shows the results for a “slow-rotation
style” EOS inversion.

and Mp and R(pol)), which have therefore been omitted in this plot. However, the neutron equatorial
radius Rn(eq) (which is the outer radius) displays a consistent quadratic error of order unity! The
reason for this apparent discrepancy is rather subtle, and stems from the somewhat different nature
of the slow-rotation approach and the fully numerical solution. In the numerical code, when one of
the two fluid-densities vanishes, we switch from the 2-fluid EOS (10.67) to the corresponding 1-fluid
EOS before we do the inversion µX → nY in the numerical procedure (cf. section 10.4.1), which is
the correct “physical” way to do this. In the slow-rotation approach, however, the rotation rates are
treated as infinitesimal, and there is actually no finite 1-fluid region. Therefore the EOS is always
used in the form (10.67), which will be seen in the following to account for the difference in Rn(eq).
In order to test this explanation, we have also implemented a “slow-rotation style” EOS-inversion in
the code, in which we do not switch to a 1-fluid EOS when one of the two fluids vanishes. The result
of this is shown in figure 10.3 (b). We see that the discrepancy of the outer radius has completely
disappeared. However, this only served as a test of consistency, and this rather unphysical method of
EOS-inversion will not be used in the following.

10.5.4 Comparison to relativistic slow-rotation results

Finally, we compare our results in the fully relativistic case to the results obtained by using a code
developed by [22], which is based on the relativistic slow-rotation approximation.

In the relativistic case the physical “radius” will generally be different from the coordinate-radius,
and can be defined in various non-equivalent ways (e.g. circumferential radius, proper radius). For
an unambiguous comparison we define the “radius” R as the proper distance of the surface from the
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center of the star, along a line of constant θ and ϕ (the definition of which is equivalent in both cases),
i.e.

R ≡
∫ R0

0
d l =

∫ R0

0
A(r) d r , (10.84)

where R0 is the coordinate-radius of the surface. Another quantity specific to the relativistic case is
the shift-vector N i = (0, 0, Nϕ), and we will consider its 3-norm, i.e.

||N i|| ≡
√

gijN iN j = Nϕ √
gϕϕ , (10.85)

which is independent of the coordinate-system chosen on the spacelike hypersurface.
The stellar model used in this comparison is defined by the EOS parameters

κn = 0.04 , κp = 0.24 , κnp = 0.02 , κ
∆

= 0.02 , (10.86)

and the central chemical potentials are µn(0) = µp(0) = 0.2 mb c2. The configurations obtained
have the following (fixed) central values: the central baryon density is n(0) = 0.5776 fm−3, which
corresponds to 3.61 times nuclear density (nnucl = 0.16 fm−3). The central proton entrainment
is εp(0) = 0.212, and the proton fraction is found as xp(0) = 0.083. We fix the relative rotation to
R = 0.5, i.e. the neutron superfluid is rotating 50% faster than the proton-electron fluid. In Table 10.1

Ωn/2π 0 Hz 100 Hz 500 Hz

Mn [M⊙] 1.0978 (-0.02%) 1.0998 (-0.1%) 1.1509 (-2%)
Mp [M⊙] 0.0998 (-0.02%) 0.0997 (-0.1%) 0.0959 (-2%)
M [M⊙] 1.1194 (-0.02%) 1.1210 (-0.04%) 1.1644 (0.04%)
Req

n [km] 13.545 (-0.01%) 13.570 (0.2%) 14.260 (5%)
Rpol

n [km] 13.545 (-0.01%) 13.527 (-0.1%) 13.103 (-3%)
Req

p [km] 13.545 (-0.01%) 13.534 (-0.1%) 13.302 (-2%)
Rpol

p [km] 13.545 (-0.01%) 13.527 (-0.1%) 13.103 (-3%)
N(0) 0.700102 (1e-4%) 0.69983 (2e-3%) 0.69267(-0.04%)

||N i||(eq) 0 0.00206 (0.1%) 0.01072 (3%)

Table 10.1: Numerical results QL and (in parentheses) relative differences (QL−Qsr)/QL×100%
to the relativistic slow-rotation results Qsr.

we show the results of the comparison to the relativistic slow-rotation code. We observe that generally
the agreement is quite good, and (as expected) gets worse with higher rotation rates. However, we
note that this slow-rotation code imposes an additional constraint on the radii, namely the two fluids
are forced to share a common outer surface. Therefore part of the disagreement observed here does not
actually stem from the slow-rotation approximation or numerical differences, but from the somewhat
different assumptions in the model. Given these differences, the agreement seems very good.

10.6 Numerical Results

The existence of configurations with one fluid-surface having a prolate shape was found initially using
the Newtonian analytic solution[377] in the slow-rotation approximation. While this might not be
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very astrophysically realistic, it is still interesting to study this particularity of an interacting two-
fluid system. We can confirm the existence of such configurations in the fully relativistic treatment, as
reported earlier by us[378]. In order to show this, we choose the polytropic EOS parameters κn = 0.016,
κp = 0.16, κnp = 0.008, and κ

∆
= 0.03, with the central chemical potentials µn(0) = 0.2mbc

2 and
µp(0) = 0.198mbc

2. This corresponds to a central proton fraction of xp(0) = 0.05 and a central
proton-entrainment number of εp(0) = 0.80. In figure 10.4 we show the resulting configuration with

~Ω

x [km]

z
[k

m
]

Figure 10.4: Meridional cross-section of an oblate-prolate two-fluid configuration. The dot-
ted lines represent lines of constant “gravitational potential” N , while the thick lines are the
respective surfaces of the neutron- and proton fluids.

the two fluids counter-rotating at Ωn/2π = 1000 Hz and Ωp/2π = −100 Hz. We define the ellipticity
of fluidX as

ǫX ≡ RX (eq) − RX (pol)

RX (eq)
, (10.87)

in terms of the proper radii R of (10.84). Using this definition, this configuration is found to have
ǫn = 0.137, and ǫp = −0.037, so the proton fluid has a prolate shape despite the fact that it is
rotating. This is made possible by the effective interaction potential created by the neutron-fluid,
which “squeezes” the proton-fluid, and overcomes the centrifugal potential.

EOS κn κp κnp κ
∆

I 0.05 0.5 0.025 0.02
II 0.05 0.5 0.0 0.0
III 0.05 0.5 −0.025 0.02

Table 10.2: Polytropic parameters defining EOS-models I, II, and III

To simplify the presentation of results, we focus in the following on three EOS-models, defined in
table 10.2, which differ only by their interaction-terms. The EOS-models I and III differ by the sign of
the “symmetry-interaction” term κnp, which corresponds to a value of the canonical “symmetry-energy
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Figure 10.5: Kepler limit ΩK (of the faster fluid) as a function of relative rotation R for EOS-
models I, II and III. The dashed line (NSR) represents the result from the analytic Newtonian
slow-rotation solution (cf. Appendix 10.A)

term” σ, introduced in [377], of σ = −0.5 for EOS I and σ = 0.5 for EOS III. EOS II represents two
fluids without local interactions. If not otherwise stated, we choose the central chemical potentials to
be µn = µp = 0.3 mb c2. In the static case we obtain the results shown in Table 10.3 for these three
EOS-models. We note that all three static configurations are on the stable branch of the mass-density
relation, which can be seen explicitly in Fig. 10.7 for the case of EOS-model I. We note that when

EOS I EOS II EOS III

nc [fm−3] 0.7177 0.7697 0.8612
εp(0) 0.273 0.0 0.301
xp(0) 0.05 0.09 0.125

M [M⊙] 1.586 1.532 1.448
M [M⊙] 1.460 1.409 1.332
R [km] 14.37 13.88 13.12

Table 10.3: Results for the central baryon number density nc, entrainment εp, proton fraction
xp, total baryon mass M and gravitational mass M and the proper radius R for EOS-models I,
II and III in the static case.

considering rotation, the individual fluid radii will obviously change, but also the masses, because in
the following we only consider stellar sequences of fixed central density.

Next we consider these stellar models rotating at their maximum rotation rate ΩK (called Kepler
limit) for a given relative rotation R, which is shown in Fig. 10.5. The convention in this figure is
to always plot as ΩK the rotation rate of the faster fluid (which in this case also happens to be the
outer fluid), i.e. the protons for R < 0 and the neutrons for R > 0. The rotation rate of the slower
fluid is trivially determined by ΩK and R. Also shown (dashed line) is the result from the Newtonian
slow-rotation solution (10.129). This is seen to overestimates the Kepler rate typically by about 15 %,
except for the case of EOS I, where it can even underestimate the Kepler limit for R < 0. We see
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that in the fixed central-density sequences considered here, the local maximum of the Kepler rate is
always attained for the co-rotating configuration (i.e. R = 0), which contrasts with the case of fixed
mass-sequences considered in the Newtonian study [377]. A similar feature of Kepler decreasing as R
decreases through zero can be seen in the mean-field results of [124].

In the Fig. 10.6, we show the fluid surfaces of the two fluids rotating at the Kepler-rate for two
different relative rotation rates, R = 0.1 and R = 0.01 respectively. We see the characteristic “cusp”
appearing at the equator of the outer fluid, which indicates the onset of mass-shedding if the rotation
rate were to be increased any further. Because we fixed the central densities of these configurations to
be equal to the static case, it can be seen from Fig. 10.7 that both of these configurations belong to the
so-called “supramassive” class, i.e. they do not have a corresponding stable non-rotating configuration
of equal baryon-mass.

(a) (b)~Ω
~Ω

Figure 10.6: Kepler configurations for EOS-model I. Figure (a) shows the configuration rotating
with a relative rotation rate of R = 0.1, while in (b) the relative rotation rate is R = 0.01.

Fig. 10.7 shows the mass-density diagram for the static configuration of EOS I and for three
different relative rotation-rates at the Kepler-limit. The configurations to the right of the maximum
are on the so-called “unstable branch”, because they will be subject to unstable modes resulting in
collapse under small perturbations. The configurations above the dotted line correspond to stars
on the unstable-branch of the static curve. They have no stable non-rotating counter-part, even if
they are on the stable branch of the mass-curve of the rotating case, and they are therefore called
“supramassive stars”. These configurations are stabilized by rotation and would collapse if slowed
down below a certain critical rotation rate.

So far we have mostly considered stars with chemical equilibrium at the center, i.e. µn = µp.
Incidentally, for the EOS-class considered here, the resulting static configurations share a common
outer surface in this case. However, global chemical equilibrium is generally not possible for configu-
rations with the two fluids rotating at different rates, which was shown by [22] and [377]. In order to
model more “realistic” configurations, in which the proton-fluid mimics a neutron-star “crust” (albeit
without any solidity) by extending further outside than the neutrons, we can easily achieve this by
choosing different central densities (i.e. chemical potentials). For example, using EOS II and setting
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Figure 10.7: Gravitational mass M as a function of the central baryon number density nc for
EOS-model I with a fixed central proton fraction of xp = 0.05. The four curves correspond
to the non-rotating (’static’) case, the co-rotating Kepler-configuration (R = 0), and two
Kepler-configurations at relative rotation rates of R = 0.5 and R = −0.5 respectively. The
small circle indicates the static configuration with central chemical potentials of µn = µp =
0.3 mbc

2. The box indicates the maximum-mass configuration for the static case. The dotted
line represents the constant baryon-mass sequence connecting to the static maximum-mass
configuration. Configurations above this line have no stable non-rotating counterpart and are
called “supramassive” stars.

µn = 0.228 mbc
2 and µp = 0.220 mbc

2, we obtain the configuration shown in Fig. 10.8. For this
figure we have chosen the rotation rate of the fastest known millisecond pulsar, which has a period of
P ∼ 1.56 ms.

On the other hand, a similar configuration with µn = 0.28 mbc
2 and µp = 0.3 mbc

2 rotating at the
Kepler-limit for a relative rotation rate of R = 0.01 is displayed in Fig. 10.9. As can be seen by the
cusp-formation, the Kepler-limit is determined by the outer fluid, i.e. the protons in this case, despite
the fact that they are rotating more slowly than the neutrons. This is different to the case depicted in
Fig. 10.5, in which the faster fluid also always happens to be the outer fluid, which is a particularity
of this EOS-class and the choice of central chemical equilibrium µn = µp (cf. [377]).

10.7 Conclusions

We have developed a theoretical framework and a numerical code for computing stationary, fully
relativistic superfluid neutron star models.

Using this code we have reconfirmed the existence of oblate-prolate shaped two-fluid configurations,
previously shown in [377, 378]. We have studied the dependency of the Kepler rate of a two-fluid star
on the relative rotation rate R. We have compared this to the Kepler-rate predicted by a Newtonian
slow-rotation approximation, which is found to typically overestimate the Kepler-rate by about 25%,
while it can also underestimate it for R 6= 0, as seen in the case of EOS I and R . −0.25 (cf. Fig. 10.5).

The relative rotation rate can also have a large influence (at fixed central density) on the mass-
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Figure 10.8: Configuration with protons rotating at the speed of the fastest known millisecond
pulsar, Ωp/2π = 641 Hz, and Ωn/2π = 645 Hz. The protons are extending further outside than
the neutrons. The physical parameters are µn = 0.228 mbc

2 and µp = 0.220 mbc
2, resulting in

central baryon number density nc = 0.561 fm−3, proton fraction xp = 0.09 and a gravitational
mass of M = 1.39 M⊙.

Figure 10.9: Kepler configuration at R = 0.01 for µn = 0.28 mbc
2 and µp = 0.3 mbc

2, resulting
in central baryon number density nc = 0.716 fm−3, proton fraction xp = 0.09 and a gravitational
mass of M = 1.57 M⊙. The protons extend to the outer surface. The maximal rotation rates
are found as Ωn/2π = 924.5 Hz and Ωp/2π = 915.3 Hz.
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density relation, as shown in Fig. 10.7.

Another interesting aspect of this model is that we are not restricted to configurations which are in
chemical equilibrium at the center. Choosing the central chemical potentials to be different allows one
to emulate a neutron star “crust” (albeit a fluid one), as one fluid will now extend further outwards
than the other, as can be seen in Fig. 10.8 and Fig. 10.9. One interesting observation from such
configurations is that the Kepler-limit will be determined by the outer fluid (forming a cusp), while
this can actually be rotating slower then the inner fluid.

We currently use a (quite general) EOS class of two-fluid polytropes, but this can be extended
straightforwardly to more “realistic” nuclear-physics equations of state. In particular it might be
interesting in the next step to use the first relativistic two-fluid EOS incorporating entrainment by
[125]. Furthermore it would be important to add the presence of a solid crust and to allow for
differential rotation in the superfluid neutrons. The astrophysically most interesting future extension
of this work would probably consist in studying the oscillation modes of such models, which would be
directly related to the emission of gravitational waves. In these non-stationary situations, however,
dissipative mechanisms like viscosity and mutual friction would also start to play a role and should
be included in the model.

APPENDIX

10.A The Newtonian analytic slow-rotation solution

A method for solving the stationary 2-fluid configuration in the Newtonian slow-rotation approxima-
tion was initially developed in [376], and was completed to include all EOS-interactions in [377] (in
the following referred to as Paper I). Using this method, an analytic solution was found in Paper I
for equations of state of the form E = 1

2κnn
2
n + 1

2κpn
2
p + κnpnnnp + βpnp∆

2. While this solution was
very useful to study the qualitative properties of an interacting 2-fluid system, it is unfortunately
not very suitable for comparison to the numerical solution presented in this paper. The reason for
this lies in the somewhat unphysical behavior of entrainment in this model. Namely, the entrainment
numbers (10.16) are found as εp = 2β/m, and εn = 2xpβ/(m(1−xp)), where xp ≡ np/n is the proton
fraction, which is constant for this EOS (cf. Paper I). Therefore the entrainment numbers are constant,
independently of the densities, and so the entrainment effect would still be present in a 1-fluid region.
This unphysical behavior did not pose a problem in the slow-rotation approximation, which consists
of an expansion around a static chemical-equilibrium configuration: the two fluids share a common
surface in the unperturbed state, and the rotation will only induce infinitesimal displacements of the
fluids. In this framework there are therefore no finite 1-fluid regions. However, in a numerical code
allowing for arbitrary rotations and deviations from chemical equilibrium, such an entrainment model
would be problematic. The EOS-class (10.68) used in this work is therefore preferable on both physical
and numerical grounds.

Fortunately, an analytic solution can also be found for this physically preferable EOS using the
slow-rotation approach developed in Paper I. This solution is very valuable for quantitative compar-
isons with our numerical results, which have been presented in section 10.5.3. In this section we derive
this new analytic solution, skipping some of the more technical steps, which have been explained in
more detail already in Paper I.

Because of axisymmetry, the rotating solution only depends on the spherical coordinates r and
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θ, while the static configuration is assumed to be spherically symmetric. The 2-fluid slow-rotation
approximation proceeds by expanding any local stellar quantity Q as follows:

Q(r, θ; ΩX ) = Q(0)(r) + ΩX QXY (r, θ)ΩY + O(Ω4) , (10.88)

where here and in the following we automatically sum over repeated constituent indices X = n, p.
We can separate the variables r and θ by expanding in Legendre Polynomials, i.e. QXY (r, θ) =∑

l Q
XY
l (r)Pl(cos θ), and it can be shown that only the components l = 0, 2 will be nonzero in the

solution. The solution is therefore fully determined by two ordinary differential equations for the
components ΦXY

0 (r) and ΦXY
2 (r) of the perturbation of the gravitational potential. The information

about the EOS enters via the following two “structure functions”, defined as

SXY ≡
(

∂2E
∂nX ∂nY

∣∣∣∣
0

)−1

, βX ≡ ∂2E
∂nX ∂∆2

∣∣∣∣
0

, (10.89)

where |0 denotes the derivatives to be evaluated at the static configuration. For the EOS (10.68), we
find

SXY =
1

K

(
κp −κnp

−κnp κn

)
, (10.90)

where K ≡ κpκn − κ2
np, and

βX (r) = κ
∆
MXY n

(0)
Y (r) , (10.91)

with the constant matrix MXY defined as

MXY ≡
(

0 1
1 0

)
. (10.92)

We further introduce the “derived” structure functions,

kA ≡ SABmB , and k ≡ mAkA , (10.93)

which are constant for this EOS. The matrices EXY
A , defined as

EXY
A (r) ≡ 1

3
SAB

(
δB ,XY − 2βB (r)∆XY

)
, (10.94)

are now functions of r, contrary to the EOS treated in Paper I, in which they were constant. The
constant auxiliary matrices δA,XY and ∆XY are defined as

δn,XY ≡
(

mn 0
0 0

)
, δp,XY ≡

(
0 0
0 mp

)
, (10.95)

∆XY ≡
(

1 −1
−1 1

)
. (10.96)

The static background solution only depends on SXY , and is identical to the one found in Paper I.
Namely, in “natural units” defined by ρ(0)(0) = 1 and R = 1, this static solution can be written as

ρ(0)(r) =
sin(r

√
k)

r
√

k
. (10.97)
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In these units it must be true that ρ(0)(1) = 0, which leads to the condition k = mAkA = π2. This
relation can be used to rescale the EOS parameters κn, κp and κnp to natural units. The respective

particle number densities n
(0)
A (r) are expressible as

n
(0)
A (r) =

kA
π2

ρ(0)(r) . (10.98)

Substituting this into (10.94), we can write

EXY
A (r) = ẼXY

A − ÊXY
A ρ(0)(r) , (10.99)

in terms of the two constant matrices

ẼXY
A ≡ 1

3
SABδB ,XY ,

ÊXY
A ≡ 2

3ρ(0)
SABβB ∆XY , (10.100)

and for EXY ≡ mAEXY
A , we write in an analogous manner

EXY = ẼXY − ÊXY ρ(0)(r) , (10.101)

with

ẼXY =
1

3
kBδB ,XY ,

ÊXY =
4κ

∆

3π2
knkp ∆XY . (10.102)

We can now write the differential equations determining the solution for the given EOS, namely

D0Φ
XY
0 + π2 ΦXY

0 = CXY + r2ẼXY − r2ρ(0)ÊXY, (10.103)

D2Φ
XY
2 + π2 ΦXY

2 = −r2ẼXY + r2ρ(0)ÊXY , (10.104)

where the differential operator Dl is defined as

Dl ≡
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
. (10.105)

We note that the only difference of this EOS to the one studied in Paper I concerns the entrainment
βX (r). We can therefore formally recover the results from Paper I in the limit κ

∆
→ 0, which

corresponds to ÊXY → 0 and ÊXY
A → 0. The constant matrix CXY is determined by the choice of

stellar sequence, e.g. either characterized by fixed central densities (FCD) or fixed masses (FM). The
solution to the above equations also determines the density distribution of the two-fluid star, namely
via the relations

nXY
A,0 (r) = SAB CB ,XY + r2EXY

A − kAΦXY
0 , (10.106)

nXY
A,2 (r) = −r2EXY

A − kAΦXY
2 , (10.107)

where the constants CA,XY are also determined by the choice of stellar sequence, and they satisfy the
relation CXY = kACA,XY . The complete slow-rotation solution for the density distribution of the two
fluids can be written as

nA(r, θ) = n
(0)
A (r) + ΩX

(
nXY
A,0 + nXY

A,2 P2(cos θ)
)
ΩY . (10.108)
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The general (regular) solution of equations (10.103) and (10.104) can be found explicitly as

ΦXY
0 (r) = AXY

0

J1/2(rπ)√
r

+
ẼXY

π2

(
r2 − 6

π2

)
+

CXY

π2

− ÊXY

12π4

{
3rπ sin rπ + (3 − 2π2r2) cos rπ

}
, (10.109)

ΦXY
2 (r) = AXY

2

J5/2(rπ)√
r

− ẼXY

π2
r2

− ÊXY

12π7r3

{
(45 + 2π4r4) rπ cos rπ

+15(r2π2 − 3) sin rπ
}

, (10.110)

where AXY
0 and AXY

2 are constants of integration, and Jn(x) are the standard Bessel functions. One
can verify the asymptotic behavior ΦXY

2 ∼ r2 as r → 0, which is required for regularity. In addition to
the regularity requirements at the center, the solution must satisfy the following boundary condition
at the surface (r = 1):

ΦXY ′

l (1) + l(l + 1)ΦXY
l (1) = 0 . (10.111)

These boundary conditions result in the following relations for the integration constants AXY
0 and

AXY
2 :

4π4
√

2AXY
0 = 12(π2 − 2)ẼXY + (1 − π2)ÊXY

+4π2CXY , (10.112)
√

2AXY
2 =

5

π2
ẼXY − 5

π4
(3 + 2π2)ÊXY, (10.113)

Fixed central density (FCD) sequence

The FCD-sequence is the most directly comparable to the numerical results discussed in this paper.
This sequence is defined by the condition nXY

A,0 (0) = 0, and in this case the remaining constant of
integration can be determined as

CXY
FCD = −3

(
1 − 4

π2

)
ẼXY +

1

4
ÊXY , (10.114)

and we also have the relation

SABCB ,XY
FCD =

kA
π2

CXY
FCD . (10.115)

Putting all the pieces together, we arrive at the following explicit solution for the density perturbations
of the FCD sequence:

nXY
A,0,FCD = −6kAẼXY

π4

(
sin rπ

rπ
+

r2π2

6
− 1

)
+ ẼXY

A r2

−kAÊXY

4π4

(
(1 − r2π2)

sin rπ

rπ
− (1 − 2

3
r2π2) cos rπ

)

−ÊXY
A

π2
rπ sin rπ , (10.116)
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nXY
A,2 (r) =

kAẼXY

π2

(
r2 − 5√

2

J5/2(rπ)√
r

)
− ẼXY

A r2

+
5

6

kAÊXY

π5r3

{(
π2

5
r4 − 3

)
rπ cos rπ − (r2π2 − 3) sin rπ

}

+
ÊXY

A

π2
rπ sin rπ , (10.117)

in terms of the constant “structure matrices” Ẽ and Ê defined in Eqs. (10.100) and (10.102).

Fixed-mass (FM) stellar sequence

Although in this paper we only made use of the FCD-solution, for completeness we will also give the
solution corresponding to a fixed-mass sequence, which might be physically more interesting. The
difference to the FCD-solution only concerns the l = 0 component, while nXY

A,2 is the same in both
cases. As discussed in Paper I, the FM-sequence is characterized by the conditions

∫ 1

0
r2 nXY

A,0,FM(r) dr = 0 , (10.118)

which lead to the following condition for the potential

ΦXY
0,FM(1) = 0 . (10.119)

This results in the integration constant

CXY
FM =

(
6

π2
− 1

)
ẼXY +

(
1

6
− 1

4π2

)
ẼXY , (10.120)

while we can similarly determine SABCB ,XY from (10.118). Inserting this into (10.109) we get

ΦXY
0,FM(r) =

ẼXY

π2

(
r2 − 1 +

√
2
J1/2(rπ)√

r

)

+
ÊXY

12π4

(
2π2 − 3 + (2π2r2 − 3) cos rπ

−(1 + 3r2)
π2

√
2

J1/2(rπ)√
r

)
. (10.121)

The l = 0 density coefficient is therefore found by using (10.106):

nXY
A,0,FM =

kAẼXY

5π4

(
30 + 3π2 − 5r2π2 − 10π

r
sin rπ

)

+ẼXY
A

(
r2 − 3

5

)
+

ÊXY
A

π2

(
3(1 − 6

π2
) − rπ sin rπ

)

−kAÊXY

12π4

(
36(1 − 6

π2
) − (3 − 2r2π2) cos rπ

−(1 + 3r2)
π

r
sin rπ

)
, (10.122)

n which completes the analytic solution in the FM case.
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Calculating the Kepler-limit

We briefly review the method of calculating the Kepler-limit using the slow-rotation solution presented
above. The result of this calculation was used for the Newtonian slow-rotation Kepler-limit presented
in Fig. 10.5. As derived in Paper I, the Kepler-rate to order Ω2 for each of the two fluids can be
expressed as the solution of the equation

Ω2
A = Ω2

(0) + ΩX δqXY
A ΩY + O(Ω4) , (10.123)

where the zeroth-order expression is
Ω2

(0) = Φ(0)′(1) , (10.124)

and the second-order correction terms reads as

δqXY
A =

[
− 3

kA

(
nXY
A,0 − 1

2
nXY
A,2

)
+ ΦXY ′

0 − 1

2
ΦXY ′

2

]

r=1

. (10.125)

For the EOS-class considered here, we find

Ω2
(0) =

4

π
G ρ(0) , (10.126)

δqXY
A,FCD = −9ẼXY

A

2kA
+

ÊXY

12π4

(
6 − 7π2

)

+
ÊXY

π4

(
5π2 − 24

)
, (10.127)

δqXY
A,FM =

6

π2

(
1

5
− 3

π2

)
ẼXY − 9ÊXY

A

kAπ4
(π2 − 6)

−ÊXY

4π6

(
216 − 39π2 + 2π4

)
− 27

10kA
ẼXY

A . (10.128)

For each fluid A, we find the Kepler-limit ΩK,A(ΩB ) (where B 6=A) by solving the quadratic equation
(10.123). The Kepler-limit is then interpreted as the corresponding solution for the faster fluid, which
in this case corresponds to the outer fluid, i.e. we have

ΩK =

{
ΩK,n(R) , for R > 0 ,
ΩK,p(R) , for R < 0 .

(10.129)
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11.1 Introduction

For steadily rotating, charged massive bodies, the gyromagnetic factor g is defined as the ratio

g =
2MM

QJ
; (11.1)

where M is the mass, Q the total charge and J the angular momentum of the system. M is the
magnetic moment of the system, linked with the motion of the charges that are accounting for Q.
With such a definition, in classical electrodynamics a rotating charged particle has a gyromagnetic
factor equal to 1. The same is thus true for any system in classical electrodynamics, with a constant
ratio of charge and mass density. On the other hand, within general relativity, the gyromagnetic ratio
for all charged and rotating black holes is g = 2. Many points concerning the gyromagnetic ratio for
isolated systems within classical electrodynamics, quantum theory and general relativity have been
studied by Pfister and King [367]. The question we try to address here is the following one. How
does the gyromagnetic factor behave for “intermediate” objects in general relativity, that possess a
gravitational field weaker than that of black holes, but in which strong field effects are not negligible?

The aim of this paper is to try to answer this question by numerically studying the g-factor of
rotating and charged relativistic compact stars, within the framework of general relativity. We use a
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self-consistent physical model, in which matter is supposed to be a charged (insulator type) perfect
fluid; axisymmetric and in stationary rotation. As it will be shown later, the only limitation shall
be on neglecting the electromagnetic forces acting on hydrodynamic equilibrium, making our study a
“low charge” approximate one; but we take into account the electromagnetic field contribution to the
total energy-momentum tensor. The variation of the gyromagnetic ratio as a function of the number
of particles in the system, or as a function of the rotation frequency will also be discussed. Details of
the physical model are presented in section 11.2, section 11.3 is then giving results of the numerical
study for two equations of state, which determine local properties of matter, and making comparison
with previous works. Finally, section 11.4 summarises results and gives some concluding remarks.

11.2 Model and assumptions

We here give the most important assumptions made in our study; complete details of the formalism
and the way numerical stars are computed can be found in Bonazzola et al. [67] and in Bocquet et al.
[64] for the magnetised configurations.

11.2.1 Stationary and axisymmetric spacetime

We want to solve the coupled Einstein-Maxwell equations to get general relativistic magnetised models
of stationary rotating bodies. We make the assumption that the spacetime is also stationary (asymp-
totically timelike Killing vector field), axisymmetric (spacelike Killing vector field which vanishes on
a timelike 2-surface, axis of symmetry and whose orbits are closed curves) and asymptotically flat.
In addition, we suppose that the source of the gravitational field satisfies the circularity condition,
equivalent to the absence of meridional convective currents and only poloidal magnetic field is allowed.
We then use MSQI (Maximal Slicing - Quasi Isotropic, see [67]) coordinates (t, r, θ, ϕ), in which the
metric tensor takes the form

ds2 = gµνdxµdxν = −N2dt2 + B2r2 sin2 θ(dϕ − βϕdt)2 + A2(dr2 + r2dθ2), (11.2)

where N, βϕ, A and B are four functions of (r, θ).
With our hypothesis, the electromagnetic field tensor Fαβ must be derived from a potential 1-form

with the following components
Aα = (At, 0, 0, Aϕ). (11.3)

The Einstein-Maxwell equations result in a set of six coupled non-linear elliptic equations for the four
metric and the two electromagnetic potentials (see [67] and [64]). The right-hand side of this system
also involves matter terms (density and charge currents), which will be discussed in next section.

11.2.2 Fluid properties

The matter is supposed to consist of a perfect fluid, so there exists a privileged vector field: the
4-velocity uα. The energy-momentum tensor takes its usual form

Tµν = (e + p)uµuν + pgµν + Tµν
EM, (11.4)

where p is the fluid pressure and e the energy density measured in the fluid frame.

Tµν
EM = 1/4π

(
FµαF ν

α − 1/4FαβFαβgµν
)
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is the electromagnetic contribution to the energy-momentum tensor. Following [67], we note Ω = uϕ/ut

and define Γ as the Lorentz factor linking the fluid comoving observer and the locally non-rotating one.
We make the assumption that the matter is rigidly rotating (Ω =constant) and that the equation of
state (EOS) is a one parameter EOS (ignoring the influence of temperature): e = e(nB) and p = p(nB),
with nB being the proper baryon density.

The momentum-energy conservation gives an equation of stationary motion for the fluid, which
can be written as a first integral of motion (the electromagnetic contribution to the energy-momentum
tensor is not considered yet), see [67]

ln
e + p

nB
+ lnN − ln Γ = constant. (11.5)

We turn now to the electromagnetic part; in order to have a complete charged body, with a constant
ratio of charge and mass density (see [367]), we suppose, contrary to [64] or [105], that our system
consists of an insulator, so that currents originate only from macroscopic charge movement. The 4-
current is thus proportional to jµ ∼ uµ/Γ implying that jϕ = Ωjt. Taking then electromagnetic force
term fi = Fiσjσ/(e + p) into account, the momentum-energy conservation reads

∂i

(
ln

e + p

nB
+ lnN − ln Γ

)
+

1

e + p
jt∂i (ΩAϕ − At) = 0. (11.6)

The integrability condition of this equation is that the last term is a gradient, so that there exists a
function M(r, θ) such that jt∂i (ΩAϕ − At) = (e + p)∂iM . Following the same arguments as in [67],
there must exist a regular function m, such that

jt = (e + p)m (ΩAϕ − At) , with M(r, θ) =

∫ ΩAϕ(r,θ)−At(r,θ)

0
m(x)dx. (11.7)

But, this gives too large a freedom for the distribution of charged particles inside the star. In
particular, the charge density jt is independent of the baryon density nB, and the g-factor can, in
principle, take any value. It is also irrelevant to compare the g-factor obtained in this way, with its
value 1 in classical electrodynamics, where it is supposed that charge currents are directly proportional
to mass currents and charge density to mass density [367]. So we replace (11.7) by

jt = χnB, and M = 0, (11.8)

χ being the constant ratio between the charge and particle densities, it is an input parameter (together
with the central density and the angular velocity) that controls the total charge of the system. It
means that we do not integrate exactly momentum-energy conservation equation (11.6), since we
neglect the electromagnetic forces. It will be shown in section 11.3 that this assumption is valid for
low total charges, where the electromagnetic forces are indeed negligible, when compared to pressure,
gravitational and centrifugal forces.

11.2.3 Accuracy indicators

To solve the six elliptical Poisson-like equations described in section 11.2.1, we use spectral methods as
described by Grandclément et al. [228]. The complete numerical procedure is presented in [64] as well
as many tests of the numerical code. Let us here emphasise that for our computations of spacetimes, we
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have very reliable and independent tests through the virial identities GRV2 (Bonazzola [65], Bonazzola
and Gourgoulhon [76]) and GRV3 (Gourgoulhon and Bonazzola [220]), this latter being a relativistic
generalisation of the classical virial theorem. GRV2 and GRV3 are integral identities which must be
satisfied by any solution of the Einstein-Maxwell equations we solve here, and are not imposed during
the numerical procedure. They are very sensitive to any physical inaccuracy in the model, including
eventual problems in the equation of state. In the following, when presenting accuracy of numerical
results, we will refer to the accuracy by which the numerical solution satisfies these virial identities.
With the exception of results shown in figure 11.1, where error bars are displayed, we only show results
with better relative accuracy than 10−5.

As presented by Bonazzola et al. [67], a key point of the numerical method is to be able to integrate
Einstein-Maxwell equations up to spatial infinity, using a change of variable of the type u = 1/r
outside the star. This allows us to impose exact boundary conditions at r → ∞, and to compute
global quantities from asymptotic behaviour of the fields or integrals over the whole space. We can
therefore compute values of the total gravitational mass M and the total angular momentum J , from
the gravitational field gµν ; the total charge Q and the magnetic moment M from the electromagnetic
potential Aµ. Another global quantity characterising the star is the circumferential radius Rcirc,
defined as star’s equatorial circumference (measured by the metric (11.2)) divided by 2π

Rcirc = B
(
R,

π

2

)
R, (11.9)

where R is the coordinate equatorial radius. Finally, we shall use the total baryon number of the star
and its baryon mass MB.

11.3 Numerical studies

To calculate the g-factor of a given model, in addition to the choice of a particular equation of state,
one has to set the three following parameters: the central density nB(r = 0) (or, equivalently, the
central log-enthalpy ln(e + p)/nB|r=0), the angular velocity Ω and the ratio between mass and charge
densities χ (11.8).

11.3.1 Polytropes

In this part we choose the EOS to be a polytropic one, of the form (6.40) of reference [67]: p = κnγ
B.

We took γ = 2 and κ = 0.07ρnucc
2/n2

nuc, where nuclear density ρnuc = 1.66 × 1017kg/m3 and nnuc =
0.1fm−3. We first want to test the validity of our assumption neglecting electromagnetic forces in the
equilibrium of the fluid. We computed a sequence of configurations increasing the total charge, at fixed
angular velocity Ω = 200 Hz and fixed number of baryons (equivalent to 1.6 solar mass). Results for
the g-factor (11.1) as a function of the dimensionless ratio Q/M are displayed in figure 11.1, together
with the errors given by the virial identities (see section 11.2.3). For Q/M . 0.01, g is constant at 10−5

accuracy. For Q/M & 0.01, g starts to vary, but this variation remains within error bars, that become
very important as Q/M → 1. This indicates that the fact that we are neglecting electromagnetic
forces in the equilibrium of the star induces an error that is lower than the numerical one, as long
as Q/M . 0.01. It may be seen as a “low charge” approximation for our model and, within this
approximation, we have checked with different equations of state (other polytropes, incompressible
fluid EOS, strange matter EOS) that the g-factor would not depend on the charge. Let us say here
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Figure 11.1: Variation of the g-factor as a function of the dimensionless ratio (total charge) /
(gravitational mass), for a polytrope. Angular velocity Ω and baryon mass MB are constant,
being respectively equal to 200 Hz and 1.6M⊙. Error bars are given by the GRV2 test.

that, although we are neglecting electromagnetic forces in the fluid equilibrium, we are taking the
electromagnetic field into account in the sources of Einstein equations.

The regime for which Q/M > 1 does not seem realistic for a perfect fluid. Indeed, the repulsive
Coulomb force acting on charged particles becomes comparable to the gravitational force and pressure.
Therefore, there may not exist any stationary configuration for Q/M too larger than 1: the electrostatic
force would overcome the gravitational one and disperse particles. Moreover, Mustafa et al. [328] have
shown that, in the case of a slowly rotating charged shell, when Q/M > 1 there is no upper or lower
bound on the value of the g-factor. Finally, in order to find an acceptable stationary solution for
0.01 . Q/M < 1, one would have to satisfy both equations (11.7) and jt = χnB. These are, in
general, incompatible for a constant angular velocity Ω and one would have to allow for differential
rotation of the fluid. This has not been done in our study and it would certainly be an improvement
of our work. In the following, we will stay at Q/M = 10−3 an will consider that g is independent of
the total charge, in the low charge regime.

Now, we look at the variation of g, when the number of particles (the baryon mass MB) of the
rotating polytrope is changed. Results for the g-factor are displayed in figure 11.2 (solid line), together
with the value of the lapse N at the centre of the star (dashed line). The parameter varying along
both curves is the central density and we retrieve the well-known result of the existence of a maximal
mass for those stars. Thus, the higher branch of each curve corresponds to unstable configurations.
The Newtonian limit g = 1 is recovered at low baryon masses, corresponding to weak gravitational
field (Nc → 1). In more relativistic regime, the g-factor follows roughly the variation of the central
lapse, never reaching the value of 2 (corresponding to Nc = 0), which corresponds to a charged black
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Figure 11.2: Variation of the g-factor and of the central lapse Nc = N(r = 0), as a function of
baryon mass, for a polytrope. Angular velocity Ω = 10 Hz is kept constant.
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Figure 11.3: Variation of the g-factor and of the central lapse Nc = N(r = 0), as a function of
the angular velocity, for a polytrope. The baryon mass MB = 1.6M⊙ is kept constant.
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Figure 11.4: Variation of the g-factor as a function of the central lapse Nc = N(r = 0), for a
polytrope. The angular velocity Ω = 10 Hz is kept constant.

hole. The maximal value that could be reached (for an unstable configuration) was g = 1.8, if only
stable solutions are considered, then one has g ≤ 1.6.

The third parameter whose influence we want to study is the angular velocity Ω. Therefore, at fixed
number of particles in the star, and fixed total charge, we varied Ω from (almost) 0 to the maximal
value, called Keplerian frequency (ΩK), where the centrifugal force at the equator compensate the
gravitational attraction (shedding limit). The variation of the g-factor as a function of Ω/ΩK, as well
as that of a linear combination of the central lapse 2−Nc are displayed in figure 11.3. Both quantities
show the same type of behaviour: they are decreasing functions, mainly near Ω ∼ ΩK, but the overall
change is relatively small, when compared to that of figure 11.2. We have explored here high angular
velocities, without any “slow-rotation” assumption, but the influence of these high velocities seems
rather small. We have checked at different masses, always obtaining the same kind of result. Here
again, we see that 2 − Nc and g follow the same type of evolution, when varying Ω. We therefore
have plotted the g-factor, as a function of 2 − Nc as shown in figure 11.4, when varying the central
value of the density nB(r = 0), like in figure 11.2. Contrary to that figure, there is no sign of the
maximal mass point, the g-factor being directly dependent on the strength of the gravitational field at
the centre of the star. It seems that the gyromagnetic factor (11.1) might be another indicator of the
strength of the gravitational field in self-gravitating objects: when gravity is weak (well described by
Newtonian theory), we have g ∼ 1; when the star is very compact (even unstable) g takes its highest
values. Finally, for a black hole, where gravity dominates over other forces, we have g = 2.
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Figure 11.5: Variation of the g-factor as a function of the compaction parameter C = M/Rcirc,
at constant angular velocity Ω = 50 Hz, for an incompressible fluid. Circles show the model
that have been computed. The vertical line at C = 4/9 corresponds to the maximal value of
the compaction parameter for spherically symmetric stars (see [94]).
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Figure 11.6: Variation of the g-factor as a function of the angular velocity, at constant com-
paction parameter C = M/Rcirc = 0.307 for an incompressible fluid.

11.3.2 Constant density models

In order to study the dependence of the results of the previous section on the particular EOS, we
first changed the values of γ and κ. The results obtained were qualitatively the same as in previous
section. Quantitatively, the trend described at the end of previous section (figure 11.4 and the following
discussion), indicating that the g-factor be linked with the strength of the gravitational field in the
star was retrieved. We found that the more compact the star, the higher the gyromagnetic factor. We
checked this result with several other equations of state, described in Salgado et al. [399], as well as
with the “strange quark matter” model (see Gourgoulhon et al. [217]), which is giving very compact
objects. Still, none of these EOS allowed for a stable configuration with g & 1.8.

Finally, we present here the limiting case of an incompressible fluid: the EOS is such that nB and
e are constant throughout the star. Using this EOS in spherical symmetry, it can be shown (see, [94])
that it gives an upper limit on the gravitational redshift at the surface of the star, when comparing
with other EOS. We here introduce a new dimensionless quantity called compaction parameter

C =
M

Rcirc
, (11.10)

with Rcirc being defined by formula (11.9). In Newtonian theory, this is the gravitational potential
at the surface of the star and C ≪ 1. On the other hand, for a Schwarzschild black hole C = 0.5
and, for relativistic stars 0 ≤ C ≤ 4/9 (as derived by Buchdahl [94]). When considering charged
objects the maximal value is slightly increased, as shown in Mak et al. [307]. In figure 11.5, we
display the dependence of the gyromagnetic factor on this compaction parameter. As expected from
previous results, we find that g goes to 1, when C becomes very small (Newtonian limit). We could
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not reach the maximal theoretical value of the compaction parameter for spherical stars (4/9), due
to the rotation and, perhaps, to the numerical algorithm (we look for a solution by iteration, starting
with a flat metric). Nevertheless, we were able to get rather close to this limiting value, reaching the
highest gyromagnetic factors for self-gravitating fluids, with g ∼ 1.86. The striking feature is that the
g-factor seems to be directly proportional to the compaction parameter C and, if one extrapolates the
line to the maximal value of C, one finds that the maximal value for the g-factor would be about 1.9,
and certainly well below 2. Using only low charge objects, this value of 2 is linked with the collapse
limit that cannot be reached with our stationary models.

It is now worth returning to the dependence of g on the angular velocity Ω. If we fix the value of
C for the star, how does then gyromagnetic factor vary as a function of Ω ? The answer is displayed
in figure 11.6, still in the case of an incompressible fluid. We see that the dependence is very small,
only about one percent of variation between the non-rotating limit and the shedding one. Results
shown in figure 11.3 can have a new interpretation: when Ω is increased, C decreases because of
centrifugal forces that go against gravity and therefore make Rcirc increase. Gravitational potential at
the surface of the star decreases because of the rotation, the same being true for the gravitational field
N at the centre. The gyromagnetic factor indicates that, at high angular velocities, the star is less
gravitationally bound. Comparing different models, equally bound, but with different rotation rates
(figure 11.6), we see that the effect of rotation is small, and must act on the increase of g through the
addition of kinetic energy that contributes to the source terms of Einstein equations.

11.3.3 Comparison with previous works

There have been some studies of the gyromagnetic factor in general relativity, but none of them has
considered physically consistent matter models. Much of interesting work has been done for slowly
rotating charged shells, starting with that of Cohen et al. [123]. The study that may be most
closely related to ours is that by Pfister and King [366], where the authors calculate explicitly the
gyromagnetic factor of a charged mass shell in slow rotation approximation. The shell is infinitely
thin and the authors match two exact solutions of the Einstein equations in vacuum across it. The
properties of the energy-momentum tensor are then deduced from the matching of both metrics. The
advantage of their solutions is that they were able to explore regimes with a very high charge and
compaction parameter. Unfortunately, it is difficult to compare quantitatively their results with ours
since one knows very little about the properties of shell matter which, apart from energy conditions,
are not constrained. One might suppose that, in general, these shells are not behaving like perfect
fluids. Qualitatively, both studies agree: for Q/M ≪ 1 and taking into account energy conditions,
Pfister and King find that g varies between ∼ 1, for a low compaction parameter, and 2 in the collapse
limit. With a similar kind of problem, Mustafa et al. [328] found that g could reach values very close
to 2, for the charge-to-mass ratio less than unity and for the shell radius approaching the event horizon
value.

Garfinkle and Traschen [201] have calculated the g-factor of a rotating massive loop of charged
matter in the presence of a static charged black hole. They have found that, for large radii of the
loop, g tended to 1, whereas they found g → 2 for the radius approaching the horizon. We retrieve
(again qualitatively) the same results for our self-gravitating and three-dimensional objects: a loop at
spatial infinity might be seen as undergoing a weak gravitational field, just like self-gravitating body
with a low compaction parameter. Let us also mention here the very interesting work by Katz et al.,
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who calculated the gyromagnetic ratio1 in a conformastationary metric [272]. These axially symmetric
metrics can be seen as the external metrics for disc sources, made of charged dust. They show that
in those discs, hoop tensions are always necessary to balance the centrifugal forces induced by the
motion of the rotating dust. The model therefore correspond to non-perfect fluid, and they find g = 2
(with our definition) for these metrics.

11.4 Conclusions

We have studied the dependence of the gyromagnetic ratio (11.1) of self-gravitating rotating fluids
on their mass (number of particles), angular velocity and equation of state. We have used a physical
model in which we make the assumption that the fluid is an insulator in uniform rotation, and we have
neglected the electromagnetic forces acting on the equilibrium of the fluid (low charge approximation).
These models have been solved numerically, with a code giving the solution in all space, which enabled
us to get the value of g with a high accuracy (better than 10−5) given by independent tests. We find
that, with such “stars”, g can never reach the value 2, characteristic of a charged rotating black hole.
The maximal value that can be achieved in our study is lower than 1.9. This gap may be linked with
the fact that we have neglected electromagnetic forces on hydrodynamic equilibrium and our study has
therefore been restricted to low charge-to-mass ratios. But it might also be a result of that stationary
relativistic stars, made of perfect fluid, cannot reach values of the compaction parameter M/R close
to 1/2. In that sense, the g-factor is a good indicator of the strength of the gravitational field in an
insulating perfect fluid, but is little dependent on the angular velocity of the star. In our study, the
value g = 2 seems linked only with the black hole solution but, from other works, [123], [366] and
[328], one can see that this may depend on the total charge of the system. An important improvement
of our work would be to allow for any charge of the system, that is compatible with the stationarity
assumption and therefore allow for differential rotation, which may open new possibilities.

1there is a factor 2 difference between their definition of g and our (11.1)
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12.1 Introduction

In the early eighties [410] addressed the question of formation of black holes in astrophysical collapses.
Among other, they asked the (theoretical) question of the minimum mass of a black hole formed by the
adiabatic collapse of a stellar core and “In particular, can the effective mass-energy potential barrier
associated with equilibrium configurations be penetrated by low-mass cores with substantial inward,
radial kinetic energy?”. In astrophysical scenarios, black holes can also form from accretion-induced
collapses of neutron star, if the neutron star is part of a binary system or during a supernova event,
when part of the envelop fails to reach escape velocity and falls back onto the new born neutron star.
Therefore, one can also ask the question: how much of inward kinetic energy has to be put to a neutron
star to make it collapse to a black hole? Can a neutron star always collapse to a black hole, provided
that it gets enough kinetic energy?

If one looks at static neutron star models, these are stable against perturbations if their masses are
lower than some maximal mass and the density is also lower than the “critical” density corresponding
to this maximal mass (they are located on the so-called stable branch). They can collapse to form a
black hole when the central density is higher than the critical one (see e.g. [211]). The question is then
whether stable neutron stars (i.e. with lower density and mass than the critical ones) can be “pushed”,
with a certain amount of inward kinetic energy, to form a black hole, and what is the minimal mass of
the formed black hole and/or progenitor? The problem of the minimal mass of a black hole has been
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solved, first from a more mathematical point of view, by [117], who discovered the “critical collapse”
phenomena in General Relativity (see also Sec. 12.4.1 for a discussion). Still, the problem of a stellar
core/neutron star with inward kinetic energy have never been completely studied; to our knowledge,
only a partial study was done by [212]. The aim of this paper is to numerically follow the collapse
of stable neutron stars, with inward velocity profile, and determine the initial conditions necessary to
obtain a black hole as result of the collapse; the purpose is also to allow for a realistic equation of
state (EOS), to study dependence on the EOS, as well as on the initial velocity profile, giving kinetic
energy. Therefore, emphasis shall be put on neutron star properties in General Relativity and the
question of the physical mechanism giving this kinetic energy will not be addressed.

The complete model in General Relativity is described in Sec. 12.2, including the system of par-
tial derivative equations (12.2.1), the two EOS used (12.2.2), and the procedure for obtaining initial
numerical models (12.2.3). Time evolution is studied in Sec. 12.3, where two different possible evo-
lutions for neutron stars are given (12.3.1 and 12.3.2). Numerical results are displayed in Sec. 12.4:
together with a link with the “critical collapse” paradigm (12.4.1), properties of initial data (12.4.2)
and dependence on the parameters (12.4.3) are discussed. Finally, Sec. 12.5 summarizes the results
and gives some concluding remarks.

12.2 Evolution of spherically symmetric neutron stars

12.2.1 Field and Matter equations

The equations for the evolution of the matter and gravitational fields are derived from the Einstein
equations using the simplifying assumption of spherical symmetry. Space-time is foliated into spacelike
hypersurfaces Σt and equation are written in terms of the classical 3+1 formalism of General Relativity
(see e.g. [35]). The real parameter t is called the coordinate time and it can be shown that, making
the choice of polar time slicing and radial gauge, in spherical symmetry the metric can be expressed
in the form (generalization of the Schwarzschild metric, see also [211]):

gµνdxµdxν =

−N2(r, t)dt2 + A2(r, t)dr2 + r2(dθ2 + sin2 θdφ2), (12.1)

where N(r, t) is called the lapse function. The two functions N and A will often be replaced by ν(r, t)
and m(r, t), defined as1:

ν = ln(N) and A =

(
1 − 2m

r

)−1/2

. (12.2)

The 4-velocity of the fluid is denoted vµ, the fluid radial coordinate velocity being thus:

dr

dt
=

vr

v0
;

and the “physical” fluid radial velocity U , as measured locally by the hypersurfaces observer is defined
by:

U =
A

N

dr

dt
. (12.3)

1We use geometrized units in which the speed of light c and Newton’s gravitational constant G are equal to
unity
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Following [393], the stress-energy tensor was taken to be that of a perfect fluid; so hydrodynamical
equations in General Relativity (∇µTµ

ν = 0) have been written in the form of a system of conservation
laws

∂~u

∂t
+

1

r2

∂

∂r

[
r2 N

A
~f(~u)

]
= ~s(~u), (12.4)

where ~u = {D, µ, τ} is the vector of evolved quantities, ~f(~u) the vector of fluxes and ~s(~u) the vector
of sources (for details see [393]). The evolved quantities are defined from hydrodynamical variables,
baryon and total energy densities in the fluid frame (nB and e) by:

D = AΓnB,

µ = (E + p)U, (12.5)

τ = E − D,

where p is the fluid pressure given by the EOS (see 12.2.2), Γ = (1 − U2)−1/2 is the Lorentz factor of
the fluid, and E = Γ2(e + p) − p.

The gravitational field equations in radial gauge, polar slicing and spherical symmetry reduce to
two equations (with no time evolution of the gravitational field):

∂m

∂r
= 4πr2E, (12.6)

∂ν

∂r
= A2

(m

r2
+ 4πr(p + (E + p)U2)

)
. (12.7)

The system therefore consists of three evolution equations for the hydrodynamical variables (Eqs. 12.4)
and two constraint equations for the gravitational field (Eqs. (12.6)–(12.7)). Finally, an equation of
state p(nB, e) closes the system.

12.2.2 Equation of state

In this work two different EOS for nuclear matter have been used, to describe microscopic properties
of neutron stars. Apart from the initial condition models, which were calculated with an equation of
state p(nB) for cold, catalyzed matter, the used equations of state were of the form p(nB, e). The first
EOS used is the well-known ideal gas model:

p = (γ − 1)(e − mBnB) (12.8)

where mB = 1.66 × 10−27 kg is the baryon mass and γ is the index. We chose γ = 2 which may
mimic relatively well the properties of neutron star matter but always keeps a sound speed lower than
c (causal EOS). This EOS has been used not only because it is very convenient from a numerical
point of view, but also because it allows for the calibration and test of the code. For obtaining initial
conditions, the following expression has been used

p(nB) = Kn0mB

(
nB

n0

)γ

; (12.9)

with K = 0.1 (as in the study of rotating neutron star models by [399] ) and

n0 = 0.1fm−3. (12.10)
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To get a more realistic EOS for nuclear matter interactions, we used the EOS described in [369]. It
is a relativistic field theory model supplemented by nonlinear scalar self interactions. Nucleons (n, p)
interact via the exchange of σ−, ω− and ρ−mesons. The contribution from leptons is given by its
non-interacting form, since their interactions give negligible contributions. Moreover, the star being
at chemical equilibrium with respect to the weak processes, the neutrino chemical potentials are zero.
However, as a difference from [369], kaon interactions are not considered in this work. The EOS was
tabulated and, during the time integration, the interpolation has been done using bi-cubic splines.
This may not be as precise as the method presented by [447] (using bi-quintic interpolation), but
thermodynamical consistency is still preserved. At low densities, this EOS has been smoothly joined
with a polytrope. As far as initial conditions are concerned, the same model has been used, but the
temperature has been set to zero.

12.2.3 Initial Conditions

To get initial numerical conditions, we first obtained stable spherical neutron star models and then,
to add a velocity profile. A stable neutron star is defined by the fact that its central density is
lower than the critical one (ncrit

B ), defined by (Mg being the total gravitational mass of the star and
nc

B = nB(r = 0)):

dMg

dnc
B

∣∣∣∣
nc

B
=ncrit

B

= 0. (12.11)

The stable model is easily computed, integrating the well known Tolman-Oppenheimer-Volkoff (TOV)
system, which is the static (all ∂/∂t terms and U are set to zero) limit of momentum evolution
equation in system (12.4), plus the equations for gravitational fields Eqs. (12.6)–(12.7). For the
polytropic equation of state (γ = 2, K = 0.1), one has ncrit

B = 3.18 n0 and the maximal stable mass
is Mg = 3.16M⊙. For the tabulated EOS of [369] (see previous section), one has ncrit

B = 10.5 n0 and
the maximal stable mass is Mg = 2.08M⊙. The rather high value for maximal mass for the γ = 2
polytropic EOS is linked to an also high value chosen for K. Thus mass scales between both EOS used
in this work were different. However for polytropes of the form (12.9) with γ = 1 + 1/n, the constant
Kn/2 has units of length in geometrized units. Following [130], one can use this constant to set the
fundamental length scale of the system. Defining dimensionless quantities as in [130] (t̄ = K−n/2t,
p̄ = Knp, n̄B = KnnB, ...), one can see that in our case all masses (even in dynamical evolution) scale
like K0.5.

Once the density and gravitational fields are computed, the inward velocity profile is added in the
r.h.s. of gravitational field equations (12.6)–(12.7). The metric coefficients are then relaxed in order to
take into account the contribution from the kinetic energy in the total gravitational mass. Therefore,
initial conditions are consistent with the gravitational field equations. The considered profiles were of
the form

U(r) =
A(r)

N(r)
V

(
r

Rsurface

)
,

where V (x) has one of these forms (x = r/Rsurface):

V (x) =
Vamp

2
(x3 − 3x) (12.12)

V (x) =
27Vamp

10
√

5

(
x3 − 5x

3

)
(12.13)
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Figure 12.1: Snapshots of eulerian energy density E and radial velocity profiles U , for a
2.74 M⊙ neutron star described by a γ = 2 polytropic EOS, with an initial velocity profile of
type (12.13), and a starting minimal value of the velocity of −Umin = −0.6c. Labels correspond
to the following times: t1 = 0.054 ms, t2 = 0.088 ms, t3 = 0.104 ms, t4 = 0.126 ms, t5 = 0.149
ms, t6 = 0.202 ms, t7 = 0.225ms, t8 = 0.248 ms and t9 = 0.271 ms. All profiles have been cut
at the surface of the star, defined by the surface density of the initial configuration.

(Vamp is the parameter defining the amplitude of the profile).
Both are such that the minimal value in [0,1] is −Vamp, but (12.12) verifies V ′(1) = 0 and (12.13)

has a null divergence at the surface. These profiles correspond to what is usually observed in collapses
of neutron stars (see e.g. [211]) or in the formation of neutron stars (see e.g. [393]). The initial
minimal value of the velocity U(r) in the interior of the star (r ∈ [0, Rsurface]) is noted −Umin. It shall
also be called the initial velocity profile amplitude.

12.3 Dynamical scenarios

Numerical time integration has been done using High Resolution Shock-Capturing schemes (HRSC,
see [46]) for the hydrodynamical system (12.4). The metric constraint equations (12.6)–(12.7) were
integrated using standard finite-differences methods. The need of using numerical methods able to
handle shocks comes from the fact that strong discontinuities can form (see Sec. (12.3.2)), as it has
first been observed by [212]. Unfortunately, this last study has been limited by the use of spectral
methods, unable to handle shocks.

12.3.1 Direct collapse

For a stable star close to the maximal mass, but with an inward velocity profile, there may be two final
issues. If the velocity is relatively small in amplitude, the star enters an (theoretically) infinite series
of oscillations, for no viscous nor radiative damping is present. With higher velocity, a collapse to a
black hole occurs “normally”, almost like for an unstable neutron star configuration (as in e.g. [211]).
Figure 12.1 shows energy (E) and velocity profiles at different moments of the collapse of such a neutron
star. It corresponds to an initial configuration of 2.74 M⊙, where the initial velocity profile is of the
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Figure 12.2: Eulerian energy density and radial velocity profiles, for a polytropic γ = 2
1.91 M⊙ neutron star collapse, with an initial velocity profile of type (12.13), and a starting
minimal value of the velocity of −0.62c. The displayed profiles correspond to the following
times: t1 = 0.064 ms, t2 = 0.123 ms, t3 = 0.143 ms, t4 = 0.16 ms, t5 = 0.178 ms, t6 = 0.216
ms, t7 = 0.265 ms, t8 = 0.348 ms and t9 = 0.477 ms. All profiles have been cut at the surface
of the star, defined by the surface density of the initial configuration.

type (12.13), with V amp = 0.4c, which gives an initial minimal radial velocity of −Umin = −0.6c. This
collapse has been followed up to t = 0.48 ms, when then central value of the lapse became 5.13×10−5,
with a radial velocity at the outer edge of -0.99 c. Due to the choice of polar slicing which avoids the
appearance of singularities, the horizon of a black hole cannot be numerically described. However, the
final state is a black hole, but from the “frozen star” viewpoint, with a collapse of the lapse. These
criteria have been used in Sec. 12.4 to determine whether the result of the collapse was a black hole
or not, namely a central value of the lapse N(r = 0) < 10−4 with an ingoing radial velocity. If both
of these conditions are fulfilled, it seems unlikely that the collapse lead to anything else than a black
hole.

Still, a difference from [211] in the dynamical evolution can be seen in Fig. 12.1: a strong gradient
appears in the velocity profile around r = 9 km, even quite before the “frozen star” regime (where the
metric potentials A and N also exhibit strong gradients). This had already been observed by [212],
where it limited the study. It is shown in Sec. 12.3.2 that, with higher initial velocities, a shock can
form and part of the infalling matter can be ejected. In the present “direct collapse” regime all the
matter ends in the black hole so that the mass of the resulting object is that of the initial neutron
star. In Sec. 12.4, this has been used to distinguish between both possible types of collapses.

12.3.2 Shock and bounce

For some initial velocities, the “strong gradient” of previous section turns into a shock, and part of the
infalling material is ejected. This can be seen on Fig. 12.2 where energy density and radial velocity
profiles are displayed, for an initial neutron star of 1.91 M⊙ (the mass is lower than that of Fig. 12.1
due to a lower initial central baryon density). The shock appears around t = t3, r = 10 km and
then moves out of the numerical grid (t4) due to the accumulation of matter still falling at r > 10
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km. The velocity on the left side of the discontinuity grows and reaches positive values. Later during
the collapse, one can see that part of the falling matter starts moving outward and reaches escape
velocity from the central object t5. This of course reduces the possibility of forming a black hole, since
matter is spatially less concentrated. Still, the dynamics of the central region (where the velocity
is still inward) can proceed to a black hole, which shall then accrete matter which has not reached
escape velocity. This has been observed in the collapse displayed on Figs. 12.2 where, at the end of
the computation (t = 0.63 ms), the central lapse was N(r = 0) = 1.18 × 10−9 and the velocity on the
edge of the “frozen star” equal to -0.999 c. The central region would collapse “directly”, as described
before in Sec. 12.3.1. The final mass of the black hole was 1.61 M⊙ (and the areal radius in RGPS
coordinates equal to 4.77 km), which shows that almost 16% of the initial matter of the neutron star
has been ejected.

12.4 Numerical results

The dynamical fate of neutron stars with initial velocity are now studied, keeping in mind the different
scenarios described in previous section and varying the mass of the progenitor, as well as the amplitude
of the initial velocity profile. This exploration of the parameter space shows the possibility of formation
of very low mass black holes, which can be seen as a feature of the “critical collapse” phenomena.

12.4.1 Link with critical collapses

The critical collapse phenomenon (for an interesting review see [234]) was discovered in the early 90s
by [117], who was numerically studying the gravitational collapse of spherically symmetric massless
scalar field. Depending on some parameter of the initial conditions (which is generically noted p), the
final result of the collapse would be a black hole (p large) or the dispersion of the field (p small). He
discovered that, when fine-tuning this parameter, he could get black holes of arbitrarily small masses.
Moreover, the relation giving the mass of the resulting black hole, close to p∗ the minimal value to
form a black hole, appeared to be universal in the form:

MBH ≃ C(p − p∗)
α, (12.14)

where C is a constant and α is called the critical exponent. The space-time obtained with p = p∗
shows the very interesting geometrical property of self-similarity.

There have been many works on critical collapses since this pioneering one and, in particular,
the study concerning perfect fluids by [334] is of particular interest for our study. It is shown that
perfect fluid collapses, in ultra-relativistic regime, also exhibit “critical” behavior. Our work can
easily be connected to this one, if one considers, at fixed central density of the initial neutron star,
the parameter p to be e.g. the parameter Vamp or the amplitude of the initial velocity profile Umin.
One can then see that, by fine-tuning the parameter Vamp (Umin being a monotonic and continuous
function of Vamp) of (12.12) or (12.13), one could get black holes of arbitrarily small masses, as a result
of the velocity-induced collapse. We have not investigated the domain of very small black hole masses,
for our code was not designed for it. Still, starting with a 1.16M⊙ neutron star and an initial velocity
profile given by (12.13) (and Vamp = 0.79732), the result of the evolution was a 3.7 × 10−2M⊙ black
hole. This corresponds to the lowest black hole mass range (about 10−2M⊙) obtained with our code.
In order to test the code against the relation (12.14), the central density of the initial configuration
has been kept constant, and only the parameter Vamp of (12.13) has been varied (and thus Umin).
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Figure 12.3: Masses of the black holes (+) formed through velocity-induced collapses, for a
polytropic EOS and with an initial velocity profile of type (12.13). The initial central density
is 0.1n0 (see Sec. 12.2.2) for all the runs. These masses have been fitted by a formula of type
(12.14) (solid line).

The results displayed on Fig. 12.3 correspond to the masses of black holes resulting from collapses,
if the central density of the initial configurations is held fixed to 0.1n0. These masses are drawn
(crosses) as a function of the minimal value of the velocity U inside the neutron star. The relation
(12.14) is verified, at least for “small” masses and the best fit (shown on the figure in solid line)
corresponds to α = 0.52, C = 10.4M⊙ and p∗ = 0.8705c (Umin = p). These values has shown to
depend on the particular central density used for the initial configurations. The fit is poor for large
masses and, in particular, the relation (12.14) breaks down completely near the maximal mass for
stable static neutron stars (when central density reaches ncrit

B ). The mass scaling exponent α = 0.52
differs from the result obtained by [334] (α = 1) who used an ultrarelativistic EOS with γ = 2.
Although the result from [334] is rather universal, the study here starts from very different initial
conditions (neutron star/exponential distribution of matter in their case). In particular, here, the
maximal mass for stable neutron stars gives a mass limit to the problem. Another difference is that
the parameter used to get the relation (12.14) is the amplitude of a velocity profile, which has not been
studied by [334]. Finally, it has to be stressed out that the family of initial conditions used for this
study depends on two parameters (velocity amplitude and central density), the work of [334] assumed
only a one-parameter family of initial data. The role played by the central density as a parameter is
not that of a “critical” one: if one considers the family of initial data given by static neutron stars
(without any velocity profile) of increasing central densities, then the value ncrit

B defined by (12.11)
would seem to be the same as p∗ in controlling the formation of a black hole, but there is no critical
behavior at this point. Still it is interesting to note that the mass scaling relation is valid for velocity
induced neutron star collapses, at least in the limit of low masses (and therefore relatively low central
densities).
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Figure 12.4: Parts of the parameter space plane (nc
B, Umin) defining the fate of a neutron star

with a polytropic EOS (γ = 2) and an initial velocity profile defined by (12.13).

12.4.2 Masses of progenitors - Initial velocities

Once the EOS and type of velocity profile are chosen, a neutron star model serving as initial condition
for velocity-induced collapse is completely specified by two parameters: the central baryonic density
nc

B and the parameter Vamp or, equivalently, the neutron star gravitational mass and the amplitude
of the initial velocity profile Umin. For each point (nc

B, Umin) in this parameter space the question of
knowing whether the corresponding neutron star would collapse to a black hole have been addressed.
First, it has been found that there exists a maximal value for Umin, for which an initial model of
neutron star could be computed. For higher velocities, it appeared to be numerically impossible to
compute the metric coefficients taking into account this large amount of kinetic energy: the relaxation
would fail to converge, leading to velocity U > c. This may come from the way these initial conditions
are set: the addition of a velocity profile to a static model does not give a well defined result. Matter is
not at equilibrium, whereas the metric potentials are static. Therefore an improvement of this study
would be to consider more realistic initial conditions (as for example in [244]), where the velocity
profile is not set ad hoc but comes from a dynamical interaction.

This maximal value of Umin depends on the central density of the neutron star, as displayed on
Fig. 12.4; one can see that for central densities going to zero (and therefore also masses), this maximal
value goes to one. This figure also shows the various fates of a neutron star in the (nc

B,Umin) plane,
for the (γ = 2) polytropic EOS of Sec. 12.2.2 and an initial velocity profile of type (12.13). Curves
are described from top-right to bottom-left part of the figure. A neutron star set to a point of this
parameter space can become a black hole or not. Still, some region is not really interesting to study.
The second curve to be displayed selects neutron stars with a mass lower than the maximal one, as
defined in Sec. 12.2.3. Studying collapses for neutron stars with higher masses is not relevant since
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Figure 12.5: Parts of the parameter space plane (nc
B, Mg) defining the fate of a neutron star

with a polytropic EOS (γ = 2) and an initial velocity profile defined by (12.13).

one knows that in that case the neutron star shall end as a black hole; the additional velocity profile
of the neutron star only gives kinetic energy so that the total mass of the star become larger than the
maximal one for stars at rest. It was then observed that this collapse generally proceeds “directly”, i.e.
no shock is present. One more curve gives the limit between the direct collapse domain and the part
of the parameter space for which the star undergoes a shock and bounce, as described in Sec. 12.3.2.
Finally, if the parameters of the initial neutron star model are below the last curve, the black hole
does not form, the matter being ejected to infinity. The same regions are displayed in the (Mg, Umin)
plane, on Fig. 12.5. In particular, one can see that there exists a minimal mass for the initial neutron
star, to form a black hole. This mass is, in the case of a polytrope γ = 2 and an initial velocity profile
(12.13):

Mmin = 1.164M⊙. (12.15)

This figure also shows the minimal neutron star mass for which direct collapse (i.e. no ejection of
matter) can occur, it found to be 2.276 M⊙.

12.4.3 Dependence on EOS and velocity profiles

Although the velocity profile (12.13) is supposed to occur in most of physical scenarios of gravitational
collapse of compact stars, one has to check the dependence of results of previous sections on a change
of this velocity profile. Therefore the study of Sec. 12.4.2 has been undertaken with the initial velocity
profile for neutron stars being given by (12.12). For initial configurations, one can see that this change
in the velocity profile induces, for given values of nc

B and Umin, a change in the distribution of kinetic
energy in the star and thus a change in the total gravitational mass Mg, with respect to the velocity
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distribution given by (12.13). Still, qualitative results concerning collapses were retrieved: direct
collapse or bounce as dynamical scenarios and formation of low-mass black hole by fine-tuning the
parameter Umin. The scaling relation (12.14) has been studied for a fixed central density (chosen to
be 0.1n0 as in Sec. 12.4.1) and the best fit of results gives the relation:

MBH ≃ 6.98 × (Umin − 0.8991)0.52M⊙,

for which the exponent (α = 0.52) is the same as that obtained using velocity profile (12.13). The two
other coefficients (noted C and p∗ in Sec. 12.4.1) are different for the reasons stated above, concerning
the difference in kinetic energy distribution. The borders of different regions of Fig. 12.5 also slightly
change, nevertheless we get as minimal mass for the initial neutron star to form a black hole for a
γ = 2 polytrope and an initial velocity profile (12.12):

Mmin = 1.155M⊙. (12.16)

This is less than 1% different from the minimal mass for velocity profile (12.13), that is within global
numerical error. One then may suppose that this quantity is little dependent on the particular type
of velocity profile chosen.

The second global “parameter” one would like to change is the EOS for nuclear matter, since a
rather important uncertainty exists on properties of neutron star matter. In particular, the γ = 2
polytrope used in this study had the advantage of rapid computation as well as numerical stability,
combined with a rather good description of neutron matter properties. But if one wants to go further,
it is then necessary to use a more realistic EOS, as for example the one described in Sec. 12.2.2. As
stated in that section, maximal mass for static neutron stars is found to be M crit

g = 2.08M⊙, for a
corresponding central density of nc

B = 10.5n0. Therefore, results from computations using this second
EOS would show lower masses and higher central densities than those using the analytical EOS. The
parameter space (nc

B, Umin) has been studied, using the velocity profile given by (12.13). As for the
γ = 2 polytrope, neutron stars with realistic EOS would collapse to form a black hole, provided that
the amplitude of the velocity profile be large enough. This collapse could occur directly, as in the case
of unstable neutron stars or with the bounce of a part of the matter, which would be ejected, allowing
only for the central region to form a black hole. The mass scaling relation is recovered, for relatively
small initial central densities; for example, with nc

B = 1.5n0, the following relation is found:

MBH ≃ 5.79 × (Umin − 0.7519)0.71M⊙,

which has been tested for black holes in the mass range 5 × 10−3 − 0.7M⊙. The global topology of
regions described in figures 12.4 and 12.5 is kept and the minimal mass for a neutron star (with matter
described by this realistic EOS) to form a black hole is found to be

Mmin = 0.36M⊙. (12.17)

During the collapses leading to very low-mass black holes (a few 10−2M⊙), the central regions of the
star would reach very high densities and it has been checked that sound velocity had never become
higher than c.

12.5 Summary and conclusions

With an important amount of inward kinetic energy, stable neutron stars may collapse to a black hole,
overcoming the potential barrier which separates both types of objects. However, there seem to exist
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an absolute lower mass limit, depending on the particular equation of state used to describe neutron
star matter properties, below which neutron stars cannot pass this barrier. This lower-limit mass has
been found to be ≃ 1.16M⊙ for a γ = 2 polytropic EOS, and ≃ 0.36M⊙ for a more realistic model
of nuclear matter. It seems also that these values are independent from the particular initial velocity
profile added to static neutron star models. But, as it has been noted in Sec. 12.2.3, for the polytropic
EOS, like all masses this lower-limit mass scales like K0.5.

For both studied EOS, in the case when the star collapses to a black hole it may either proceed
directly, as if it were an unstable neutron star, all the matter ending in the black hole; or there may
appear a shock and bounce, ejecting a part of the matter to infinity, so that only a fraction of the
initial neutron star forms a black hole. With such a mechanism, the resulting black hole mass can be
arbitrarily small if one is fine-tuning the amount of kinetic energy added to the initial neutron star.
This result is in accordance with works by [117] on critical collapses, more precisely the mass-scaling
relation (12.14) also applies here, at least for black hole masses not too close to the neutron star
critical mass. The mass scaling exponent α found for the polytropic EOS is rather different from that
found, with quite different initial conditions, by [334] for ultrarelativistic γ = 2 EOS.

Nevertheless, the velocity necessary to achieve the collapse to a black hole of a typical 1.4M⊙

neutron star is enormous (see Fig. 12.5). Even in the case of a smaller K, leading to a smaller
maximal mass (see Sec. 12.2.3), this velocity always remains larger than 0.1c. It is therefore difficult
to imagine any physical process which could inject such an amount of kinetic energy to a neutron star.
Tidal (anisotropic) effects when the neutron star is in a binary system with another compact object
may result in the destruction of the star (compressed to a “pancake”, as ordinary stars passing near
a black hole in [308]) or in its oscillations. It has been argued (e.g. by [312]) that in a binary neutron
star system, tidal effects could induce such a compression (i.e. increase of central density) that the
stars could collapse to black holes before their merging. This is very difficult to achieve, since in our
calculations it happened that during the collapse the central density could reach a value substantially
higher than the critical density ncrit

B (in some cases several times ncrit
B ), whereas the star would not

end in a black hole, but would rather be dispersed or enter an infinite series of oscillations. Even in
the case of the neutron star instability transition in tensor-scalar theory (see [337]), the velocity is
never larger than a few percents of c, therefore quite far from values displayed on Fig. 12.5. Finally,
let us mention the recent interesting work by [244] who studied the critical collapses of boson stars,
where the interaction with a massless real scalar field can result in a significant transfer of energy from
the field to the star, allowing for the collapse to a black hole of stable configurations. In the case of
neutron stars the interaction with a gravitational wave seems unlikely to transfer enough energy to
lead to the collapse to a black hole.
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13.1 Introduction

Trying to accurately describe black holes solutions as evolving physical objects in numerical simulations
is of direct interest in astrophysics. Numerical simulations have made a great leap forward in the past
few years, mainly with the first stable simulations of black hole mergers in full general relativity by
Pretorius [374], Campanelli et al. [101], Baker et al. [44], and a few other groups (see [375] for
a review). Several of these simulations model black holes in their equations by punctures. These
punctures basically change the topology of spacetime to handle evolution of singular objects (see [87]
for the first proposal of this method).

Notable exceptions to this are references [374, 183, 448, 438], that use an excision approach for
black hole evolution: the simulations only evolve the spacetime outside two-spheres that are supposed
to encircle the black hole singularities.
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In the same spirit, we are here trying to describe black holes as physical objects characterized by
their horizons. Defining the physical laws for event horizons of black holes has been notably done
by [243], [141] and [465] in a so-called membrane paradigm. The aim was to describe them as fluid-
like two-membranes with physical properties. However, applying evolution laws to event horizons is
problematic due to their teleological (non causal) behavior (see for example [82] for a description of
the phenomenon). Being defined as a global property of spacetime, a local notion of causality actually
does not apply to event horizons.

Alternative local characterizations have been formulated in the past 15 years by [245], [36] and
[38]. They are based on the concept of trapped surfaces, dating back to Penrose’s singularity theorem
[356]. Defined locally, those objects behave in a causal way in a general dynamical context, with local
evolution laws following from the projection of Einstein equations, e.g the Navier-Stokes [213] “fluid
bubble” analogy or the area evolution law in [223]. For this work we shall use local characterizations
for isolated horizons, prescribing the physics of non-evolving black hole horizons.

Following the prescriptions of [129], [264], [222] and pursuing the numerical explorations of [133,
113] and [265] among others, we try to numerically implement those objects as boundary conditions
imposed on the (3+1) form of Einstein equations, in a three-slice excised by a two-surface (single black
hole case). This is done here using the fully constrained formalism (FCF) of [73] (see also [135]), with
maximal slicing and Dirac gauge, based on the (3+1) formalism, and with spectral methods-based
numerical resolution using the LORENE library [216]. An important point here is that we drop out
the usual conformal flatness hypothesis and solve for the conformal geometry, so that we can exactly
recover a slice of a stationary rotating vacuum spacetime.

Contrary to free evolution schemes, which are the most used prescription for (3+1) simulations in
numerical relativity, an important feature of constrained schemes is the necessity to solve constraints
on each three-slice, in the form of elliptic equations. These equations generally need additional condi-
tions to be imposed on grid boundaries, following reasonable geometrical and physical prescriptions.
Our approach particularly requires a specific handling of boundary conditions for the two dynamical
gravitational degrees of freedom. This is a crucial point of our calculation; we will justify and apply
here a no-boundary treatment for these quantities.

The paper is organized as follows: we first review in Sec. 13.2 fundamental geometrical properties
associated with isolated horizons in general relativity. In Sec. 13.3, we quickly give the basic features
of the fully constrained formalism and the methods we use to treat the conformal part. Sec. 13.4
discusses implementation of boundary conditions for the system of equations, and specifically discusses
the conformal metric part. Sec. 13.5 gives the numerical results obtained, and confronts them to a
battery of tests characterizing the physics of the solutions. A discussion follows in Sec. 13.6, in regard
of previous works concerning the computation of the conformal part in the black hole initial data
problem. We also raise the question of applicability of this scheme to other more general astrophysical
cases.

Throughout all this paper, Greek letters will denote indices spanning from 0 to 3, Latin indices
from k to m shall denote indices from {1, 2, 3}, and indices from a to c have the range of {2, 3}. All
formulae and values are given in geometrical units (G = c = 1). We also use the Einstein summation
convention.
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13.2 Isolated horizons as a local description of black hole

regions

13.2.1 Trapped surfaces and expansion

The concept of a trapped surface in a Lorentzian frame has been first defined by Penrose in 1965
[356] in connection with the singularity theorems. It relies on the notion of expansion of the light rays
emitted from a surface, that we explain here. We start by a closed spacelike two-surface S embedded
in spacetime, topologically related to a two-sphere. We assign to it a two-metric qab induced by the
ambient four-metric gµν , and its associated area form ǫSab. Two future null directions orthogonal to S
are associated with this surface. Representative vector fields are denoted ℓµ and kµ, being respectively
oriented outwards and inwards. We can for example assume that our spacetime is asymptotically flat,
so the orientation can be defined without ambiguity.

The expansion θℓ of S along ℓµ is the area rate of change along this vector: Lℓ ǫSab = θℓ ǫSab. L is the
Lie derivative, here along the vector ℓµ. Same definition goes for the vector field kµ. For a two-sphere
embedded in a Minkowski spacetime (flat metric), we have typically θk < 0 and θℓ > 0. S is said to be
a trapped surface if both expansions are negative or zero: θℓ ≤ 0 , θk ≤ 0. This clearly characterizes
strong local curvature. A marginally (outer) trapped surface will be characterized by θℓ = 0 and
θk ≤ 0. Two theorems make the connection between those objects and black holes: provided the weak
energy condition holds, the singularity theorem of Penrose [356] ensures that a spacetime containing
a trapped surface necessarily contains a singularity in its future. Following this result, provided the
cosmic censorship holds, another result by Hawking and Ellis [242] conveys that a spacetime containing
a trapped surface necessarily contains a black hole region enclosing this surface.

Marginally outer trapped surfaces (MOTS) are intended as models for the black hole boundary
(see [409] for a discussion of its relation with the boundary of the black hole trapped region). Local
horizons (trapping horizons for [245], isolated and dynamical horizons in [36], [38]) are defined as three-
dimensional tubes “sliced” by MOTS, with additional geometrical properties. The isolated horizon
case is detailed below; for a review, see [39].

In vacuum stationary spacetimes, all horizons are at the same location, which is also the location
of the event and apparent horizons (constructed with outermost MOTSs). In the more general case,
and assuming cosmic censorship, local horizons are always situated inside the event horizon in general
relativity.

13.2.2 Isolated horizons

The notion of isolated horizon is aimed at describing stationary black holes. It is based on the notion
of non-expanding horizons, and defined as a three-dimensional tube H foliated by MOTS, and with a
null vector field ℓµ as generator. The three-metric induced on the tube has then a signature (0, +, +).

We also define a (3+1) spatial slicing for our spacetime, and S a two-slice of our isolated horizon
at a certain value of the time parameter t. The spacelike two-metric on S is denoted qab.

The shear tensor σab on the two-surface is defined along ℓµ as

σab =
1

2
[Lℓ qab − θℓqab] . (13.1)

Using the fact that θℓ = 0 and the dominant energy condition, the Raychaudhuri equation for null
tubes [222] ensures that both the shear along ℓµ and the energy-momentum tensor projected on ℓµ,
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and evaluated on the surface must vanish: σab = 0 and Tabℓ
aℓb = 0. These are additional properties

constraining the geometry of the horizon.
An isolated horizon is also required to be such that the extrinsic geometry of the tube is not evolving

along the null generators: [L(ℓ), D
H
i ] = 0, where DH

i is the connection on the tube induced from the
ambient spacetime connection. If this last condition is dropped, we only retrieve a non-expanding
horizon (linked to the notion of “perfect horizon” [237]).

The isolated horizon formalism has already been studied extensively in numerics, as a diagnosis
for simulations involving black holes, where marginally trapped surfaces are found a posteriori with
numerical tools called apparent horizon finders (See for example [463], [294], [231], [462]). Let us note
that very often, apparent horizon finders actually locate MOTS on the three-slice considered (not
necessarily outermost ones). A thorough study of geometrical properties of isolated horizons located
a posteriori can be found in [159].

In the present paper we employ isolated horizons as an a priori ingredient in the numerical con-
struction of Cauchy initial data for black hole spacetimes. More precisely, we impose conditions on
the excised surface characterizing it as the slice of a non-expanding horizon (see below). This ap-
proach to the modeling a black hole horizon in instantaneous equilibrium has been investigated in
[129, 133, 113, 264, 140, 222, 265], where a prescription for the conformal metric is assumed. The
main feature of this work is the inclusion of the conformal metric in the discussion, not through analyt-
ical prescriptions, but indeed by numerical calculation. This problem has also been recently addressed
in [132]. In Sec. 13.4 we tackle the description of our special treatment of the conformal metric on the
excised boundary and compare with previous results, in particular through the numerical recovery of
excised Kerr initial data.

13.3 A fully constrained formalism for Einstein equa-

tions

All the following is a summary of the physical and technical assumptions set in [73]. For a review
of (3+1) formalism in numerical relativity, the reader is referred to [486], or more recent reviews like
[214] and [7].

13.3.1 Notations and (3+1) decomposition

We consider an asymptotically flat, globally hyperbolic four-dimensional manifold M, associated with
a metric gµν of Lorentzian signature (−, +, +, +). We define on M a slicing by spacelike hypersurfaces
Σt, labeled by a timelike scalar field t; in this way, the four-metric can be written in its usual (3+1)
form:

gµνdxµdxν = −N2dt2 + γij(dxi + βidt)(dxj + βjdt), (13.2)

here N and βi are the usual lapse scalar field and shift vector field. γij is the spacelike three-metric
induced on Σt.

We also define the second fundamental form of Σt, or extrinsic curvature tensor, as:

Kµν = −1

2
Lnγµν , (13.3)

with nµ the future-directed vector field normal to Σt. Writing the vacuum Einstein equations with this
formalism, one comes up with the classical (3+1) vacuum Einstein equations system(see for example
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[35]):

R + K2 − KijK
ij = 0, (13.4)

DjK
j
i − DiK = 0, (13.5)

∂

∂t
Kij − LβKij =

−DiDjN + N
{

Rij − 2KikK
k
j + KKij

}
, (13.6)

Di and Rij being, respectively, the connection and the Ricci tensor associated with the three-metric
γij . Quantities without indices represent tensorial traces. These equations are referred to respectively
as the Hamiltonian constraint, momentum constraint and evolution equations.

13.3.2 Conformal decomposition, maximal slicing and Dirac gauge

Now we must choose a set of variables and a gauge, to get a partial differential equations system
that we solve numerically. The first ingredient in the formalism presented in [73] is the conformal
decomposition of the three-metric [291]. We define on each slice Σt an extra metric noted fij , that will
have a vanishing Riemann tensor (flat metric) and will be time independent. The existence of such
a metric in a neighborhood of spatial infinity is ensured by our sub-manifold being asymptotically
flat. The associated flat connection is noted Di. We introduce in Σt a conformal metric such that its
determinant coincides with that of fij , as:

γ̃ij = ψ−4γij ; ψ =

(
det(γ)

det(f)

) 1
12

. (13.7)

The tensor field hij we use to encode the conformal degrees of freedom is the deviation of the conformal
metric from the flat one:

γ̃ij = f ij + hij . (13.8)

We also define in our equation sources the following conformal traceless extrinsic curvature:

Âij = ψ10(Kij − 1

3
Kγij); (13.9)

We choose for a gauge the generalized Dirac gauge for the conformal metric:

Dkγ̃
ki = Dkh

ki = 0, (13.10)

and we add to this prescription the maximal slicing condition, i.e the vanishing of the trace in the
extrinsic curvature: K = 0. Therefore, Âij contains all the information about extrinsic geometry.

Under those conditions, we can rewrite the (3+1) Einstein equations in what we shall call the FCF
system:

∆ψ = Sψ(N, ψ, βi, Âij , hij), (13.11)

∆(Nψ) = S(Nψ)(N, ψ, βi, Âij , hij), (13.12)

∆βi +
1

3
DiDjβ

j = Si
β(N, ψ, βi, Âij , hij), (13.13)

∂2hij

∂t2
− N2

ψ4
∆hij − 2Lβ

∂hij

∂t
+ LβLβhij =

Sij
hij (N, ψ, βi, Âij , hij). (13.14)
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∆ is the usual scalar flat laplacian (which expression from a spectral point of view is recalled in the
Appendix 13.A). The actual sources S···, in general non-linear in the variables and time-dependent,
can be retrieved by the reader from [73].

We must supplement this system with the kinematical relation between the three-metric and
extrinsic curvature of the slice, deduced from (13.3) and (13.9) (see equation (92) of [73]). This fully
constrained scheme is strictly equivalent to the one presented in [73]. A slightly different version
has been presented recently in [135], focusing on non-uniqueness issues. Although the scheme in
[135] would probably pose no additional difficulty in the present setting (except maybe some more
boundary conditions to prescribe to additional variables), there has been no significant indication
of problems involving non-uniqueness of solutions in our study, that suggested modifications of the
original formalism.

Here we choose as variables the quantities Nψ, ψ, βi and hij . We especially come up with three
elliptic equations, two scalar and one vectorial. Those are derived directly from the Hamiltonian and
momentum constraints of the (3+1) system, together with the trace part of the dynamical equations.
In an evolution scheme, these will be the conditions enforced at each value of time t. We do this for
one particular slice.

We are then left in general with a second-order tensorial hyperbolic equation (13.14) dealing with
the variable hij , that is obtained by the geometrical relation between γij and Kij , and the dynamical
part of Einstein equations.

The goal here is to simulate as accurately as possible stationary spacetimes containing one black
hole, represented by an isolated horizon. In this respect, we shall assume a coordinate system that is
adapted to stationarity. This will mean that a stationary timelike Killing vector field will be identified
with our time evolution vector field ( ∂

∂t)
i. Using this prescription, all the time derivatives in our

equations vanish, so that our sources and operators simplify somewhat. We come up in particular for
the tensorial equation with an elliptic-like operator acting on hij :

∆hij − ψ4

N2
LβLβhij = Sij

2 (hij , N, ψ, β, Aij). (13.15)

Our problem is then totally equivalent to an actual initial data problem, where quantities have to
be determined on a three-slice by elliptic equations, before evolving them. The main difference with
classical initial data schemes like the conformal transverse traceless (CTT), the extended conformal
thin sandwich (XCTS) scheme or the conformal flat curvature (CFC) system, is an additional elliptic
equation for the conformal geometry of the three-slice. Up to now, a vast majority of initial data com-
putations have been done using an ad hoc prescription for the conformal geometry. The most common
one is the conformally flat approach, where γ̃ij is simply approximated to be the 3D flat metric. This
has been done in numerous computations, and this type of initial data is the most frequently used for
black hole evolution simulations. However, though this conformally flat approximation turns out to be
well-behaved in most cases, we know that it is a strong limitation when trying to compute stationary
black hole spacetimes: it has been proven that the rotating Kerr-Newman spacetime does not admit
any conformally flat slice (see [473, 196]).

Other prescriptions for the conformal geometry include data suggested by the post-Newtonian
formalism [114], or superposition of additional gravitational wave content (see [90]). Let us mention
the work of [471] for neutron-star binary initial data, which also computes the conformal geometry
using a prescription in [419], that considers as well the dynamical Einstein equations for the conformal
variables. Finally, the exact scheme we have explicited above has been applied by one of the authors
in the case of a single rotating neutron star in equilibrium [293]. It has led to the computation of
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strictly stationary initial data, that can be directly extended into future and past time directions.
This is exactly what we are trying to do here in the black hole case.

13.3.3 Resolution of conformal metric part

Apart from the boundary condition problem (that we discuss in Sec. 13.4), our approach for the
resolution of the tensorial equation presents some peculiarities that we explain here.

The system of equations is composed of equation (13.15) and the gauge condition:

Dih
ij = 0, (13.16)

that we supplement with a condition on the determinant of γ̃ij , following from our definition of the
conformal factor:

det(γ̃ij) = det(hij + f ij) = 1. (13.17)

We are left with a tensorial equation for a symmetric tensor with four constraints: the system has
two degrees of freedom. We now try to make them explicit and solve for the related variables. Any
second-rank symmetric tensor hij can be decomposed in the following way into a divergence free part,
and a symmetrized gradient part:

hij = DiW j + DjW i + hij
T , (13.18)

with Dih
ij
T = 0. We shall use here variables associated only with the divergence-free part hij

T , meaning
that the gauge component (gradient part) of the tensor considered has no influence on them. We
choose to encode the information in hij

T in the two scalar spectral potentials A and B̃ presented in
[134], and whose definitions are quickly recalled in the Appendix 13.A. (A more extensive study shall
be performed in [340]).

What is remarkable about quantities A and B̃ is that they can actually be decomposed into scalar
spherical harmonics, and that the tensorial Poisson equation ∆hij = Sij decouples into scalar elliptic
equations A and B̃ (see the Appendix 13.A). This is not exactly the case for the nonlinear modified
elliptic operator (13.16); however, in our numerical scheme, we just slightly modify the sources of the
equation at each iteration so that we can write:

∆A − ψ4

N2
LβLβA = AS(hij , N, ψ, β, Aij), (13.19)

∆̃B̃ − ψ4

N2
LβLβB̃ = B̃S(hij , N, ψ, β, Aij), (13.20)

the elliptic operator ∆̃ being defined in the Appendix 13.A. We keep the Lie derivative notation for
scalar fields, to show that this is directly related to the operator in Eq. (13.15); of course, in the scalar
case, this operator simply reduces to LβA = βiDiA. During the iteration of the resolution algorithm,
the sources of the equations are updated so that they stay coherent with the original equation in hij .
Equations (13.19) and (13.20) are the two elliptic equations that we solve at each iteration.

Specifically, at each step, we proceed as follows: once the scalars A and B̃ are determined by the
resolution of (13.19) and (13.20), the Dirac gauge and unit determinant conditions allow us to totally
reconstruct a divergence-free tensor, as the expected solution of our tensorial equation. This is done
by inverting two differential systems ((13.66) and (13.67) of the Appendix 13.B), that express the
Dirac gauge conditions and definitions of the scalars A and B̃ in function of the tensor components.
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Those differential systems involve scalars, which are components of hij in a tensor spherical harmonics
basis (see the Appendix 13.A, and Sec. V of [134]).

The differential systems require three boundary conditions on the excised surface, to be inverted;
we discuss them in Sec. 13.4, in a detailed description of the scheme. In addition, we fix the trace of
our tensor with respect to the flat metric, so that the calculated determinant at this step is one. This
reduces to an algebraic nonlinear condition for the tensor components. Finally, we update our sources
for the next step. We note here that the resolution for the variable C̃ introduced in the appendix
is not necessary in this scheme: for a divergence-free tensor, C̃ is unambiguously determined by the
knowledge of B̃ and the trace.

With this tensorial scheme, the gauge is necessarily enforced by construction, so no gauge-violating
mode can occur. This is in the same spirit as the global fully constrained formalism (equations (13.11-
13.13)) for our equation system, that forbids a priori all constraint-violating modes. We also emphasize
the fact that, in the general case and with an arbitrary source for (13.15), we do not recover an actual
solution of the equation by reconstructing our tensor this way. This is only true if the elliptic equation
admits a solution that actually satisfies the Dirac gauge and the determinant condition. We can see
it as an integrability condition for our equation, that is for example not generically true during an
iteration. However, since in our case we are looking for stationary axisymmetric data for a single black
hole, we know that our entire system does admit a solution: it is the Kerr-Newman spacetime in Dirac
gauge. As a consequence, if our scheme converges, we know that the tensor field hij we obtain shall
satisfy the dynamical Einstein equations, thus equation (13.16).

The missing ingredient for solving all our system of equations in an excised spacetime is the
setting of boundary conditions for our partial differential equations, following part of the geometrical
prescriptions of the isolated horizon formalism, namely non-expanding horizon boundary conditions.

13.4 Boundary conditions and resolution of the FCF sys-

tem

13.4.1 Boundary conditions for the constraint equations

Besides the prescription of asymptotic flatness at infinity and the bulk stationarity prescription, all
the physics of our system will be contained in the boundary conditions we shall put on our excised
surface. This section follows largely the prescriptions of [222].

We consider our excised two-surface to be a slice of an non-expanding horizon, i.e. a MOTS with
vanishing outgoing shear. Following Sec. 13.2, this translates into several geometrical prescriptions,
namely the vanishing of the outgoing expansion and the shear two-tensor: θℓ = 0 and σab = 0.

Being an instantaneous non-expanding horizon, the evolution of the excision surface will be a
null tube. Since we are adapting our coordinates to stationarity, another important condition on
the excised boundary consists in prescribing the time evolution vector field of our coordinates to be
tangent to the null tube. Thus, we are ensured that our horizon location stays instantaneously fixed
during an evolution. Those prescriptions on the horizon will suffice to give four boundary conditions
for the constraint equations (one is scalar and the other vectorial), as we see below.

We certainly have freedom to prescribe the coordinate location of our excision surface in our
coordinate system. For simplicity, we choose the surface to be a coordinate sphere, fixed at a radius
rH. We shall denote by si the unit outer spacelike normal to the surface, that will be tangent to the
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three-slice Σt. The shift vector is then decomposed into two orthogonal parts adapted to the geometry
of the horizon: βi = bsi − V i.

The vanishing of the expansion can be expressed as a condition for the conformal factor on the
horizon:

4s̃iD̃i ln(ψ) + D̃is̃
i + ψ−2Kij s̃

is̃j = 0, (13.21)

where we have used the conformal rescaling s̃i = ψ2si, and the notation D̃i for the connection associ-
ated with the conformal three-metric. Multiplying (13.21) by ψ, it can be seen as a non-linear Robin
condition for the quantity ψ. The requirement for the time evolution vector field on the horizon to be
tangent to the null tube provides the equality b = N . This is a natural way to fix the component of the
shift normal to the two-sphere. We must also fix V i, the part of the shift tangent to the two-surface.
For this we make use of the vanishing of the symmetric shear tensor σab. It can be shown ([133] and
[222]) that the vanishing of the shear is equivalent to the following equation for V i:

qbc
2DaV

c + qac
2DbV

c − qab
2DcV

c = 0. (13.22)

Here 2D is the connection associated with qab on the surface. This means that V i is a conformal
Killing symmetry for the two-sphere (in particular, quantities in (13.22) can be substituted by tilded
conformal ones). Defining coordinates (θ, ϕ) on our two-sphere, we prescribe V i as:

V i = Ω

(
∂

∂ϕ

)i

, (13.23)

and we shall verify a posteriori that this is a (conformal) axial symmetry. The constant Ω will be called
the rotation rate of the horizon, ϕ being the azimuthal coordinate. In the case of the Kerr spacetime,
there is an analytical relation between the areal radius of the apparent horizon, the (reduced) angular
momentum parameter a

M , and Ω. From a more general point of view, different values for Ω will likely
affect directly the angular momentum. In the general case, we define a parameter a for the angular
momentum associated with the entire spacetime, from the dimensionless relation:

a

MADM
=

JK

M2
ADM

(13.24)

with MADM the ADM mass of the 3-slice, and JK the Komar angular momentum of the 3-slice at

infinity; the latter is tentatively defined with the (presumably) Killing vector
(

∂
∂ϕ

)i
(see Equations

(7.14) and (7.104) in [214] for explicit expressions for MADM and JK). Note that we do not impose
any Killing symmetry, except on the horizon: we know however, by the black hole rigidity theorem
[242], that an accurate resolution of Einstein equations would impose this vector to be so. We discuss
the dependence between all those quantities in Sec. 13.5.

Once we have set boundary conditions for the conformal factor and the three components of the
shift vector, we must still fix the lapse function on the horizon. Different prescriptions have been
considered in the literature (e.g. [129, 133, 113, 264, 265, 222]). In the spirit of the effective approach
in [133, 113], we arbitrarily impose the value of the lapse to be a constant NH on the excised sphere.

As mentioned before, previous boundary conditions define with no ambiguity our excised surface
to be a slice of a non-expanding horizon. Moreover, our choice for the lapse, the horizon location
and the conformal Killing symmetry on the horizon fixes coordinates on the two-surface. Only the
conformal two-geometry of the excised sphere remains to be fixed. This is done in relation with the
resolution scheme for the hij equation.
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13.4.2 Boundary conditions for the hij equation

We recall that, with the approach developed in Sec. 13.3, the resolution of our tensorial problem in
Dirac gauge reduces to two elliptic-like scalar equations, to be solved on a three-slice excised by a
two-sphere: we should normally provide two additional boundary conditions for those equations.

A result by [268] shows that in the full evolution case for this tensorial equation (equation (13.14))
and in a Dirac-like gauge, the characteristics of the equation are not entering the resolution domain
when the spacetime is excised by a null or spacelike marginally trapped tube. This means that in the
evolution case, once the initial data are set, there is no boundary condition whatsoever to prescribe
to the hyperbolic equation.

The problem is of course different here, where we are left with an elliptic equation instead of a
hyperbolic one. However, a simple analysis will hint that in our particular single horizon case, there
will not be any inner boundary condition to be prescribed on our data.

Let us examine the case of the elliptic equation in A, that we recall here:

∆A − ψ4

N2
LβLβA = AS(hij , N, ψ, β, Âij). (13.25)

We will try and exhibit a simplified linear operator acting on the variable A, that will contain the
most relevant terms. The double Lie derivative operator acting on A can be separated in:

ψ4

N2
LβLβA =

ψ4

N2
(βr)2∂2

rA +
ψ4

N2
(LβLβA)∗; (13.26)

the second term contains all the remaining components of the double Lie derivative.
At this point, and with a fixed system of spherical coordinates, we are allowed to make a decom-

position into spherical harmonics for all the scalar variables. We write in this respect:

A =
∑

(l,m)

AlmYlm(θ, ϕ), (13.27)

where Ylm are the spherical harmonics of order (l, m), defined as eigenfunctions of the angular Laplace
operator: ∆θϕYlm = −l(l + 1)Ylm.

We now point out the fact that, due to our coordinate choice, we have (βr)(l=0) = ( N
ψ2 )(l=0) on the

horizon. We can use a second-order Taylor expansion to write the l = 0 part of the factor in front of
the first term of (13.26), close to our surface coordinate radius rH:

[
ψ4

N2
(βr)2

]

(l=0)

∂2
rA = [1 + α(r − rH) +

δ(r − rH)2 + O(r − rH)3]∂2
rA, (13.28)

where α and δ are two real numbers that can be directly computed during one iteration, from the
values of N , ψ and βr at the excised surface. Our global equation can be rewritten for each spherical
harmonic l as:

[
−α(r − rH) − δ(r − rH)2

] ∂2

∂r2
Alm +

2

r

∂

∂r
Alm

− l(l + 1)

r2
Alm = AS +

ψ4

N2
(LβLβA)∗∗lm, (13.29)
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where we only keep on the left-hand side the terms given in (13.28), and put the rest (denoted with
∗∗) with the source. The latter contains the remaining components of the double Lie derivative, and
involves either terms that are not second-order in the radial derivative, or that are multiplied by the

higher harmonics of ψ4

N2 (βr)2 (supposedly smaller than the main term, explicitly developed in (13.29)).
Thus, we have isolated a linear operator Qαδ, depending on two real numbers α and δ:

Qαδ =
[
−α(r − rH) − δ(r − rH)2

] ∂2

∂r2

+
2

r

∂

∂r
− l(l + 1)

r2
I, (13.30)

other contributions being taken as source terms. This operator is different from the ordinary Laplace
operator by the factor in front of the second order differential term, which vanishes on the excision
boundary. It can be shown that the space of analytic solutions on R3 minus the excised horizon
belonging to the kernel of Qαδ is generally of dimension one. This is in contrast with the case of
the Laplace equation, where it is of dimension two. In practice, this will mean that for a numerical
resolution of an equation Qαδf = Sf , there is only one boundary condition to fix for the unknown,
mainly the behavior at infinity. No additional information is needed at the excised boundary for the
effective operators (13.30). Operators of this kind are known in the mathematical literature as elliptic
operators with weak singularities [236].

The very same scheme can be applied to the equation (13.20) for B̃, the only difference being that
the original Laplace operator is replaced by a slightly modified one (see the Appendix 13.A).

As explained in Sec.13.3.3, after solving for the two main equations (13.29) and its equivalent in
B̃, the inversion of the gauge differential systems (13.66-13.67) (explicited in the appendix 13.B) for
the reconstruction of hij requires three extra boundary conditions, in addition to the vanishing of
all quantities at infinity. We obtain them as compatibility conditions based on the original elliptic
tensorial equation (13.15): we express three decoupled elliptic scalar equations for three components
of hij in the spin-weighted tensor spherical harmonics basis,denoted hrr, η and µ, which are directly
related to the usual tensorial components of hij and defined in Appendix 13.A. From the tensor
equation (13.15), we deduce:

∆µ +
2

r

∂µ

∂r
+

2µ

r2
− ψ4

N2

(
LβLβhij

)µ
=

(
Sij

2

)µ
(13.31)

∆η +
2

r

∂η

∂r
+

2η

r2
+

2hrr

r2
− ψ4

N2

(
LβLβhij

)η
=

(
Sij

2

)η
(13.32)

∆hrr − 6hrr

r2
− 4

r2
∆θϕη +

2h

r2
− ψ4

N2

(
LβLβhij

)rr

= Srr
2 , (13.33)

where (µ, η, rr) superscripts indicate the corresponding components of hij in the tensor spherical
harmonics basis (see Appendix 13.A). As for the equation involving A, we can rewrite the above
equations by extracting the weakly singular operator Qαδ acting on the principal variable, the other
contributions being put on the right-hand side of the equations. For example, the equation in µ can
be rewritten the following way:

Qαδ(µ) +
2

r

∂µ

∂r
+

2µ

r2
=

(
Sij

2

)µ
+

ψ4

N2

(
LβLβhij

)µ(∗∗)
, (13.34)
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with the Lie derivative term containing all the left-hand-side contributions of equation (13.31) not
taken into account. We do not need to invert this equation: however, as the leading order term in
Qαδ vanishes at the horizon (rH = 1), we can accordingly write a Robin-like boundary condition for
the µ quantity:

4

r

∂µ

∂r
+

(∆θϕ + 2)

r2
µ =

(
Sij

2

)µ
+

ψ4

N2

(
LβLβhij

)µ(∗∗)
. (13.35)

This will be used as a boundary condition for the gauge system (13.66), the source terms being
computed with quantities from the previous iteration. Using the same method, we can write very
similar expressions (that we do not explicitly give here) for the fields hrr and η, to be used as Robin
boundary conditions applied to the gauge differential system (13.67). The three boundary conditions
are sufficient to invert the two gauge systems (13.66-13.67) [340], and reconstruct the whole hij tensor
from the tensor spherical harmonics components (see the Appendix 13.B and [340] for details).

To summarize, the method employed for the resolution of the whole hij system is iterative and
can be decomposed for each step in the following way (more technical details are provided in the
Appendices):

1. After calculating the source Sij
2 from equation (13.15), we deduce the right hand side of the

equation (13.29) for A, using values from the previous iteration. The same is done for the
quantity B̃ and its corresponding source terms.

2. We invert equations (13.29) and its equivalent for B̃, only by imposing that the fields are
vanishing at infinity.

3. We compute the value of the trace from equation (13.17) (a more explicit expression can be
found in equation (169) of [73]). This allows us to write the two differential systems (Dirac
gauge systems) mentioned in Sec. 13.3.3 and expressed in Appendix 13.B, involving the spherical
harmonics components of hij (scalar quantities).

4. We invert these two gauge differential systems using three boundary conditions similar to
Eq. (13.35), for the three scalar spherical harmonics components hrr, η and µ. As those are
compatibility conditions expressing information already contained in Eq. (13.15), we provide
in this way no additional physical information to reconstruct hij . This gives us the spherical
harmonics components of hij .

5. We reconstruct the whole tensor hij from the spherical harmonics components.

We have not proven here that no boundary condition has to be put generically for the resolution
of the two scalar equations involving A and B̃ in the tensorial system. However, if we implement
numerically the resolution by the inversion of the operator Qαδ at each iteration, we will not have to
impose any boundary condition, but only informations coming from the Einstein equations. Moreover,
a convergence of the entire hij system would support the coherence of the reasoning, and hint that
there is, in our case, a deeper physical motive preventing the prescription of additional information
on the horizon. The results in Sec. 13.5 show this is the case.
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13.5 Numerical results and tests

13.5.1 Setting of the algorithm

All the numerical and mathematical tools we use here are available in the open numerical relativity
library LORENE [216]. Our simulation is made on a 3D spherical grid, using spherical harmonics
decomposition for the angular part and multidomain tau spectral methods (see [230] for a review).
The mapping consists in four shells and an outer compactified domain, so that infinity is part of our
grid and we have no outer boundary condition to put at a finite radius. Our grid size is typically
Nr × Nθ × Nϕ = 33 × 17 × 1. We also have checked our code by setting Nϕ = 4, to verify that no
deviation from axisymmetry occurred. Our innermost shell has a boundary at the radius rH, which
will be the imposed location of a MOTS, and will be used as the unit of length in all the results
presented here. We impose the values of all the fields to be equivalent at infinity to those of a flat
three-space. Finally, trying to get stationary data, we prescribe our coordinates to be adapted to this
stationarity, so that all the time derivatives in the Einstein (3+1) system are set to zero. However,
even if we expect to get axisymmetric data (the only vacuum stationary solution for a black hole being
the Kerr solution), we are always able to solve our equations in three dimensions.

We proceed with our scheme in the following way: during one iteration, all the variables are
updated immediately after they have been calculated, so that the sources for the next equations are
modified. The tensorial equation for hij is the last solved in a particular iteration, and we obtain at
each step a local convergence for the whole tensorial system (including the determinant condition),
before we proceed to the update of all quantities, and to the next iteration.

We impose on the sphere of radius rH the conditions of zero expansion (13.21) and shear (13.22),
via respectively a Robin condition on the quantity ψ and a Dirichlet condition on the partial shift V i.
We also impose the horizon-tracking coordinate condition on the radial shift component b. Having set
the shape and the location of the surface in our coordinates, we are only left with two free parameters,
which are the boundary value of the lapse function and the rotation rate Ω. As we said, the lapse
function, which is merely a slicing gauge choice, is fixed to a constant value 0 ≤ NH ≤ 1 on the horizon.
We generate two sets of data on our three-slice, spanning the rotation rate from zero (Schwarzschild
solution) to a value of about 0.22, where our code no longer converges. One set will give the solution
for the whole differential system (the non-conformally flat (NCF) data, supposed to converge to the
rotating Kerr solution), while the other will compute conformally flat (CF) data, by putting hij = 0.
From a spacetime point of view, the CF data can also be seen as a computation of black hole spacetime
using the so-called Isenberg-Wilson-Mathews approximation to general relativity [260], [482].

13.5.2 Numerical features of the code

Figure 13.1 presents, on the one hand, the absolute accuracy obtained for the Einstein constraints
(in the form expressed in [486]) in the NCF case. Regarding fulfillment of the Einstein dynamical
equation, Figure 13.1 also shows the accuracy of the NCF fully stationary solution, as well as its
violation in the conformally flat case. We see the expected improvement for precision of resolution of
dynamical equations in the full NCF case. Let us note that a verification of the gauge conditions is
not even necessary, as it is fulfilled by construction (we only solve for variables satisfying the gauge).
This is one of the strengths of our algorithm.

A non-trivial issue of our computation is the link between the two physical characteristics of the
system (the mass and angular momentum of the data) and the two input quantities supposed to fix
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Figure 13.1: Accuracy for Einstein equations resolution (in the original (3+1) version of [486])
as a function of dimensionless parameter MHΩ (see section 13.5.3 for a definition of MH). Data
are absolute maximum error values for both constraint equations, and dynamical equations in
both cases. Data are taken with Nr = 33, Nθ = 17, Nϕ = 1. Lapse on the horizon is NH = 0.55.

them, namely the boundary value for the lapse and the rotation rate Ω on the horizon. We choose here
in our sequence to fix the value of the horizon coordinate radius, removing it from the list of variables.
Results are shown in figure 13.2. The value of the lapse being also fixed, we observe that an increase
in Ω not only affects the angular momentum, but also the ADM mass of the spacetime. Moreover,
fixing the rotation rate does not amount to the prescription of the angular momentum to an a priori
given value. A decrease in the value of NH on the horizon results also in an increase in a

M (defined
in section 13.4.1). This stems from the fact that our choice for the slicing directly influences in this
approach the physical parameters (e.g the areal radius) of the solution obtained. We note also that
for a fixed value of NH, the correspondence between Ω and a

M is slightly different in the conformally
flat case and in the NCF case. With our algorithm, a larger value of the lapse gives a slightly better
convergence of the code for high rotation rates of the black hole (until NH = 0.8 approximatively).
For each lapse the code stops converging at a certain value of the rotation rate. We do not yet know
whether this is a problem of our algorithm to be improved, or if this has deeper physical reasons:
constant values for the lapse and the rotation rate might not be “good” variables for the Kerr black
hole in Dirac gauge, once we reach high rotation rates. The only conclusion we can draw from this
is that there is a non trivial correspondence between our “effective parameters” NH and Ω, and the
physical ones, namely the ADM mass and Komar angular momentum. This correspondence is likely
to be one to one for values of a

M below a certain threshold of about 0.85. Reaching higher values for
a
M is left to future numerical investigations.

Let us mention again the remark made by [133] about the boundary condition for the lapse in the
XCTS scheme. Although it is necessary to fix the slicing of the spacetime by an arbitrary boundary
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Figure 13.2: Dependence on the parameter MHΩ of the ADM mass, the Komar angular momen-
tum at infinity JK and the angular momentum parameter a

M
(both defined in section 13.4.1)

for both cases. The value of the lapse on the horizon is here fixed at NH = 0.55.

condition on the lapse, we have the freedom to decide what kind of condition to impose. The authors
in [133] suggest that an arbitrary condition of Neumann or Robin type would be preferable, because
it is more flexible in view of a numerical algorithm. In particular, not fixing a value for the lapse
on the horizon, but rather giving a first order prescription, allows the data to “adapt” to potentially
high tidal distortions. However, having also tried to impose Neumann conditions for the lapse in our
configurations, we do not see any clear improvement in the robustness of the algorithm. This is why
we still keep a Dirichlet boundary condition as the simplest prescription.

13.5.3 Physical and geometrical tests for stationarity

One of the tests of stationarity to be made can be the comparison between the ADM mass and the

Komar mass at infinity, defined with the (presumably) Killing vector
(

∂
∂t

)i
(equation (7.91) of [214]).

The results of this test are displayed in figure 13.3. The comparison between the ADM mass and the
Komar mass is actually directly linked to the Virial theorem of general relativity put forth by [220].
The concordance between those masses is equivalent to the vanishing of the Virial integral, and has
been also used as a stationarity marker by [219].

We have also computed in both NCF and CF cases an estimate of the amount of gravitational
radiation contained outside the black hole in the 3-slice. Following the prescriptions of [36], we
calculate the difference between the ADM mass and what could be called the isolated horizon mass,
defined in geometrical units by:

MH =

√
R4

H + 4J2
H

2RH
. (13.36)
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Figure 13.3: Different diagnostics for stationarity in both cases, comparing physical quantities
at the horizon and at infinity. The virial error computes the difference between ADM and
Komar masses at infinity, rescaled with the ADM mass, and using asymptotic behaviors of the
lapse and conformal factor. The radiation energy content outside the black hole (resp. outer
angular momentum content) is the absolute difference between the horizon mass MH (resp.
angular momentum on the horizon JH) and the ADM mass MADM (resp. Komar angular
momentum at infinity JK), rescaled with the ADM mass (resp. Komar angular momentum at
infinity).

where RH is the areal radius of H. MH is nothing but the formula for the Christodoulou mass [122]
calculated from the Komar angular momentum JH on the horizon (defined with the same supposed
Killing symmetry as JK). If we have an isolated horizon extending to future infinity, the difference
between MADM and MH gives exactly the radiation energy emitted at future null infinity for the
data [36]. In non-stationary cases (for example binary systems), this is an appropriate estimate of the
radiation content at an initial given time.

Results for comparison between the two cases studied here are shown in figure 13.3. Although the
gravitational energy available for NCF spacetimes is contained under 10−7 whatever the rotation rate
might be, in the CF case, the increase in energy with a

M is patent. This measure of energy available
with respect to a

M gives us a way of approximating a priori the amount of what is usually called
“junk” gravitational radiation, that could be emitted on a spacetime evolution with conformally flat
initial data.

In the same spirit, we have also computed the accuracy in the verification of a Penrose-like in-
equality for axisymmetric data, that can be written as:

ǫA =
A

8π(M2
ADM +

√
M4

ADM − J2
K)

≤ 1, (13.37)
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where A is the minimal area of a surface containing the horizon, JK is the Komar angular momentum
at infinity and MADM is the ADM mass at infinity. Being a little more stringent that the actual
Penrose inequality, it has been first proposed by [242] for axisymmetric spacetimes. This inequality
is supposed to be verified for all axisymmetric data containing an apparent horizon, and to be an
equality only for actual Kerr data (this is referred in [266] as Dain’s rigidity conjecture [139]). The
results are presented in figure 13.4. We observe that, if the equality is very well verified in the actual
Kerr case, this is definitely not true for CF data, even for reasonable values of a

M . In [266] (cf. [267] for
a general context), it has been proposed that this quantity ǫA (Dain’s number) should be understood
as a strong diagnosis tool for distinguishing between Kerr horizons and other isolated or dynamical
horizons. This numerical observation shows strong support in favor of this claim, pulling apart actual
Kerr data and reasonable approximations of these data. Let us also point out the virtual costlessness
of this tool, as we only have to rely on a single real value.

We also note that, when computing the rescaled difference of Komar angular momentum between
the horizon and infinity JK−JH

JK
, we come up in all cases with a difference at the level of numerical

precision for resolution (see figure 13.3). This is of course coherent with the fact that gravitational
waves cannot carry any angular momentum in axisymmetric spacetimes. This result ensures us the
equivalence in practice between the estimation of radiation exterior to the horizon and the verification
of Penrose inequality via Dain’s number.

13.5.4 Multipolar analysis

To be much more complete about the geometry of the constructed horizons, one could rely on the
source multipole decomposition of the two-surface lying on our three-slice. This feature has first been
presented by [37], based on an analogy with electromagnetism, and first studied in [407] in the case
of dynamical horizons. We here implement the computation of multipole moments in the isolated
horizon case, which is the strict situation where they have been defined in [37].

A prerequisite is the existence of a preferred divergence-free vector field ϕa on the sphere, from
which the angular momentum of the horizon is defined (the divergence-free condition on ϕa ensures
that all definitions will be gauge-independent). As mentioned above, our chosen vector field will be

the one associated with the azimuthal coordinate, namely
(

∂
∂ϕ

)i
.

Another important feature is the construction of a preferred coordinate system, so that the Legen-
dre polynomials associated with spherical harmonics will possess the right orthonormality properties;
as expressed in the implementation of [407], this reduces to finding a set of coordinates (ζ, ϕ) where
the metric on the two-surface can be written as:

qHab = R2
H

(
f(ζ)−1DaζDbζ + f(ζ)DaϕDbϕ

)
, (13.38)

with RH the areal radius of the sphere and f(ζ) determined in terms of the two-dimensional Ricci
scalar and the norm of ϕa [37]. In the axisymmetric case studied here for the horizon, the integral
curves for the coordinate ϕ are already defined by the orbits of the vector field ( ∂

∂ϕ)i. The coordinate
ζ is defined by

Daζ =
1

R2
H

ǫbaϕ
b. (13.39)

An appropriate normalization should be added, that ensures that
∮
H ζd2V = 0. In the Kerr case,

those coordinates turn out to correspond with the Boyer-Lindquist coordinates, with ζ = cos θ in
spherical coordinates [407].
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Figure 13.4: Value of 1 − ǫA for both data sets.

The mass and angular momentum multipoles of order n are then defined, by analogy with elec-
tromagnetism [37]:

Mn =
Rn

HMH

8π

∮

S
{RPn(ζ)}d2V, (13.40)

Jn =
Rn−1

H

8π

∮

S
P

′

n(ζ)Kabs
aϕbd2V. (13.41)

With this definition and using the Gauss-Bonnet theorem it is trivial to see that M0 = MH and
J1 = JK , the Komar angular momentum on the horizon.

We should emphasize that these multipoles, except for M0 and J1, are in general different from
the field gravitational multipoles that can be defined at infinity. However, the authors in [37] have
pointed out that the knowledge of all the multipoles of an isolated horizon allows to reconstruct the
whole horizon, and also the spacetime in a vicinity of this horizon. The multipoles then discriminate
exactly every isolated horizon, and the spacetime at its vicinity. Figure 13.5 shows the capacity of
telling apart the horizon of a CF axisymmetric slice and the one of a NCF slice, in Dirac gauge. Data
are also compared with an analytic Kerr solution in Kerr-Schild coordinates. Apart from the accuracy
obtained for our NCF data (and a further confirmation that we indeed have obtained the actual Kerr
spacetime), we see the clear distinction made by this computation between the Kerr horizon and a
conformal approximation of it. Together with Dain’s number, this study has proven that those two
tools are very well-suited to study isolated horizon properties, and the distance between data obtained
from, say an evolution scheme, and the eventual equilibrium black hole data it is supposed to reach.
Ultimate tests on the characterization of the obtained data as slices of Kerr could be achieved by
implementing the schemes proposed in [198, 173].
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13.6 Discussion

The data we get with our simulations are interesting at several levels. They allow to make a di-
rect comparison between the conformally flat approximation and the exact solution for axisymmetric
spacetimes containing a black hole, that are both calculated a priori and in the same gauge. As we
have seen in Sec. 13.5, this gives us insight about the geometric features of the exact solution; we can
single important issues concerning for example the intrinsic geometry of the horizon, via multipoles
and the Penrose inequalities. Numerical tools are in this respect implemented and their efficiency
tested.

At a more theoretical level, the method we used to get those data is a little bit heterodox: providing
standard non-expanding horizon conditions for (3+1) variables such as βi, ψ and Nψ, we choose in
addition not to prescribe any further geometrical information for the conformal part, symbolized here
by the tensorial field hij . This has been motivated by the fact that, given the tensorial equation
corresponding to hij in our formalism, it appears that we most likely cannot prescribe anything else in
the studied setting. By numerical transformation of the operator acting on hij we ensured that at every
iteration step no boundary condition was required. The fact that our system of Einstein equations
written this way converges to the required Kerr solution shows that indeed, no additional information
was needed in the single horizon case. To be more precise, our method suggests that in this case, the
conformal geometry of the MOTS is directly encoded in the Einstein equations, when written with an
equilibrium ansatz: we directly use these equations to justify a no-boundary treatment.

In the light of this numerical study, we can make a parallel with the proposition made in [132].
In that paper, the authors suggested, after a gauge dependence analysis for γ̃ij on the horizon, that
a prescription could be made for the conformal geometry on the horizon. In this respect, they justify,
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for the projection of the three-metric on the two-surface, the following choice:

qab = ω2fab, (13.42)

with fab the usual diagonal round metric for a two-sphere in spherical coordinates adapted to the
horizon. This choice should not affect the physics of the three-slice, and suffices to recover the solution
for Einstein dynamical equation with a slice of a spacetime containing an isolated horizon. Their study
is made in a differential gauge generalizing the Dirac gauge we are using, namely Diγ̃

ij = V i, with V i

a regular vector field on the three-slice. Our case corresponds to V i = 0, which is precisely the one
treated in detail in [132].

When comparing to our data, we find that the projection of our three-metric on the two-surface
is not conformally related to the flat metric in adapted spherical coordinates. This means that in our
particular case, and in regard of the particular no-boundary argument we use, a boundary condition
of the same type as (13.42) is probably inconsistent with our data, and is likely a choice that we do
not have the freedom to make (note however that geometric conditions in [263] making full use of
the isolated horizon structure are indeed compatible with the present results, i.e. they are identically
satisfied in the present Kerr case, whose horizon is indeed an isolated horizon). Unfortunately, the
authors in [132] did not present any numerical results to support their claims, that we could have
compared with ours.

We insist here on an important caveat for our argumentation: assumptions can only be justified
in the very particular case we are studying here, which is the axisymmetric vacuum spacetime. This
spacetime has very specific and non-trivial properties, all related to the uniqueness theorem of Carter
[108]. Although the reasoning we have made on Sec. 13.3 for the operator could apply in other isolated
horizon studies, we are not certain that our algorithm would globally converge when applied to a more
general case (e.g. a black-hole binary system); a failure of this behavior would probably mean that an
additional information about the conformal two-geometry has to be given to the system. Geometric
fully isolated horizon boundary conditions proposed in [263] could then be enforced (note that geo-
metric inner boundary conditions in [263] are not necessarily tied to the particular analytic setting
here discussed and, more generally, they would also apply in schemes not enforcing the coordinate
adaptation to stationarity at the horizon, b = NH, crucial for the singular nature of operators (13.30)).

Finally, let us point out the fact that we made those simulations by prescribing only the geometry of
the horizon, and the geometry of spacetime at infinity. No assumption has been made for axisymmetry
in the three-slice (computations can easily be made in the full 3D case and give the same results).
Prescribing a vanishing expansion and a conformal Killing symmetry on a horizon, together with
asymptotically flat hypothesis, our code converges to the only solution of the Kerr spacetime. Without
claiming any rigorous demonstration here, this numerical result is most likely a support to the well
known black hole rigidity theorem [242], where the same hypotheses lead to a uniqueness theorem
involving the Kerr solution as the only one with no electromagnetic field.

13.7 Conclusion

We have used the prescription for a fully constrained scheme of (3+1) Einstein equations in generalized
Dirac gauge [73, 135] to retrieve stationary axisymmetric black hole spacetime, and compared it with
the analytical solution of Kerr type. An advanced handling of the conformal geometry of our three-
slice allowed us to reach actual stationarity with good resolution precision for our scheme. Although
we used standard quasi-equilibrium conditions concerning boundary values for other metric fields in
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the excised horizon, we found that the conformal geometry on the horizon required no prescription
whatsoever in the single horizon case. This is in contrast with suggestions available in the literature
[132], and probably suggests an underlying physical feature of the horizon geometry (maybe related to
uniqueness of the Kerr solution). To our knowledge, it is the first time the conformal part is numerically
computed in a black hole spacetime using only a prescription on the stationarity of spacetime (and
without resorting to additional symmetries). The application of this feature to the more general initial
data problem is evident: in the same spirit as the work done in [471] for neutron-star binaries, using
it for the black-hole binary system could lead to significant improvement in the available initial data
for evolution codes. Further numerical work will clarify this issue.

We have implemented and used in our study numerical tools aimed at characterizing the geom-
etry and physical properties related to horizons embedded in spacetime; those tools, among which
a complete multipole analysis for two-surfaces as gravitational sources, have proven very accurate
for diagnostics involving the horizon geometry and physical features. They will be more thoroughly
presented, and tested in more general cases, in an upcoming work.

APPENDIX

13.A Tensor spectral quantities adapted to the Dirac

Gauge

We here give the definition of the three spectral quantities introduced in Sec. 13.3.3, that describe
the divergence-free degrees of freedom (with respect to the Dirac gauge) associated with a rank two
symmetric tensor. The reader is also invited to go to [134] or [340] where more detailed calculations
are provided.

We first define a set of spin-weighted tensor spherical harmonics components for a symmetric rank-
2 tensor, directly linked to the tensor spherical harmonics as introduced by Mathews and Zerilli [313,
498]. We shall give the expression for these components of the tensor hij using the classical spherical
coordinate basis, which is used in practice in our computations. With the notation P = hθθ + hϕϕ,
the six pure spherical harmonics components of hij are defined as :

∆θϕη =
∂hrθ

∂θ
+

hrθ

tan θ
+

1

sin θ

∂hrϕ

∂ϕ
, (13.43)

∆θϕµ =
∂hrϕ

∂θ
+

hrϕ

tan θ
− 1

sin θ

∂hrθ

∂ϕ
, (13.44)

∆θϕ (∆θϕ + 2)W =
∂2P

∂θ2
+

3

tan θ

∂P

∂θ
− 1

sin2 θ

∂2P

∂ϕ2

−2P +
2

sin θ

∂

∂ϕ

(
∂hθϕ

∂θ
+

hθϕ

tan θ

)
, (13.45)

∆θϕ (∆θϕ + 2)X =
∂2hθϕ

∂θ2
+

3

tan θ

∂hθϕ

∂θ
− 1

sin2 θ

∂2hθϕ

∂ϕ2

−2hθϕ − 2

sin θ

∂

∂ϕ

(
∂P

∂θ
+

P

tan θ

)
, (13.46)

the fifth and sixth scalar fields being simply the tensor trace h with respect to the flat metric and
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the hrr spherical component. Let us note that these relations are more tractable when using a scalar
spherical harmonics decomposition (introduced in Sec. 13.4.2) for all fields. Indeed, an angular Laplace
operator acting on a field reduces then to a simple algebraic operation on every spherical harmonics
component. Inverse relations can also be computed to retrieve the classical components of hij from
spherical harmonics quantities.

We now derive the main variables related to our study: with the divergence-free decomposition
hij = DiV j + DjV i + hij

T , and Dih
ij
T = 0, a choice for three quantities defined from hij and verifying:

hij
T = 0 ⇒ A = B = C = 0, (13.47)

can be expressed as the following scalar fields (see [340]):

A =
∂X
∂r

− µ

r
, (13.48)

B =
∂W
∂r

− ∆θϕW
2r

− η

r
+

h − hrr

4r
, (13.49)

C =
∂(h − hrr)

∂r
− 3hrr

r
+

h

r
− 2∆θϕ

(
∂W
∂r

+
W
r

)
(13.50)

These quantities can also be decomposed onto a scalar spherical harmonics basis. The equivalence
in (13.47) is achieved up to boundary conditions.

To show how the quantities A, B and C behave with respect to the Laplace operator, we shall
suppose in the following that the tensor hij is the solution of a Poisson equation of the type ∆hij = Sij .
We can deduce a scalar elliptic system verified by A, B and C as:

∆A = AS (13.51)

∆B − C

2r2
= BS (13.52)

∆C +
2C

r2
+

8∆θϕB

r2
= CS , (13.53)

Where AS , BS and CS are the corresponding quantities associated with the source Sij . A simple
way of decoupling the last two elliptic equations is to define the variables B̃ =

∑
l,m B̃lmYlm and

C̃ =
∑

l,m C̃ lmYlm with:

B̃lm = Blm +
C lm

2(l + 1)
, (13.54)

C̃ lm = C lm − 4lBlm. (13.55)

Thus, we can write an equivalent system for (13.51,13.52,13.53) as:

∆A = AS , (13.56)

∆̃B̃ = B̃S , (13.57)

∆∗C̃ = C̃S , (13.58)

With the following elliptic operators defined for each spherical harmonic index l:
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∆ =
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2
I (13.59)

∆̃ = ∆ +
2l

r2
I, (13.60)

∆∗ = ∆ − 2(l + 1)

r2
I. (13.61)

I is the identity operator. A, B̃ and C̃ are then defined as three scalar fields characterizing only
the divergence-free part of a symmetric rank two tensor hij , and giving a system of three decoupled
scalar elliptic equations in the Poisson problem for this tensor. Hence they are very well suited to the
study of a tensorial elliptic problem in Dirac gauge. Let us finally note that the quantities B̃ and C̃
are directly related to each other by the trace of the considered tensor [340]: If we know a priori the
value of the trace for hij , then the knowledge of B̃ suffices to recover C̃ with no additional information
(the converse being equally true).

13.B Recovery of hij from A and B̃

In this section, we come up with technical details for resolution of the gauge differential system
introduced in Sec. 13.3.3, to reconstruct the tensor hij from the quantities A and B̃.

We begin by expressing components of the vector field representing the divergence of hij :

H i = Dih
ij , (13.62)

with the Dirac gauge for H i = 0. Adopting the vector spherical harmonics decomposition suggested
in [73], the three spherical harmonics components of H i are expressed, in function of the spherical
harmonics components of hij (see Appendix 13.A), as:

Hr =
∂hrr

∂r
+

3hrr

r
+

1

r
(∆θϕη − h) , (13.63)

Hη = ∆θϕ

[
∂η

∂r
+

3η

r
+

1

r

(
(∆θϕ + 2)W +

h − hrr

2

)]
, (13.64)

Hµ = ∆θϕ

[
∂µ

∂r
+

3µ

r
+

1

r
(∆θϕ + 2)X

]
. (13.65)

Those three expressions, alongside with definitions of the quantities A and B̃, will allow to express
two decoupled differential systems. The first one, involving the spherical harmonics components µ
and X , combines the expression for the scalar field A, as well as the fact that Hµ vanishes under the
Dirac gauge : 




∂X
∂r

− µ

r
= A,

∂µ

∂r
+

3µ

r
+

1

r
(∆θϕ + 2)X = 0.

(13.66)

The second system is composed of the definition of B̃ for each of its spherical harmonic component
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B̃lm, as well as the vanishing of Hr and Hη(again, due to Dirac gauge):





B̃lm = Blm +
C lm
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r
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1

r
(∆θϕη − h) = 0,
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r
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h − hrr

2

)
= 0.

(13.67)

with the expressions (13.49, 13.50) of B and C as functions of the spherical harmonics components of
hij . In this system, the trace is given a priori, so that only three spherical harmonics components are
considered as unknowns.

We refer to the analysis of [340] to affirm that, when solving our equations in R3 minus an excised
inner sphere, one boundary condition has to be provided at the surface for the system (13.66), and two
for the system (13.67). As pointed out in Sec.13.4.2, these conditions are retrieved as compatibility
conditions based on the original elliptic tensorial equation. Overall, we are able to invert the two
Dirac differential systems, and retrieve all the spherical harmonics components of hij from the sole
knowledge of A, B̃ and the trace h.



Conclusions

Ce manuscrit détaille en trois parties les travaux de recherche que j’ai effectués dans de
nombreuses collaborations depuis 2001. L’objectif global a été d’être capable de modéliser sur
ordinateur les objets complexes que sont les astres compacts, en tant que sources d’ondes gravi-
tationnelles, mais aussi pour l’étude de ces objets eux-mêmes et de la physique dans des condi-
tions extrêmes. Le développement d’un formalisme contraint de la relativité générale (partie I)
a été une étape très importante en vue de la mise au point de modèles numériques tridimension-
nels en champ gravitationnel fort. Le formalisme présenté ici est intéressant en ce qu’il assure
la résolution des équations de contraintes et évite ainsi l’augmentation des erreurs sur le calcul
du champ gravitationnel relativiste. Le problème d’unicité du système d’équations aux dérivées
partielles elliptiques associé a, dans un premier temps, empêché des simulations s’approchant
du trou noir. Nous avons réussi à trouver une amélioration du formalisme contraint, qui per-
met de suivre les effondrements gravitationnels jusqu’à la formation de l’horizon du trou noir,
et suffisamment au-delà pour pouvoir étudier les propriétés du trou noir nouvellement formé.
Ainsi, ce nouveau formalisme contraint semble être aujourd’hui suffisamment au point pour des
simulations complexes.

Les techniques numériques utilisées pour résoudre ces équations aux dérivées partielles sont,
depuis des années dans notre groupe à Meudon, les méthodes spectrales. Une des spécificités
du groupe, même par rapport à d’autres personnes qui utilisent les méthodes spectrales en
physique, est certainement d’être capable de gérer en trois dimensions la singularité liée aux
coordonnées sphériques au centre de la grille (r = 0). Dans le cadre de la relativité numérique,
ce sont les fondateurs du groupe, S. Bonazzola et J.-A. Marck qui ont introduit l’utilisation
de ces méthodes dès les années 80. C’est sans doute la raison pour laquelle il nous a été de-
mandé d’écrire un article de revue sur l’utilisation de ces méthodes en relativité numérique.
Même si elles sont aujourd’hui bien comprises, un certain nombre d’outils importants ont
dû être développés, comme la technique pour la résolution de l’équation d’onde tensorielle
avec contrainte de divergence nulle ou le trouveur d’horizon apparent. La première est absolu-
ment nécessaire pour intégrer proprement la partie hyperbolique des équations du formalisme
contraint, en respectant la jauge, et la seconde afin de pouvoir diagnostiquer l’apparition ou la
fusion de trous noirs dans les simulations.

Les modèles d’astres compacts et de leurs évolutions présentés ici sont bien entendu encore
trop incomplets. En premier lieu, les simulations de supernovae gravitationnelles présentées
ici sont très encourageantes en ce qui concerne l’hydrodynamique et le champ gravitationnel,
mais les détails de la « microphysique » (équation d’état, transport des neutrinos,. . .) sont
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beaucoup trop pauvres. Même si plusieurs points de la structure des étoiles à neutrons ont été
présentés comme la superfluidité ou le champ magnétique, il reste souvent à améliorer le modèle
physique (par exemple, avoir un équation d’état réaliste pour ce qui est de l’entrâınement entre
le superfluide et le fluide normal) et surtout à combiner ces différents points pour construire
le modèle le plus complet possible. Ainsi, même s’il est encourageant de pouvoir retrouver la
solution complète d’un trou noir en rotation à partir de conditions aux bords, il faut très vite
construire des modèles dynamiques en présence de matière, voire de champ magnétique. Les
résultats présentés dans cette partie III montrent que les modèles numériques sont capables
de suivre des phénomènes violents, comme les effondrements gravitationnels d’une étoile à
neutrons en trou noir, mais les simulations aujourd’hui doivent être beaucoup plus précises et
donc prendre en compte les modèles de matière les plus complets.

Cette amélioration des modèles est bien entendu stimulée d’abord par l’amélioration des ob-
servations à notre disposition. Les données collectées par les télescopes à hautes énergies comme
HESS, Fermi ou INTEGRAL exigent des modèles plus complets, afin également d’être capable
d’expliquer des observations plus variées ou à plusieurs longueurs d’ondes. Les instruments de
prochaine génération, tel CTA, ou surtout les nouveaux projets de détecteurs d’ondes gravita-
tionnelles requerront une souplesse encore plus grande. La question commence aussi à se poser
du temps nécessaire à l’élaboration d’un modèle numérique : s’il faut explorer un vaste espace
des paramètres inconnus afin d’ajuster le modèles aux observations, il faut que le programme
numérique tourne suffisamment vite. Là encore, les méthodes spectrales apportent un avantage
certain, que l’on peut combiner avec l’accroissement de la vitesse des calculateurs.

Cependant, il ne s’agit pas ici de simplement se reposer sur la puissance constamment
croissante des ordinateurs pour espérer avoir des modèles numériques de plus en plus précis. En
effet, le fait d’ajouter des « ingrédients physiques » introduit souvent de nouvelles instabilités ou
bruits numériques. Par exemple, les tentatives récentes de simuler l’hydrodynamique relativiste
à deux fluides s’est heurtée à l’instabilité à deux courants [17], qui est connue dans le domaine
(elle est une des explications possibles au phénomène de glitch des pulsars) mais qui ici, faute
d’équation d’état suffisamment réaliste, n’a pas de mécanisme de saturation. De manière plus
évidente encore, la détermination d’une équation d’état réaliste pour la matière au-delà de la
densité nucléaire doit nécessairement passer par des modèles approchés de physique nucléaire,
car les équations fondamentales du problème sont celles de la chromodynamique quantique, et
rendent le problème complet impossible à résoudre numériquement.



Perspectives

Interaction d’un trou noir avec son environnement

Une première suite logique aux travaux présentés ci-dessus est la modélisation de l’évolution
temporelle d’un trou noir, avec l’aide du formalisme d’« horizon dynamique » développé par
E. Gourgoulhon et J. L. Jaramillo [223]. Ce travail sera naturellement entrepris en collaboration
avec N. Vasset (LUTH) et consistera en l’implémentation et les tests numériques de ce forma-
lisme pour l’évolution d’un trou noir interagissant avec de la matière ou avec du rayonnement
gravitationnel. Plusieurs questions peuvent être étudiées : dans le cadre des données initiales
« conformément plates » (voir section 13.3) contenant un trou noir en rotation, quel est le
contenu en ondes gravitationnelles ? Comment accélérer un trou noir en rotation (par exemple
via un disque d’accrétion) pour le faire tourner à son taux maximum ? Un autre point qui sera
abordé est la possibilité de prendre en compte l’apparition d’un trou noir dans la simulation
lors d’un effondrement gravitationnel. En effet, l’utilisation d’une jauge évitant les singularités
(de type « feuilletage maximal », voir section 1.4) permet de ne pas avoir de singularité dans le
domaine de calcul alors que l’horizon apparent est déjà formé (voir figure 3.3), mais introduit
néanmoins de très forts gradients sur les champs métriques qui, à court terme, déstabilisent le
code numérique. Si l’on veut alors continuer la simulation en présence du trou noir, une solu-
tion est de retirer du domaine de calcul un volume situé à l’intérieur de l’horizon apparent et
de procéder ensuite comme pour la technique de l’excision (voir introduction de la partie III),
c’est-à-dire ne pas résoudre les équations d’Einstein sur un voisinage de la singularité centrale,
mais les remplacer par des conditions au bord.

Étude dynamique de binaires compactes spirallantes

Pendant de nombreuses années, l’objectif principal de la plupart des groupes de relativité
numérique a été la simulation de l’évolution de binaires d’astres compacts, car il s’agit là des
principales sources attendues de rayonnement gravitationnel. Dans ce contexte, le « groupe de
Meudon » s’est spécialisé dans le calcul des données initiales de ces binaires [71, 229, 226]. Ces
données sont aujourd’hui utilisées comme point de départ pour de nombreux codes d’évolution
de binaires : par exemple à l’Albert Einstein Institut (Potsdam) [42], ou à Lousiana State Uni-
versity (Bâton Rouge) [353]. La mise au point d’un code d’évolution des binaires en relativité
générale au sein du groupe de Meudon est ainsi une direction évidente pour la suite des re-
cherches, à partir du code résolvant les équations d’Einstein dans le vide qui est disponible
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actuellement [73, 135, 216]. Il sera certainement très intéressant de posséder un tel outil en
France, qui permettrait de contrôler toute la simulation : données initiales et évolution. Ce-
pendant, de nombreux groupes à travers le monde (essentiellement aux États-Unis, mais aussi
en Allemagne et au Japon) possèdent déjà de tels codes numériques et ont beaucoup étudié le
problème de l’évolution de binaires d’astres compacts.

La question peut se poser alors sur l’intérêt de développer encore un autre code en vue
de résoudre les équations d’Einstein pour ce problème. Il y a plusieurs bonnes raisons à cela.
D’abord, la majorité des groupes utilise plus ou moins les mêmes outils et formulation du
problème des binaires : formalisme libre de type BSSN [54, 421], approche des « ponctions » [474]
avec les jauges adaptées (« 1+log » et « gamma-driver ») et codes AMR basés sur la plate-forme
Cactus [15] et une grille cartésienne. L’extension de nos outils de simulation au cas des binaires
spirallantes permettrait d’avoir un modèle numérique réellement différent avec un formalisme
contraint, la jauge de Dirac [73] et un code basé sur les méthodes spectrales en coordonnées
sphériques, voire bi-sphériques [227]. Ainsi, la mise au point d’un code pour la simulation de
binaires d’astres compacts est une direction naturelle de poursuite des travaux de recherche.

Effondrements gravitationnels

Il faut cependant considérer une autre direction qui se développe assez vite en ce moment :
la prise en compte de modèles physiques plus réalistes. En effet la communauté de relativité
numérique n’a jusqu’à récemment considéré que des modèles de matière assez simples pour
décrire les étoiles à neutrons ou les effondrements gravitationnels : équations d’état de type
polytrope (p = κργ) ou fluide parfait (p = (Γ − 1)ρǫ). Ce n’était évidemment pas à cause
d’une méconnaissance des propriétés de la matière dense, mais cela venait du fait qu’il y avait
déjà beaucoup de difficultés à résoudre correctement les équations du champ gravitationnel.
Les travaux se sont donc longtemps concentrés sur les équations d’Einstein en simplifiant au
maximum les autres points. Aujourd’hui, cette communauté de relativité numérique a com-
mencé à se rapprocher des physiciens nucléaires, ainsi que des physiciens des particules, et de
nombreuses collaborations ont été initiées afin d’améliorer la « microphysique » des modèles
d’astres compacts.

Avec le développement du code tridimensionnel CoCoNuT [150] pour suivre les effondre-
ments gravitationnels des cœurs d’étoiles dégénérés (voir le chapitre 8), notre groupe dispose
d’un bon outil qu’il s’agit aussi de compléter en y incorporant une équation d’état réaliste basée
sur des calculs de physique nucléaire, ainsi que la prise en compte de la déleptonisation ayant
lieu au cours de l’effondrement par capture électronique. Ce dernier point requiert à long terme
l’implémentation et la résolution de l’équation de Boltzmann pour le transport des neutrinos,
ce qui est très complexe et extrêmement coûteux en temps de calcul. Malgré ces difficultés, avec
Pablo Cerdá-Durán (Institut Max Planck pour l’astrophysique à Garching, Allemagne), Isabel
Cordero-Carrión (Université de Valencia, Espagne) et Micaela Oertel (LUTH), nous avons en-
trepris d’enrichir le code CoCoNuT pour arriver à des simulations plus réalistes des phénomènes
de supernovae. Il ne s’agit pas de chercher à se comparer directement avec les grands groupes
qui effectuent ce genre de simulations (autour de T. Janka à Garching, A. Burrows à Princeton,
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A. Mezzacappa à Oak Ridge, . . .), mais de disposer d’un outil pour tester de nouvelles hy-
pothèses apparaissant dans le domaine. À titre d’illustration, on peut citer la prise en compte
des effets de température sur la capture électronique [172] ou la possibilité d’une transition de
phase vers de la matière de quarks au moment de la formation de la proto-étoile à neutrons, ce
qui impliquerait un second choc et un second signal en neutrinos [396]. Dans de tels cas, il est
très important d’avoir à disposition un code qui puisse prendre en compte au moins l’hydrody-
namique et la gravitation relativiste, ainsi que la rotation, mais qui soit relativement rapide à
l’exécution, afin de pouvoir tester l’effet de ces idées venant de la physique des particules.

En conclusion, en plus de l’étude de l’effet de la matière sur un trou noir et du développement
d’un code pour la simulation de l’évolution de deux astres compacts sous l’effet de l’émission
d’ondes gravitationnelles, il me semble très important de développer la simulation des effon-
drements gravitationnels stellaires. Il s’agit là d’un thème de recherches qui n’existe quasiment
pas en France, mais pour lequel de nombreuses compétences sont présentes : théorie sur les
instabilités hydrodynamiques (Th. Foglizzo, CEA/Saclay), physique nucléaire (J. Margueron,
IPN/Orsay et M. Oertel, LUTH), transport des neutrinos (P. Blottiau, CEA/Bruyères et S. Bo-
nazzola, LUTH) et gravitation / astres compacts (S. Bonazzola, E. Gourgoulhon, . . . LUTH).
À cela, vient s’ajouter l’expertise sur les simulations de trous noirs décrites plus haut, qui est en
train d’être étendue en vue de l’étude des interactions entre un trou noir et son environnement,
et qui sera des plus intéressantes pour les simulations d’effondrements d’étoiles très massives
donnant des trous noirs (« hypernovae »), pour lesquelles la question de l’équation d’état a très
peu été étudiée.
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1. J. Novak, J.-L. Cornou, N. Vasset : A spectral method for the wave equation of divergence-
free vectors and symmetric tensors inside a sphere
Journal of Computational Physics, 229, 399-414 (2010) [preprint : arXiv:0905.2048]

2. N. Vasset, J. Novak, J.L. Jaramillo : Excised black hole spacetimes : quasi-local horizon
formalism applied to the Kerr example
Physical Review D, 79, 124010 (2009) [preprint : arXiv:0901.2052]
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(2005), CFC+ : improved dynamics and gravitational waveforms from relativistic core collapse
simulations, Astron. & Astrophys.439, 1033–1055.
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Holes, Thèse de doctorat, Princeton University.

[123] Cohen, J. M., Tiomno, J. et Wald, R. M., (1973), Gyromagnetic ratio of a massive body ,
Phys. Rev. D 7, 998–1001.

[124] Comer, G. L., (2004), Slowly rotating general relativistic superfluid neutron stars with relativistic
entrainment , Phys. Rev. D 69, 123009, 1–13.



BIBLIOGRAPHIE 407

[125] Comer, G. L. et Joynt, R., (2003), Relativistic mean field model for entrainment in general
relativistic superfluid neutron stars, Phys. Rev. D 68, 023002, 1–12.

[126] Comer, G. L. et Langlois, D., (1994), Hamiltonian Formulation for Relativistic Superfluids,
Class. Quantum Grav. 11, 709–721.

[127] Cook, G., (2000), Initial Data for Numerical Relativity , Living Rev. Relativity 3, lrr-2000-5, 5.

[128] Cook, G. B., (1994), Three-dimensional initial data for the collision of two black holes. II.
Quasicircular orbits for equal-mass black holes, Phys. Rev. D 50, 5025–5032.

[129] Cook, G. B., (2002), Corotating and irrotational binary black holes in quasicircular orbits, Phys.
Rev. D 65, 084003, 1–13.

[130] Cook, G. B., Shapiro, S. L. et Teukolsky, S. A., (1994), Rapidly rotating polytropes in general
relativity , Astrophys. J.422, 227–242.

[131] Cook, G. B., Shapiro, S. L. et Teukolsky, S. A., (1996), Testing a simplified version of Einstein’s
equations for numerical relativity , Phys. Rev. D 53, 5533–5540.

[132] Cook, G. B. et Baumgarte, T. W., (2008), Excision boundary conditions for the conformal
metric, Phys. Rev. D 78, 104016, 1–10.

[133] Cook, G. B. et Pfeiffer, H. P., (2004), Excision boundary conditions for black-hole initial data,
Phys. Rev. D 70, 104016, 1–24.
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[205] Gondek-Rosińska, D., Gourgoulhon, E. et Haensel, P., (2003), Are rotating strange quark stars
good sources of gravitational waves ? , Astron. Astrophys. 412, 777–790.

http://www.map-garching.mpg.de/rel_hydro/


412 BIBLIOGRAPHIE
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[275] Keppens, R. et Tóth, G., (1999), Nonlinear dynamics of Kelvin-Helmholtz unstable magnetized
jets : Three-dimensional effects, Phys. Plasmas 6, 1461–1469.

[276] Kidder, L. E., Scheel, M. A., Teukolsky, S. A., Carlson, E. D. et Cook, G. B., (2000), Black hole
evolution by spectral methods, Phys. Rev. D 62, 084032, 1–20.

[277] Kidder, L. E., Scheel, M. A. et Teukolsky, S. A., (2001), Extending the lifetime of 3D black hole
computations with a new hyperbolic system of evolution equations, Phys. Rev. D 64, 064017,
1–13.

[278] Kidder, L. E., Lindblom, L., Scheel, M. A., Buchman, L. T. et Pfeiffer, H. P., (2005), Boundary
conditions for the Einstein evolution system, Phys. Rev. D 71, 064020, 1–22.

[279] Kidder, L. E. et Finn, L. S., (2000), Spectral methods for numerical relativity : The initial data
problem, Phys. Rev. D 62, 084026, 1–13.

[280] Klein, C., (2008), Fourth-Order Time-Stepping for Low Dispersion Korteweg-de Vries and Non-
linear Schrödinger Equation, Electron. Trans. Numer. Anal. 29, 116–135.
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C. R., Finn, L. S. et Hobill, D. W., pp. 306–314.

[483] Winicour, J., (2005), Characteristic Evolution and Matching , Living Rev. Relativity 8, lrr-2005-
10, 10.

[484] Yamada, S. et Sato, K., (1995), Gravitational Radiation from Rotational Collapse of a Supernova
Core, Astrophys. J.450, 245.

[485] York, J. W., (1972), Role of Conformal Three-Geometry in the Dynamics of Gravitation, Phys.
Rev. Lett. 28, 1082–1085.

[486] York, J. W., (1979), dans Sources of Gravitational Radiation, éd. Smarr, L. L., pp. 83–126,
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